Осаждение тонких пленок халькогенидных стеклообразных полупроводников

Изложение технологии осаждения тонких плёнок перспективных материалов для устройств фазовой памяти – халькогенидных стеклообразных полупроводников. Рассмотрение энергонезависимой памяти, основанной на фазовых переходах. Технология вакуумного нанесения.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 25.03.2018
Размер файла 103,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Осаждение тонких пленок халькогенидных стеклообразных полупроводников

Чеснаков Александр Михайлович

Шерченков Алексей Анатольевич

Аннотация

В статье рассматривается энергонезависимая память основанная на фазовых переходах. Изложена технология осаждения тонких плёнок перспективных материалов для устройств фазовой памяти - халькогенидных стеклообразных полупроводников, в частности Ge2Sb2Te5 (GST225).

Ключевые слова: энергонезависимая память, фазовая память, халькогенидное стекло, синтез, осаждение, Ge2Sb2Te5, GST225.

Интенсивное развитие энергонезависимой памяти для записи и хранения информации определяется самим развитием цивилизации. Среди устройств энергонезависимой памяти одно из ведущих мест занимает память на фазовых переходах первого рода: локальной кристаллизации аморфного материала либо аморфизации рабочих областей запоминающего устройства [1].

Сейчас мир вплотную подошел к стадии производства коммерческой продукции. Однако всё ещё необходимо совершенствовать материалы, их технологию получения и осаждения тонких плёнок для устройств фазовой памяти (ФП).

Тонкие плёнки халькогенидных стеклообразных полупроводников, предназначенные для устройств ФП, получают методами вакуумного напыления [2]. Технология вакуумного нанесения аморфных пленок наиболее универсальна и может быть использована в массовом производстве [2]. пленка фазовый халькогенидный

Структура и свойства пленок, получаемых этим путём, определяются: химическим составом, состоянием исходного испаряемого вещества, максимальной температурой испарения, температурой и свойствами подложки, остаточным давлением газовой среды, в которой осуществляется процесс испарения и конденсации, толщиной пленки [2].

Перевод материала в газовую фазу в процессе нанесения тонкой плёнки в вакууме может осуществляться рядом способов, которые делят на две группы. К первой группе относятся процессы, в которых энергия сообщается атому или молекуле путем взаимодействия через каскад столкновений высокоэнергетических частиц с поверхностью. К этим методам относятся катодное, магнетронное распыление и др. Ко второй группе относятся процессы, в которых генерация осуществляется термическим путем.

По способу передачи энергии, необходимой для процесса испарения вещества, выделяют следующие способы: резистивно-термический, электронно-лучевой, лазерный, электродуговой, другие.

Наиболее распространённым методом получения аморфных тонких пленок материалов системы Ge-Sb-Te является высокочастотное магнетронное распыление. Метод отличается высокой воспроизводимостью осаждаемых тонких пленок по составу и свойствам, что особенно важно на этапе промышленного производства PCM-устройств [2,3,4].

Осаждение осуществляется в специальных вакуумных приборах. Например, используемый в [2] вакуумный универсальный пост ВУП-4К.

Установка состоит из двух стоек: вакуумной и электрической. В вакуумной стойке размещена вакуумная система, система напуска газов, распределительный щиток, электропитание для подогрева подложек, пульт управления. Электрическая стойка состоит из источника ВЧ-напряжения, блоков питания и управления. В подколпачном устройстве смонтирована магнетронная распылительная система, схематическое изображение которой приведено на рисунке 1.

1 - магнетронное устройство; 2 - мишень; 3 - подложка; 4 - подложкодержатель; 5 - заслонка; 6 - система напуска; 7 - система откачки; 8 - анод-экран свв.

Рисунок 1 - Схема установки ВЧ магнетронного распыления[2].

Мишени для формирования пленок изготавливаются на основе порошков из этого же материала (рисунок 2).

Рисунок 2 - Распыляемая мишень из порошка Ge2Sb2Te5 [2].

Параметры процессов магнетронного распыления и изготовления мишени, проведённых в работе [2]:

Порошок для изготовления мишени имеет средний размер зерна ~5 мкм. Холодная опрессовка мишени осуществлялась при давлении ? 2ЃE107Н/м 2). Мишень спекалась на воздухе при температуре 350 ± 10 °С в атмосфере аргона в течение 1 часа. Мишени представляли собой диск диаметром 70 мм и толщиной 3 ± 0,5 ммВЧ магнетронное осаждение Ge2Sb2Te5пленок проводилось в следующих условиях: давление при распылении - 8ЃE10-3мм рт. ст.; рабочий газ - Ar; частота ВЧ-напряжения - 13,56 МГц; напряжение при распылении - 300±20В; ток при распылении - 200±50 мA; температура подложки не превышала 20 °С. Скорость осаждения составляла примерно 0,1 мкм/час.

Стоит оговорить, что магнетронное распыление является менее оперативным и более дорогостоящим процессом по сравнению с вакуумно-термическим испарением.

Дороговизна процесса в первую очередь связана с необходимостью изготовления мишени под каждый исследуемый состав [2].

Таким образом, рассмотрены основные методы напыления тонких пленок ХСП, показано, что наиболее распространённым методом является высокочастотное магнетронное распыление. Метод отличается высокой воспроизводимостью осаждаемых тонких пленок по составу и свойствам, что особенно важно на этапе промышленного производства.

Литература

1. А.И. Попов, Условия устойчивого переключения в ячейках памяти на фазовых переходах /А.И. Попов, С.М. Сальников, Ю.В. Ануфриев // Национальный исследовательский университет "МЭИ", Москва, Россия /// Институт нанотехнологий микроэлектроники Российской академии наук, Москва, Россия. Физика и техника полупроводников, 2015, том 49, вып. 4

2. Лазаренко, П.И. Технология получения и электрофизические свойства тонких пленок материалов системы Ge-Sb-Te, предназначенных для устройств фазовой памяти/Лазаренко, П.И. //-2014.-с. 52-58.

3. Feng Rao. Programming voltage reduction in phase change memory cellswith tungsten trioxide bottom heating layer/electrode / Feng Rao, Zhitang Song, Yuefeng Gong [et al.] // Nanotechnology. - 2008. - Vol. 19. - P. 445706.

4. Wang K. Synthesis and characterization of phase change memory cells /Wang Ke, Han Xiao Dong, Zhang Ze [et al.] // Science in China Series E: Technological Sciences. - 2009. - Vol. 52 (9). - P. 2724Ї2726.

Размещено на Allbest.ru


Подобные документы

  • Методы напыления и физические основы нанесения тонких пленок, основные требования и системы оборудования для нанесения тонких плёнок, элементы вакуумных систем и устройство вакуумных камер для получения тонких плёнок. Экономическое обоснование проекта.

    дипломная работа [4,2 M], добавлен 01.03.2008

  • Кривая намагничивания, температура Кюри, коэрцитивная сила. Характеристики магнитных материалов. Подготовка к напылению. Термообработка тонких пленок в вакууме. Термообработка по патенту. Расчет защит, заземления для установки вакуумного напыления.

    курсовая работа [2,2 M], добавлен 22.06.2015

  • Влияние условий осаждения на структуру, электрические и магнитные свойства пленок кобальта. Рентгеноструктурные исследования пленок кобальта. Влияние условий осаждения на морфологию поверхности и на толщину пленок. Затраты на амортизацию оборудования.

    дипломная работа [2,2 M], добавлен 24.07.2014

  • Термическое вакуумное напыление. Плазмоионное распыление в несамостоятельном газовом разряде. Технология тонких пленок на ориентирующих подложках. Механизмы эпитаксиального роста тонких пленок. Электронно-лучевое напыление. Молекулярно-лучевая эпитаксия.

    курсовая работа [853,9 K], добавлен 03.03.2011

  • Обзор современного оборудования для получения тонких пленок. Материалы и конструкции магнетронов для ионного распыления тонких пленок. Назначение, конструктивные элементы рабочей камеры установки "Оратория-5". Основные неисправности, методы их устранения.

    курсовая работа [1,8 M], добавлен 24.03.2013

  • Требования, предъявляемые к защитным диэлектрическим пленкам. Кинетика термического окисления кремния: в сухом и влажном кислороде, в парах воды. Особенности методов осаждения оксидных пленок кремния. Оценка толщины и пористости осаждаемых пленок.

    реферат [1,2 M], добавлен 24.09.2009

  • Механизмы и стадии протекания процессов химического осаждения из газовой фазы для получения функциональных слоев ИМС, их технологические характеристики. Методы CVD и их существенные преимущества. Типы реакторов, используемых для процессов осаждения.

    курсовая работа [1,6 M], добавлен 06.02.2014

  • Элементарная теория вольт–фарадных характеристик МДП-структур. Область пространственного заряда полупроводника. Вольт-фарадные характеристики идеальной и реальной МДП-структуры. Эффект памяти в металл-сегнетоэлектрик-полупроводниковых структурах.

    контрольная работа [214,3 K], добавлен 12.02.2016

  • Оборудование для термического окисления: модель Дила-Гроува, зависимость толщины окисла от времени окисления, особенности роста тонких и толстых плёнок двуокиси кремния, их свойства и применение в микроэлектронике. Реакторы биполярного окисления.

    реферат [106,3 K], добавлен 10.06.2009

  • Процес нанесення тонких плівок в вакуумі. Метод термічного випаровування. Процес одержання плівок. Способи нанесення тонких плівок. Використання методу іонного розпилення. Будова та принцип роботи ВУП-5М. Основні види випарників та їх застосування.

    отчет по практике [2,4 M], добавлен 01.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.