Методическая система обучения студентов педвуза дифференциальному и интегральному исчислению функций в контексте фундаментализации образования
Создание методической системы обучения студентов-математиков педвуза дифференциальному и интегральному исчислению функций на основе положений фундаментализации образования, обеспечивающей будущим учителям высокий уровень математической подготовки.
Рубрика | Педагогика |
Вид | автореферат |
Язык | русский |
Дата добавления | 20.11.2010 |
Размер файла | 95,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Кроме того, представленная трактовка фундаментализации математической подготовки студентов предполагает в практике их обучения опору на методологическую составляющую методики обучения математике. Обучение должно производиться в рамках соответствующей методической системы с учетом составляющих внешней среды последней и опираться на принципы обучения математике в вузе.
В данном разделе подчеркнуто, что приводимое толкование феномена фундаментализации вузовского математического образования не противоречит идеям в отношении фундаментальности образования, высказываемым в разное время В. А. Садовничим Садовничий В. А. Традиции и современность // Высшее образование в России. - 2003. - № 1. - С. 11-18. и Н. В. Карловым Карлов Н. В. О фундаментальном и прикладном в науке и образовании, или «Не возводи свой дом на песке» // Вопросы философии. - 1995. - № 11. - С. 35-46., а также систематическим исследованиям по методологии методики обучения математике Г. И. Саранцева Саранцев Г. И. Методология методики обучения математике. - Саранск, 2001. - 141 с..
Раздел 1.2. «Конструирование методической системы обучения будущих учителей математики дифференциальному и интегральному исчислению функций» посвящен построению методической системы обучения студентов-математиков педвуза основам математического анализа в контексте фундаментализации образования. Методологическую основу конструирования данной системы составляют: системный подход, концепция математической и профессионально-педагогической подготовки будущих учителей математики в условиях фундаментализации образования, принципы обучения математике в высшей школе. В разделе проводится анализ системы на методологическом уровне.
Компонентный состав конструируемой методической системы в себя включает: цели обучения дифференциальному и интегральному исчислению, содержание обучения данному разделу анализа, а также методы, формы и средства обучения. Внешняя среда системы описывается такими тенденциями современного образования, как его фундаментализация и интенсификация, гуманизация и гуманитаризация, дифференциация и индивидуализация, а также общие цели математического образования, предмет математического анализа, место анализа в системе других математических наук и дисциплин естественнонаучного цикла, его применения, структура личности студента и закономерности ее развития, некоторые новые результаты исследований по математическому анализу. Из перечисленных составляющих внешней среды одной из главных является фундаментализация математического образования.
В данном разделе определяются связи между компонентами системы и внешней средой. Последняя наибольшее влияние оказывает на цели обучения студентов-математиков педвуза дифференциальному и интегральному исчислению функций. Цели обучения подразделяются на четыре группы: общеобразовательные, развивающие, воспитательные, практические. Отмечается, что в контексте постановки совокупности целей обучения студентов в педвузе дифференциальному и интегральному исчислению каждая из составляющих внешней среды методической системы может занимать доминирующее (лидирующее) положение при формировании соответствующей цели обучения. Приводимый тезис сопровождается соответствующими иллюстрациями.
В этом же разделе показано, что составляющие внешней среды оказывают значительное влияние и на содержание обучения будущих учителей математики дифференциальному и интегральному исчислению функций. В содержание помимо традиционных предметных знаний основ анализа включаются и такие элементы, как действия, адекватные основным понятиям, принципиальным теоремам и утверждениям, общенаучные методы познания, различные эвристики и эвристические приемы, аксиоматический и алгоритмический методы, метод моделирования, обсуждение места дифференциального и интегрального исчисления в математическом анализе и системе других математических дисциплин, изучаемых будущими педагогами, этапы развития анализа, исторические факты, связанные с его становлением, вклад отдельных ученых в его развитие. Автором подчеркивается, что на содержание обучения дифференциальному и интегральному исчислению в педвузе предмет математического анализа оказывает самое непосредственное влияние, в частности влияет его непрерывное расширение и развитие. Последние в контексте новых образовательных тенденций (в том числе фундаментализации и гуманитаризации) побуждают к включению в содержание обучения студентов соответствующих достижений и новых результатов в области математического анализа в последние годы, а также нерешенные проблемы и задачи. Отбор содержания обучения осуществляется на основе системы принципов отбора и представляется развивающейся системой, причем развитие осуществляется через деятельность и преподавателя (обучающего), и студентов (обучаемых).
Метод обучения студентов дифференциальному и интегральному исчислению в работе рассматривается как способ развития деятельностей преподавателя и студента и предметного содержания основ анализа. Приводится общая классификация методов обучения будущих учителей рассматриваемой области математики. В разделе подчеркивается, что в практике работы со студентами автор часто использует такие специальные методы обучения, как метод ключевых и теоретических задач, самостоятельного осмысления новых математических фактов по первоисточникам, формулирования обобщений утверждений, метод научных дискуссий, метод проектной деятельности, представляющие эвристические и исследовательские методы обучения.
Под формой обучения дифференциальному и интегральному исчислению функций понимается способ взаимодействия дидактических приемов преподавателя математического анализа и познавательных действий обучающихся студентов в процессе решения познавательных задач. Формы процесса обучения в вузе диктуются отношениями между преподавателем и студентами в решении учебных задач. Выделяемые в разделе отношения обусловливают рассмотрение фронтальной, коллективной, групповой, индивидуальной, совместной форм. В частности, для совместной формы обучения характерно взаимодействие преподавателя со студентами разных курсов и студентов разных курсов друг с другом в рамках общего занятия или выполнения некоторых заданий. В классификацию форм обучения дифференциальному и интегральному исчислению будущих учителей математики положены количественные характеристики обучаемого контингента.
Феномены фундаментализации и интенсификации, дифференциации и индивидуализации математического образования побуждают к активному культивированию внеаудиторных форм обучения студентов, помогающих решать следующие дидактические задачи: выявлять наиболее способных и талантливых студентов, формировать устойчивый интерес к исследовательской работе, углублять и расширять соответствующие математические знания, навыки и умения обучаемых, развивать математическую интуицию и логическое мышление, повышать уровень математической культуры. Внеаудиторная работа рассматривается как составная часть эффективного учебного процесса.
Из организационных форм обучения, представляющих внеаудиторные формы обучения, особо выделяется студенческий научно-исследовательский семинар, работающий по типу академических научных семинаров. В рамках такого семинара удается организовать изучение дополнительных вопросов дифференциального и интегрального исчисления, важных для профессиональной подготовки будущих учителей математики, осуществлять исследование открытых вопросов и проблем математического анализа. Участвующие в работе семинара студенты учатся находить нужную научную информацию, вырабатывают навыки отслеживания новых научных сведений по интересующей тематике, приобретают опыт ведения исследования и обсуждения научных результатов.
В этом же разделе при характеризации средств обучения дифференциальному и интегральному исчислению функций студентов-математиков педвуза подчеркивается, что в работе со студентами придается большое значение воспитанию в обучаемых потребности самостоятельно изучать учебники по математическому анализу, читать научные, научно-методические и научно-популярные статьи из периодических журналов и сборников (в том числе зарубежных изданий), обращаться к соответствующей литературе учебного и научного характера информационно-электронного ресурса.
Из средств обучения студентов дифференциальному и интегральному исчислению функций особо выделяются математические задачи, имеющие образовательное, практическое, методическое, воспитательное значения. В разделе осмысляется роль так называемых ключевых и теоретических задач. При конструировании систем задач, используемых в обучении студентов, исходим из того, что каждая такая система должна быть нацелена на формирование знаний, умений, навыков и математических компетенций, позволяющих успешно изучать математический анализ; на формирование профессионально значимых знаний и умений; на приобретение навыков самостоятельной работы; на приобщение студентов к творческой и исследовательской деятельности.
В разделе обсуждается также роль компьютера как информационно-технического средства обучения и средства управления учебной деятельностью обучаемых.
Раздел 1.3. «Общие цели математического образования и предмет математического анализа как составляющие внешней среды методической системы обучения» содержит три подраздела. В 1.3.1. «Общие цели математического образования» подчеркнуто, что сегодня в условиях модернизации системы образования на первый план выступает личностно-ориентированное обучение, поскольку само образование характеризуется усилением внимания к обучаемому, к его саморазвитию, к общечеловеческим ценностям, к воспитанию в обучаемых умения находить свое место в жизни. Максимально возможное раскрытие творческих способностей человека и их реализация есть благо одновременно и для общества, и для самого человека, поэтому главной целью системы образования следует считать воспитание личности, способной и готовой к саморазвитию. Главная ценность всей системы образования состоит в ее способности открыть, сформировать и упрочить индивидуальные ценности образования у обучаемых (В. П. Зинченко).
Наблюдающийся информационный бум четко ставит проблему: как научить лучше за меньшее время? Решение этой проблемы видится в следующем: необходимо менять традиционные методы обучения, резко снижать долю репродуктивных подходов, учить критически относиться к изучаемому материалу, воспитывать желание и необходимость анализировать информацию, приобщать к научному исследованию. В отношении обучения любой категории учащихся актуален принцип: важно «учить учиться».
Автор концентрирует внимание на общих целях вузовского математического образования. Одной из таких целей является воспитание и развитие личности средствами математики. Систематическое изучение математики должно преследовать цель формирования у будущих специалистов научного мировоззрения, которое предполагает знакомство с природой научного знания, с принципами построения научных теорий, в том числе естественнонаучных и математических теорий. Это осуществляется посредством осознания взаимосвязи реального и идеального, происхождения математических абстракций из практики, характера отражения математикой окружающего нас мира, роли математического моделирования в научном познании и в практике.
К общим целям математического образования относим также обеспечение устойчивого интеллектуального развития обучаемых, включающее формирование и развитие определенных качеств мышления, необходимых в жизни. Прежде всего, это абстрактное мышление и дедуктивное мышление, столь характерные для математиков-специалистов, а также эвристическое мышление и творческое мышление. Кроме того, будущему специалисту необходимо обладать логическим и алгоритмическим мышлением, навыками исследовательской деятельности. Важными целями математического образования являются и формирование математического стиля мышления, математической направленности ума, «свернутого» мышления, присущего творческим людям, развитие гибкости мышления, сообразительности.
Многие из приведенных общих целей математического образования имеют перспективную направленность, носят самый общий характер, в некотором смысле являются идеализированными, стратегическими (термин В.А. Тестова).
В подразделе 1.3.2. «Предмет математического анализа» обсуждается объект и предмет современной математики, метод математического моделирования и предмет математического анализа как области математики. Актуальность рассмотрения объекта сегодняшней математики объясняется тем обстоятельством, что математика в предыдущее и настоящее столетия сильно изменилась, она шагнула в своем развитии далеко вперед. Многие ее разделы стали еще более абстрактными, появились и совершенно новые, расширился круг приложений этой науки.
В трактовке предмета современной математики автор придерживается позиций Л. Д. Кудрявцева: математика изучает математические структуры. Рассмотрены различные характеризации понятия «математическая структура», при этом подчеркивается, что математическая структура может быть непосредственной математической моделью какого-либо реального явления. Если это не так, то она в той или иной степени может служить математическим аппаратом для изучения моделей реальных явлений. Приведены различные классификации математических моделей, обсуждается суть метода математического моделирования как метода изучения явлений посредством математических моделей.
В рамках данного подраздела анализируются известные в литературе трактовки предмета математического анализа. Следуя С. М. Никольскому, предметом математического анализа называем изучение функций и их обобщений методом пределов.
В подразделе 1.3.3. «Влияние предмета математического анализа на содержание обучения студентов-математиков педвуза дифференциальному и интегральному исчислению функций» подчеркивается важность изучения тех или иных структур математического анализа, которые непосредственно моделируют реальные процессы и явления окружающего нас мира. Отмечается, что иногда одни и те же структуры способны моделировать совершенно разные реальные явления. Например, производная функции может моделировать скорость, угловой коэффициент касательной к плоской кривой в заданной точке, линейную плотность в точке неоднородного стержня, силу тока в данный момент времени и т. д.
В исследовании показано, что на содержание математической подготовки студентов по дифференциальному и интегральному исчислению функций непрерывное воздействие должны оказывать динамичное расширение предмета математического анализа и тенденции развития ряда его направлений (в сочетании с определенным консерватизмом, связанным с продолжением российских традиций обучения анализу студентов в высшей школе). Обоснована целесообразность более обстоятельного знакомства студентов с неравенствами, которые играют большую роль в вопросах приложений дифференциального и интегрального исчисления, со свойствами выпуклых и логарифмически выпуклых функций, также имеющих значительные применения. При изучении основ анализа студентам полезно иметь дело не только с классическими утверждениями, но и развитием фактов.
В разделе 1.4. «Другие составляющие внешней среды методической системы обучения студентов педвуза дифференциальному и интегральному исчислению функций» рассматриваются такие феномены математического образования, как его индивидуализация, дифференциация, гуманизация и гуманитаризация, интенсификация. Кроме перечисленных составляющих внешней среды конструируемой методической системы также осмысляются структура личности студента и закономерности ее развития, отдельные важные исследования последних лет, проведенные различными авторами в рамках дифференциального и интегрального исчисления функций. Таким образом, в данном разделе продолжается анализ методической системы на методологическом уровне.
Опираясь на исследования проблемы личности известными учеными (В. С. Леднев, Г. И. Саранцев и др.), в ее структуре выделяем мотивационный, операционально-действенный, эмоционально-волевой, нравственный компоненты. Показано, что установление соответствующих связей между компонентами структуры личности и конкретными видами математической деятельности при обучении студентов дифференциальному и интегральному исчислению может оказывать целенаправленное влияние на личность средствами математического анализа, владение такими связями позволяет осуществлять развитие личности студента-математика педвуза. Так, при освоении доказательств основных теорем дифференциального и интегрального исчисления у студента развивается логическая составляющая мышления, а при решении задач и поиске обобщений теорем - эвристическая составляющая. Реализация строгих доказательств утверждений отражается и на формировании морально-этических качеств личности. Лаконичные математические выкладки, неожиданные способы решения задач позволяют развивать эстетические чувства.
Говоря об индивидуальном подходе в обучении студентов, автор акцентирует внимание на гибком и умелом использовании преподавателем различных методов, форм и средств педагогического влияния на обучаемых, педагогическом сотрудничестве и взаимодействии с ними с целью достижения высоких результатов образовательной деятельности.
В данном разделе индивидуализация обучения дифференциальному и интегральному исчислению функций студентов-математиков в педвузе характеризуется следующими положениями: 1) обучаемые студенты должны иметь максимально возможную самостоятельность в выборе путей и средств практической реализации основных теоретических положений изучаемого раздела анализа; 2) студентам необходимо предоставить условия и возможности для специализации по отдельным направлениям дифференциального и интегрального исчисления; 3) в процессе обучения важно реализовать личностные возможности каждого студента - будущего учителя математики: методические, организаторские, научные.
Индивидуализация обучения способствует самостоятельному приобретению знаний, формированию умений и навыков, обеспечивает интенсификацию учебного процесса, глубину в усвоении студентами знаний. Она стимулирует опережающее обучение на различных этапах учения, формирует надежный исследовательский уровень обучения.
В работе дана обстоятельная характеристика феномена дифференциации обучения математике, проанализировано его хронологическое развитие. В отношении обучения студентов-математиков педвуза выделяются два типа дифференциации: внутренняя и внешняя. Внутренняя дифференциация учитывает индивидуальные особенности студентов в условиях работы преподавателя со всем курсом (потоком) или учебной группой. Внешняя же дифференциация характеризуется учетом индивидуальных особенностей обучаемых студентов в условиях специальной группы (в случае проектируемой методической системы обучения это, например, группа участников студенческого научно-исследовательского семинара, комплектуемая студентами разных курсов).
В характеризуемом разделе с опорой на исследования Т. А. Ивановой, Т. Н. Мираковой, Г. И. Саранцева и др. ученых также производится осмысление феноменов гуманизации и гуманитаризации математического образования.
Гуманизация - это феномен, направленный на создание максимально благоприятных условий для развития личности школьника или студента, на организацию условий для раскрытия способностей обучаемых, совершенствования их нравственной и творческой сторон, преодоления «обезличенности» образования. Гуманизация образования обусловливает его гуманитаризацию. В разделе отмечается, что в обширной литературе, посвященной исследованию феномена гуманитаризации образования, в это понятие вкладывался разный смысл. Автор в вопросе трактовок данного понятия придерживается позиций Т. Н. Мираковой и Г. И. Саранцева. «Подлинной сутью гуманитаризации математического образования является отражение в нем деятельностной концепции знания»99 Саранцев Г. И. Гуманитаризация математического образования и его состояние сегодня // Математика в школе. - 2006. - № 4. - С. 57-62.
. Деятельностная сторона содержания обучения будущих педагогов дифференциальному и интегральному исчислению в работе отражается, в первую очередь, через реализацию деятельностных концепций работы с принципиальными теоремами и определениями основных понятий.
В этом же разделе в качестве составляющей внешней среды конструируемой методической системы рассматриваются некоторые важные новые результаты исследований и открытия в области вещественного анализа функций, восходящие, в основном, к 90-м гг. прошлого столетия, а также текущему десятилетию настоящего. Упоминаемые результаты являются важными с точки зрения их использования в вопросе обучения студентов педвуза основам математического анализа, а также привития обучаемым исследовательских навыков ведения научной работы. Новые факты и исследования касаются: различных подходов к построению курса дифференциального исчисления функций одной переменной и нескольких переменных (в частности, подхода, использующего понятие функции, дифференцируемой по Каратеодори), элементов негладкого анализа, теории неравенств и выпуклых функций, обобщений и развитий классических теорем анализа о среднем значении (Ролля, Лагранжа, Коши, Флетта, формулы Тейлора, правил Лопиталя-Бернулли), сведений об интегралах, некоторых вопросов аппроксимации функций.
В Главе II «Теоретические основы обучения студентов математического факультета педвуза дифференциальному и интегральному исчислению в контексте фундаментализации образования» изучается отражение идей фундаментализации образования в компонентах конструируемой методической системы обучения будущих учителей математики основам математического анализа. В частности, показывается влияние феномена фундаментализации математического образования на постановку целей обучения, отбор содержания обучения, выбор средств обучения. В данной главе анализ методической системы производится на теоретическом уровне.
В разделе 2.1 «Цели обучения студентов-математиков дифференциальному и интегральному исчислению функций» проводится анализ общеобразовательных, развивающих, воспитательных и практических целей обучения указанной дисциплине в контексте подготовки будущих учителей.
Одной из важнейших развивающих целей является приобщение обучаемых к творческой деятельности средствами математического анализа. На пути ее достижения принципиальным является вовлечение студентов в научно-исследовательскую работу.
Автор подробно останавливается также на важности постановки цели, восходящей к формированию у студентов эвристического мышления. В исследовании показано, что формирование творческого, эвристического мышления должно стать одним из самых важных моментов в совершенствовании методов обучения студентов. В курсе дифференциального и интегрального исчисления необходимо специально рассматривать вопросы, прививающие навыки самостоятельного поиска новых закономерностей и связей и знакомящие с достаточно общими, едиными приемами самостоятельного целенаправленного поиска решения задач и доказательства теорем.
Раздел 2.2. «Содержание обучения студентов-математиков педвуза дифференциальному и интегральному исчислению» включает 4 подраздела, его главная цель - охарактеризовать содержание математического образования будущих учителей, касающегося основ анализа.
В подразделе 2.2.1. «Методологические основы формирования содержания обучения будущих учителей основам анализа» анализируется концепция обучения предмету, представленная В. В. Краевским и трактуемая содержание как «педагогически адаптированный социальный опыт человечества». Отправляясь от положений этой концепции, автор формулирует свою - концепцию содержания образования будущих учителей по основам анализа, в которой отбору содержания обучения придается статус одной из стратегий обучения. Данная концепция, системный подход и принципы отбора содержания образования будущих учителей по основам анализа положены в основу проектирования содержания обучения студентов педвуза дифференциальному и интегральному исчислению функций. Содержание выступает подсистемой конструируемой методической системы обучения.
В подразделе принципы отбора математического содержания образования группируются в блоки: блок общих, блок ключевых и блок дополняющих принципов. Приводится характеризация каждого из этих блоков, а также механизм, или процесс отбора содержания обучения студентов основам анализа в соответствии с выделенными принципами. Конструирование содержания обучения дифференциальному и интегральному исчислению студентов-математиков в педвузе на основе перечисленных принципов позволяет рассматривать это содержание как развивающуюся систему с атрибутами целостности и открытости, при этом в упоминаемом развитии участвует не только преподаватель, но и обучаемые им студенты.
Подраздел 2.2.2. «Обоснование предметной составляющей содержания обучения дифференциальному и интегральному исчислению» содержит комментарии мотивов включения в совокупность предметных знаний тех или иных вопросов основ анализа для усвоения будущими учителями математики с опорой на выделенные принципы отбора содержания обучения, при этом весь спектр знаний по дифференциальному и интегральному исчислению условно подразделяется на компоненты - целевой и опосредованный. В приложении Б к подразделу выделены условные составляющие целевых знаний, а также приведено детализированное содержание обучения студентов дифференциальному и интегральному исчислению функций, включающее в себя не только целевые знания, но и опосредованные.
В подразделе 2.2.3. «Способы деятельности как составляющая содержания обучения студентов-математиков дифференциальному и интегральному исчислению функций» раскрывается важность реализации деятельностного подхода в обучении будущих учителей, интенсифицирующего учебный процесс. Акцентируется внимание на некоторых особенностях практической реализации деятельностного подхода в обучении дифференциальному и интегральному исчислению функций студентов-математиков в педагогическом вузе. Подчеркивается, что при освоении способов деятельности важно выявлять и разъяснять студентам различные схемы используемых в математическом анализе рассуждений. Одна из таких схем восходит к усвоению определений основных понятий, другая схема связана с усвоением принципиальных теорем рассматриваемого курса (в работе подробно осмысляются различные этапы работы с теоремами и определениями анализа). Показано, что систематическое использование таких схем при обучении студентов полностью отвечает идеям гуманизации и гуманитаризации вузовского математического образования, согласуется с концепцией дифференциации и индивидуализации обучения, реально отражает направления фундаментализации образования.
В подразделе 2.2.4. «Эвристическая составляющая содержания обучения дифференциальному и интегральному исчислению функций» концентрируется внимание на эвристической подготовке будущих учителей математики. В исследовании обсуждаются эвристики, которые могут быть полезны и которые следует иметь в виду студентам-математикам педвуза при изучении дифференциального и интегрального исчисления функций, а также в их будущей профессиональной деятельности.
Раздел 2.3. «Современный учебник математического анализа в условиях фундаментализации образования» посвящен обсуждению проблемы построения учебников математики нового поколения, обеспечивающих активизацию когнитивных процессов, упорядочивающих самостоятельную работу студентов. Автором (с опорой на исследования по теории учебника И. Я. Лернера, Н. Ф. Талызиной, О. П. Околелова, Л. Тюриной) осмыслены основные характеристики современных учебников для студентов-математиков педвуза по математическому анализу, дифференциальному и интегральному исчислению функций, отвечающих духу новых образовательных идей. В данном разделе показано, что для обеспечения качественного усвоения студентами системы научных знаний по дифференциальному и интегральному исчислению функций необходимо, чтобы современный учебник по математическому анализу отвечал следующим требованиям: ему должна быть присуща четкая логика изложения материала; он должен акцентировать внимание на научных методах математического анализа как фундаментальных математических методах исследования; содержащийся в нем учебный материал важно организовывать и выстраивать по разветвленной схеме, разрабатываемой с учетом трех уровней (базового, основного, расширенного модулей) подготовки студентов в соответствии с их склонностями, интересами и нацеленностью на изучение дисциплины; учебник математического анализа для будущих учителей математики должен обязательно отражать связь вузовского курса анализа со школьным курсом начал математического анализа; он должен характеризоваться представленностью различных методов, форм и средств, побуждающих обучаемых к активной мотивированной умственной деятельности; в учебник необходимо включать описания специальных эвристик и эвристических приемов, а также способов математической деятельности по освоению содержания обучения; учебник должен отражать современное состояние и мировоззренческие принципы области математики, именуемой «Математический анализ».
Расширенный модуль знаний дифференциального и интегрального исчисления представлен: дополнительными сведения по курсу, к которым студент может обращаться с целью более глубокого изучения отдельных тем (например, могут быть изложены разные подходы к изучению каких-то вопросов, более общие теоремы и т. д.); специально разработанными разделами (или темами в рамках раздела) курса, материалы которых призваны удовлетворить творческие потребности и профессиональные запросы обучаемых (например, раздел, посвященный неравенствам, или тема о специальных свойствах выпуклых функций, используемых в вопросах решения уравнений); вопросами, нацеливающими студента на приобщение к исследовательской деятельности (могут быть приведены свежие результаты и результаты, полученные не так давно, которые или примыкают к программному материалу, или обобщают его); открытыми для исследования вопросами и задачами, а также гипотезами; соответствующими историческими сведениями, касающимися тем дифференциального и интегрального исчисления функций.
В Главе III «Реализация теоретических основ подготовки будущих учителей математики по дифференциальному и интегральному исчислению в условиях фундаментализации образования» конструируемая методическая система обучения анализируется на третьем уровне - уровне учебных материалов. В ней рассмотрены пути реализации деятельностных концепций работы с определениями принципиальных понятий и важными теоремами основ математического анализа при обучении студентов, обоснован так называемый подход Каратеодори изложения дифференциального исчисления функций одной и нескольких переменных, осмыслены образовательные возможности тематики, связанной с выпуклыми и логарифмически выпуклыми функциями.
В разделе 3.1. «Реализация деятельностной концепции работы с определением при обучении студентов основам математического анализа» на примере понятия производной иллюстрируются действия по работе с определениями основных понятий курса. Автором анализируются различные определения понятий производной функции в точке: классическое определение по Коши, определения через условие дифференцируемости функции и через подходящую линейную функцию, определения по Каратеодори, двусторонней производной, П-производной, производных Фреше и Гато, l-производной, симметрической производной. Кроме того, в этом же разделе осмысляются определения производной в негладком анализе - определения понятий производной по направлению и верхней и нижней производных Дини. В разделе рассмотрены методические требования к усвоению определений перечисленных понятий производной функции, произведено сравнение определений в контексте логических характеристик понятий в математике.
В разделе 3.2. «Реализация деятельностной концепции работы с теоремой при обучении студентов основам математического анализа» на примерах классических теорем обстоятельно рассматриваются такие этапы работы с утверждениями, как этап обобщения, этап развития, этап поиска различных доказательств, этап применения утверждения.
В подразделе 3.2.1. «Этап обобщения работы с теоремой» анализируются принципиальные возможные направления обобщения теоремы. Реализация этапа обобщения работы с теоремой автором иллюстрируется на примере классической теоремы Ролля о среднем. В частности, обсуждаются следующие обобщения этой теоремы: векторный вариант, распространение на линейные комбинации соответствующих функций, теорема Лагранжа, теорема B. Finta в терминах лево- и правосторонних производных, в терминах одной односторонней производной, многомерный вариант теоремы, два комплексных варианта. Наряду с представленным материалом в Приложении Д диссертации рассматриваются действия по обобщению классических теорем Лагранжа и Коши. Автором показано, что работа по обобщению теоремы способствует формированию у студента исследовательских навыков, математических компетенций, развивает математическую интуицию, эвристическое и логическое мышление.
В подразделе 3.2.2. «Работа с теоремой. Этап развития» на основе эвристических приемов, восходящих к подходам доказательства теорем Лагранжа и Коши, устанавливаются некоторые новые замечательные утверждения о средней точке. В частности, доказываются теорема типа теоремы Лагранжа о нормали к графику функции, ее обобщение, теорема M. Bencze и ее обобщение, формулируется теорема Flett. Автор обсуждает новые теоремы с позиций возможностей приобщения студентов к исследовательской деятельности, базируясь на учебном материале.
В подразделе 3.2.3. «Работа с теоремой. Этап применения» иллюстрация соответствующих действий при работе с теоремой производится на примере установленной автором обобщенной теоремы Коши, формулируемой в терминах односторонних производных. Посредством этой теоремы получены обобщения формы Шлеммильха-Роша остаточного члена в формуле Тейлора, в более слабых предположениях сформулированы классические теоремы Лопиталя - Бернулли раскрытия неопределенностей.
Обсуждаемые в 3.2.1.-3.2.3. теоремы указывают на тот факт, что возможно построение аналогов классической теории дифференциального исчисления функций одной переменной в терминах односторонних производных, а также в терминах только одной из односторонних производных.
В подразделе 3.2.4. «Работа с теоремой. Этап поиска различных доказательств» внимание сосредоточено на важности нахождения по возможности нескольких доказательств конкретного утверждения. Такие действия при работе с теоремой позволяют более полно отработать различные методы математического анализа. Соответствующую иллюстрацию отмеченного автор проводит на обосновании рассмотренных в предыдущем подразделе обобщенных теорем Лопиталя - Бернулли.
В разделе 3.3. «Подход Каратеодори изложения основ дифференциального исчисления функций одной и нескольких переменных» обосновывается возможность изучения со студентами соответствующего материала классического анализа нетрадиционным способом. Названный подход базируется не только на принятом использовании понятия дифференцируемости (производной) функции в точке по Коши, но и на систематическом применении понятия дифференцируемости функции по Каратеодори. Такой подход при установлении основных теорем дифференциального исчисления, именуемых обычно правилами дифференцирования функций, а также ряда других утверждений классического анализа использует элементарно-алгебраические рассуждения, а не операцию предельного перехода. В этом отношении обсуждаемый подход к изложению вопросов «гладкого» анализа не является общепринятым, однако автору он представляется более рациональным и педагогически оправданным. Он применим и при изучении начал анализа в школе.
В данном разделе принципиальное место занимает критерий дифференцируемости функции в точке, формулируемый в терминах производной Каратеодори. Автором он назван критерием Коши - Каратеодори.
Метод Каратеодори исследования функций распространяется на функции нескольких переменных (ф. н. п.). Формулируется определение понятия дифференцируемой в точке по Каратеодори ф. н. п., доказывается критерий Коши-Каратеодори дифференцируемости ф. н. п., вводится понятие частной производной Каратеодори ф. н. п. Кроме того, в этом же разделе методом Каратеодори доказываются теоремы о дифференцировании сложных функций многих переменных, теорема о достаточных условиях существования производной по направлению, обосновывается уравнение касательной плоскости к гладкой поверхности. Показываются преимущества нового метода перед традиционным, общепринятым в учебной литературе. Этот метод (как и для функций одной переменной) основывается на элементарно-алгебраических рассуждениях, сводя к минимуму использование операции предельного перехода.
Представленный материал рассматривается с позиций применения принципов фундаментальности, уровневой дифференциации, вариативности, контекстности и элективности отбора содержания математического образования будущих учителей математики.
В разделе 3.4. «Особенности изучения выпуклых функций с будущими учителями математики» акцентируется внимание на том, что чаще всего студенты педвузов выпуклые функции изучают лишь тогда, когда они знакомятся с темой «Исследование функций с помощью производных» в рамках дифференциального исчисления функций одной переменной. Они обретают навык исследования функций на выпуклость и точки перегиба в терминах второй производной. Однако выпуклые функции для будущих учителей математики имеют богатые образовательные возможности и в иных контекстах. Например, с помощью выпуклых функций доказывается ряд классических неравенств, их уточнений, на понятии и свойствах выпуклых функций основываются решения многих «трудных» уравнений и их систем, выпуклость позволяет решать и большой класс оптимизационных задач. Это важно учитывать в общей математической подготовке студентов педвуза и их подготовке к будущей профессиональной деятельности.
В подразделе 3.4.1. «Выпуклые функции и их применения» рассмотрено так называемое характеристическое свойство выпуклых функций с его геометрической трактовкой, осмыслены возможности применения этого свойства в вопросе решения уравнений специального вида, конструируемых с использованием выпуклых и вогнутых функций. Представленный материал полезен учителю математики в организации внеклассной работы по предмету, при разработке факультативных и элективных курсов, при подготовке учащихся к олимпиадам и конкурсным испытаниям.
В подразделе 3.4.2. «Логарифмически выпуклые функции» рассматриваются функции, тесно связанные с выпуклыми и определяемые через них. Логарифмически выпуклые функции подобно выпуклым имеют свою геометрическую интерпретацию и ряд интересных свойств, которые могут находить многие полезные применения. Автором обосновывается важность ознакомления с такими функциями студентов-математиков педвуза при отборе содержания обучения, поскольку они вооружают будущего учителя математики новыми эффективными методами решения задач. В приложении Е диссертации рассматриваются применения логарифмически выпуклых функций в вопросах доказательства неравенств, решения уравнений и нахождения наибольших и наименьших значений переменных величин.
В данном подразделе формулируются критерии, а также достаточные условия логарифмической выпуклости функции; здесь же автором изучаются важнейшие свойства рассматриваемого класса функций, в частности так называемое характеристическое свойство и аналог неравенства Иенсена, обозначаются перспективы для дальнейших исследований.
В Главе IV «Неравенства в математической подготовке будущих учителей математики. Образовательный потенциал неравенств при изучении математического анализа» обосновывается объективная значимость и важность ознакомления студентов-математиков при их обучении в вузе с теорией неравенств и их применениями; осмысляются методы математического анализа в вопросах доказательства, обобщения и развития неравенств Коши и Ки Фана. В этой главе автор анонсирует многие результаты собственных и студенческих исследований по неравенствам, полученных в рамках регулярного научно-исследовательского семинара по математическому анализу для студентов. В этой же (заключительной) главе приведено описание экспериментальной части исследования.
В разделе 4.1. «Неравенства в образовании студентов-математиков» с позиций систематизации и углубления знаний дифференциального и интегрального исчисления осмысляются направления применения неравенств в математической подготовке студентов педвуза.
В разделе производится систематический обзор отечественных литературных источников по неравенствам; в частности, автором представляется свое учебное пособие «Средние величины степенного типа. Неравенства Коши и Ки Фана», предназначенное для студентов математических факультетов педагогических вузов и университетов. Этому пособию присвоен гриф УМО «Рекомендовано Учебно-методическим объединением по специальностям педагогического образования в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальности 032100 - Математика». Материал пособия может использоваться учителями математики при организации и проведении внеклассной работы по предмету в старших классах, а также руководителями и участниками студенческих математических кружков.
В настоящем разделе вскрывается образовательное значение ряда классических неравенств в математической подготовке будущих учителей.
В разделе 4.2. «Методы дифференциального и интегрального исчисления в вопросе доказательства неравенства Коши для арифметико-геометрических средних» рассматривается спектр вопросов и областей, где может применяться неравенство Коши, а также ряд его доказательств, основанных на методах математического анализа. Названные методы восходят к применению производной при исследовании функций одной переменной на монотонность и экстремумы, к использованию необходимых условий экстремума функции нескольких переменных в терминах частных производных, к теории условного экстремума, к использованию интеграла Римана. На доказательства неравенства Коши средствами дифференциального и интегрального исчисления можно смотреть как на соответствующий пример реализации этапа работы с теоремой, именуемого поиском различных доказательств утверждения. Автором акцентируется внимание на том, что такие доказательства способны знакомить изучающего основы анализа с целым каскадом эвристических приемов, которые могут применяться при решении разнообразных задач.
Раздел 4.3. «Методы дифференциального и интегрального исчисления в вопросе доказательства неравенства Ки Фана» развивается по схеме предыдущего раздела - целью ставится рассмотрение таких доказательств, которые опираются на методы дифференциального и интегрального исчисления. В нем описано значение неравенства Ки Фана для теории неравенств, вскрыт его образовательный и исследовательский потенциал, обсуждены доказательства, опирающиеся на производную функции, интеграл, средства дифференциального исчисления функций нескольких переменных.
Данный раздел продолжается разделом 4.4. «Методы дифференциального и интегрального исчисления в обобщениях неравенства Ки Фана», в котором неравенство Ки Фана осмысляется в контексте этапов обобщения и развития при работе с теоремой. Вводится так называемый аддитивный аналог неравенства Ки Фана, установленный Х. Альцером, и доказывается его обобщение, а на основе последнего - аналог неравенства Ки Фана для средних степенных величин соответствующих порядков. Полученные неравенства ставят вопросы, нацеливающие на дальнейшие исследования неравенства Ки Фана, что создает перспективу организации серьезной научной работы со студентами по тематике, восходящей к неравенствам.
В разделе 4.5. «Спецкурс “Средние величины степенного типа” в подготовке по математическому анализу будущих учителей математики» дана характеристика разработанного автором специального курса, направленного на углубление и упорядочение знаний студентов, связанных с дифференциальным и интегральным исчислением функций, и нацеливающего их на приобщение к научной работе. Данный спецкурс изучает среднее степенное и взвешенное среднее степенное положительных чисел, связанные с ними классические неравенства, другие средние величины степенного типа, а также применения средних величин в задачах на доказательство алгебраических и тригонометрических неравенств, на установление геометрических соотношений, на нахождение геометрических экстремумов и наибольших и наименьших значений переменных величин, на решение уравнений и систем уравнений. Каждый раздел спецкурса содержит открытые вопросы и задачи, которые можно исследовать с целью дальнейшего развития теории средних величин.
В разделе 4.6. «Студенческий научно-исследовательский семинар по математическому анализу» автором описывается свой опыт педагогической деятельности по организации студенческой научно-исследовательской работы, показывается, что одним из самых эффективных средств привлечения студентов-математиков к такой работе является ведение преподавателем регулярного исследовательского семинара студентов. В диссертации отмечается, что в ВятГГУ такой семинар для студентов по математическому анализу, организуемый по типу регулярных академических научных семинаров, функционирует с 1994-1995 учебного года. Весьма обстоятельно описывается тематика семинара, преобладавшая в тот или иной временной период, а также технология и особенности его организации. С целью иллюстрации хронологии работы представляемого научного семинара для студентов-математиков приводится подробный перечень докладов участников в 2006-2007 учебном году. Особое внимание в характеристике семинара уделяется описанию его важных традиций, стимулирующих интерес участников к исследовательской деятельности при изучении математического анализа.
Многолетний опыт руководства студенческим научно-исследовательским семинаром убеждает автора во мнении, что такой семинар способствует систематическим самостоятельным размышлениям студентов по поиску ответов на поставленные вопросы научного характера, нацеливает на проведение доказательных рассуждений, формирует определенную математическую культуру, что, безусловно, является важнейшим условием продуктивного усвоения соответствующего учебного материала.
В этом же разделе приводятся научные публикации студентов, являвшихся участниками семинара в разные годы. Упоминаемые публикации концентрированно помещены в следующих изданиях: 1. Некоторые вопросы теории среднего степенного: Сб. науч. статей. - Киров: Изд-во ВГПУ, 1999. - 84 c.; 2. Некоторые вопросы математического анализа и методики его преподавания: Сб. науч. статей. - Киров: Изд-во ВГПУ, 2001. - 98 c.; 3. Вестник Вятского государственного гуманитарного университета. Информатика. Математика. Язык. - 2005. - № 3. - 199 с.; 4. Вестник Вятского государственного гуманитарного университета. Информатика. Математика. Язык. - 2007. - № 4. - 242 с.; 5. Информатика. Математика. Язык: Науч. журнал. Вып. 5. - Киров: Изд-во ВятГГУ, 2008. - 221 с.
В разделе 4.7. «Педагогический эксперимент и его результаты» описана экспериментальная часть исследования. Педагогический эксперимент проводился в Вятском государственном гуманитарном университете (ранее - Кировском госпединституте, Вятском госпедуниверситете), а также частично в Кировском институте повышения квалификации и переподготовки работников образования (ранее - Кировском институте усовершенствования учителей) в период с 1986 по 2009 гг. Экспериментальная работа ставилась с участием нескольких сотен студентов-математиков и учителей математики общеобразовательных учреждений Кировской области. В проведении эксперимента можно выделить ряд этапов. Первый этап (1986-1992) связан с проведением констатирующего эксперимента. Второй этап (1993-2000) характеризуется реализацией поискового эксперимента. Наконец, третий этап (2001-2009) - обучающий эксперимент.
На первом этапе эксперимента решались задачи изучения индивидуальных особенностей студентов математического факультета в контексте их отношения к учебной дисциплине «Математический анализ», отношения к профессиональной деятельности учителя математики, настроя на усвоение дисциплин математического цикла; изучения возможностей постигать студентами математику на творческом, активном уровне; накопления собственного опыта работы со студентами и учителями, его анализ.
Подобные документы
Усвоение методологии предметной методики, умение применять ее в конкретных исследованиях. Закономерности функционирования системы обучения, применение их в различных ситуациях. Методы исследования, диалектика, системный анализ и деятельностный подход.
реферат [24,8 K], добавлен 16.09.2009Исследование методических аспектов экологического образования студентов. Методы и методические системы обучения. Понятие о методах и приемах обучения.
дипломная работа [180,7 K], добавлен 25.05.2015Особенности системы образования в Канаде, региональные различия учебного процесса, регулируемые местными органами самоуправления. Уровень преподавания, стоимость обучения и проживания в Канаде, университеты. Трудоустройство студентов во время учёбы.
реферат [12,4 K], добавлен 30.04.2011Психологические системы, лежащие в основе модульного обучения. Бихевиоризм и теория обучения. Педагогическая реализация модульной технологии обучения в системе профтехобразования. Модернизация образования Украины в контексте Болонского процесса.
курсовая работа [252,8 K], добавлен 08.01.2008Анализ необходимости внедрения дистанционных технологий при существующей системе высшего образования в России. Исследование преимуществ и недостатков дистанционной формы обучения. Системы контроля знаний студентов. Перспективы дистанционного обучения.
реферат [22,8 K], добавлен 16.12.2014Виды, структуры и технологии образовательных ресурсов. Способы мотивации и стимулирования самостоятельной внутрисеместровой работы студентов. Использование информационных систем дистанционного обучения и балльно-рейтинговой системы оценки знаний.
дипломная работа [4,1 M], добавлен 30.09.2017Дидактические и психологические основания проблемного обучения. Когнитивный диссонанс как источник познавательной активности. Педагогическое провоцирование противоречий учебного знания. Особенности обучения студентов на основе когнитивной технологии.
дипломная работа [741,9 K], добавлен 30.09.2013Общая характеристика системы образования в условиях современного мира. Выход новых технологий на мировую арену. Рассмотрение роли гаджетов в процессе обучения студентов и сдачи экзаменов. Интернет-обучение как инновационный способ получения образования.
статья [29,8 K], добавлен 06.12.2015Представление психологической структуры личности студентов педвуза общечеловеческими (ощущения, восприятия, мышление, память, воля, эмоции), социально-специфическими (социальные установки), индивидуально-неповторимыми (темперамент, самосознание) чертами.
курсовая работа [454,1 K], добавлен 13.05.2011Методическая деятельность и её специфика в системе дополнительного образования детей. Основные функции методической службы. Методическая система образовательного учреждения. Основы управления методической работой. Содержание деятельности методиста УДОД.
курс лекций [93,2 K], добавлен 12.11.2008