Получение и применение ферментов
Классификация и номенклатура ферментов, их характеристика и стандартизация. Производственные способы выделения ферментных препаратов, получение протеиназ, питательная среда и условия культивирования. Методы очистки и экстрагирования ферментных препаратов.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.12.2014 |
Размер файла | 214,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Оглавление
Введение
1. Производство протеолитических ферментных препаратов
2. Характеристика и получение протеаз растительного, животного и микробного происхождения
3. Иммобилизованные ферменты
4. Применение ферментов в технологиях мясных продуктов
Заключение
Список использованной литературы
Введение
Производство ферментных препаратов занимает одно из ведущих мест в современной биотехнологии и относится к отраслям, объём продукции которых постоянно растёт, а сфера применения неуклонно расширяется. Такое быстрое развитие связано с тем, что ферменты являются высокоактивными, нетоксичными биокатализаторами белкового происхождения, которые широко распространены в природе, без них невозможны осуществление многих биохимических процессов и жизнь в целом.
Познание роли ферментов для всего живого на Земле послужило основой для становления и развития технологии ферментных препаратов как науки и для создания промышленного производства наиболее широко используемых ферментных препаратов. Применение этих препаратов помогло существенно изменить, интенсифицировать и усовершенствовать многие существующие технологии или даже создать принципиально новые высокоэффективные процессы. Применение ферментных препаратов различной степени очистки позволило не только улучшить показатели и выходы в различных биотехнологических процессах, но позволило усовершенствовать кормопроизводство, повысить усвояемость кормов, сделать более целенаправленным и эффективным действие синтетических моющих средств, улучшить качество косметических препаратов, создать целый арсенал специфических, чувствительных и точных аналитических методов, наладить производство лекарственных и профилактических средств для медицинской промышленности и т. д.
Большим и неоспоримым достоинством ферментов перед химическими катализаторами является то, что они действуют при нормальном давлении, при температурах от 20 до 70 °С и рН в диапазоне от 4 до 9 и имеют в большинстве случаев исключительно высокую субстратную специфичность, что позволяет в сложной смеси биополимеров направленно воздействовать только на определенные соединения. Все это свидетельствует о том, что производство ферментных препаратов является одним из перспективных направлений в биотехнологии, которое будет и далее интенсивно развиваться и расширяться.
Традиционно ферментативные препараты получают либо при поверхностном, либо при глубинном способе культивирования продуцента. Глубинный способ ведения процесса имеет ряд существенных преимуществ перед поверхностным культивированием, т. к. позволяет существенно автоматизировать процесс, в ряде случаев значительно сократить объёмы отходов, проводить процесс непрерывно, сократить в 2 - 4 раза площади цехов, а также позволяет использовать анаэробных продуцентов.
1. Классификация и номенклатура ферментов и ферментных препаратов
По современной классификации все ферменты делятся на шесть основных классов по типу катализируемой реакции:
1) оксидоредуктазы;
2) трансферазы;
3) гидролазы;
4) лиазы;
5) изомеразы
6) лигазы (синтетазы).
Большинство промышленно важных ферментов, потребность в которых определяется десятками тысяч тонн, относятся к третьему классу - гидролазам. Подавляющее количество препаратов, выпускаемых различными фирмами мира, является комплексными, содержащими помимо основного фермента еще значительное количество сопутствующих ферментов и белков. Поэтому в технологии ферментов препараты чаще классифицируют по основному компоненту в смеси ферментов, присутствующих в данном препарате: амилолитические, протеолитические, липолитические и т. д.
В нашей стране существует определенная система названия ферментных препаратов, в которой учитываются основной фермент, источник получения и степень очистки. Наименование каждого препарата включает сокращенное название основного фермента, затем добавляется видовое название продуцента и заканчивается название препарата суффиксом «ин». Например, амилолитические препараты, получаемые из культур Aspergillus oryzae и Bacillus subtilis называются соответственно амил-ориз-ин (амилоризин) и амил-о-субтил-ин (амилосубтилин). Далее ставится индекс, в котором обозначены способ производства и степень очистки фермента от балластных веществ. При глубинном способе культивирования после названия ставится буква Г, а при поверхностном - П. Если это неочищенная культура продуцента, то далее следует буква х. Между буквами П, Г и х может стоять цифра, обозначающая степень чистоты препарата. Индекс 2 обозначает жидкий неочищенный концентрат исходной культуры; 3 - сухой ферментный препарат, полученный высушиванием распылением неочищенного раствора фермента (экстракт из поверхностной культуры или культуральной жидкости); 10 - сухие препараты, полученные осаждением ферментов органическими растворителями или методом высаливания. Индексы 15, 18, 20 обозначают препараты, частично освобожденные не только от балластных веществ, но и от сопутствующих ферментов. Номенклатура препаратов с индексом выше 20 не используется, так как в этих случаях речь идет о высокоочищенных и даже гомогенных ферментных препаратах, которые именуются в классификации ферментов.
Характеристика активности ферментных препаратов
Ферменты являются веществами белковой природы, поэтому в смеси с другими белками определить их количество невозможно. Наличие определенного фермента в данном препарате может быть установлено по результатам той реакции, которую катализирует фермент, т. е. по количеству образовавшихся продуктов реакции или уменьшению исходного субстрата. В количественном выражении условно активность фермента определяется по начальной скорости ферментативной реакции. Начальная скорость зависит от многих факторов, наиболее важные из них - температура, концентрация субстрата, рН реакционной смеси и время от начала реакции. Поэтому по предложению Комиссии по ферментам Международного биохимического союза были приняты правила определения активностей препаратов и их выражения в единицах активности.
Стандартная единица активности. Эта величина для любого фермента обозначает то количество его, которое катализирует превращение 1 мкмоль субстрата в 1 мин при заданных регламентированных условиях. На русском и немецком языках эта единица обозначается буквой Е, на английском, французском, итальянском и испанском - U. Часто количество субстрата нельзя выразить числом микромолей, так как точно не известна масса молекулы, например, при действии на белок, крахмал, пектин, целлюлозу. В этих случаях определяют микроэквивалент затронутых реакцией групп. Так, при гидролизе белка учитывают не число прогидролизованных молекул, а число образовавшихся свободных карбоксильных или аминных групп, т. е. число расщепленных пептидных связей; при гидролизе крахмала и полисахаридов - число прогидролизованных глюкозидных связей и т. д.
Комиссия по ферментам рекомендовала придерживаться определенных условий при установлении активности фермента: стараться вести определение при температуре 30 °С и определять активность по начальной скорости реакции, когда концентрация субстрата достаточна для насыщения фермента и соответствует кинетике реакции нулевого порядка. Концентрации субстрата, фермента и рН выбирают оптимальными для данного фермента.
Если количество прореагировавшего субстрата очень мало или велико, допускается выражение результатов в миллиединицах (мЕ или мU) и килоединицах (кЕ и кU).
Активность ферментных препаратов. Содержание фермента в данном препарате условно выражается в стандартных единицах активности фермента на 1 мл ферментного раствора или 1 г препарата. Активность ферментного препарата выражается в микромолях субстрата, прореагировавшего в присутствии 1 мл ферментного раствора или 1 г препарата в заданных условиях за 1 мин. Число микромолей и будет равно числу стандартных единиц. Если фермент гомогенен, то его удельная активность может быть выражена в стандартных единицах на 1 мг фермента: если же препарат содержит балласт в виде неактивного белка, его удельная активность выражается в стандартных единицах на 1 мг белка в ферментном препарате. Молекулярная активность представляет собой число миллимолей субстрата или эквивалентов затронутой реакцией групп, прореагировавших в течение 1 мин с 1 ммоль фермента при оптимальных концентрациях субстрата, или число стандартных единиц, содержащихся в 1 ммоль фермента.
Если фермент содержит характерную простетическую группу или несколько каталитических центров, которые поддаются измерению, его активность можно выразить в величинах активности каталитического центра. Такая активность будет соответствовать молекулярной активности, если молекула фермента имеет один активный центр; если же число каталитических центров п, то активность одного центра будет в п раз меньше молекулярной.
Активность условного препарата. В технологии ферментов помимо общепринятых понятий об активности ферментных препаратов принято пользоваться понятием активности условного ферментного препарата. Это необходимо для оценки работы предприятия, сравнения его с другими аналогичными заводами, т. е. для сопоставления показателей по всем видам выпускаемой продукции. Для осуществления этого пересчета предполагают, что предприятие выпускает товарную продукцию в виде стандартного препарата с точно определенной активностью, измеряемой по основному ферменту в стандартных единицах в препарате на единицу массы препарата. Активность основного фермента в таком стандартном условном препарате устанавливается нормативами и называется активностью условного препарата. За 1 усл, т ферментного препарата принимается 1 т препарата со стандартной активностью. Для пересчета выработанной товарной продукции в условные тонны можно пользоваться формулой
где - количество условного препарата, т; - количество товарного препарата, т; - фактическая активность товарного препарата, ед./г; - активность условного препарата, ед./г.
Стандартизация ферментных препаратов
Очень часто ферментативная активность партии готового препарата заметно отличается от предыдущих. Потребитель же должен получать препарат с определенной стандартной активностью. Поэтому на основе длительного анализа практической работы предприятий по данной технологии для каждого выпускаемого препарата устанавливается средний уровень активности с запасом 20 - 30 %. Активность стандартного препарата определяется в единицах ФА на 1 г.
Для получения постоянной активности в препараты вводится наполнитель в определенном количестве, которое зависит от полученной на данном предприятии активности в культуре и препарате. Желательно, чтобы наполнитель по отношению к ферменту выступал и в роли стабилизатора, а не просто инертного соединения. Важно также учитывать свойство наполнителей сорбировать водяные пары. Так, например, крахмал, добавленный к ферментному препарату, препятствует его увлажнению, а хлористые соли калия и натрия способствуют увлажнению препаратов, поэтому при использовании последних возникает необходимость в герметической упаковке препаратов.
Стандартизацию препарата можно проводить, добавляя наполнитель, например, перед концентрированием, если продукт выпускается в жидком виде, или же перед сушкой распылением с учетом потерь на стадии концентрирования или при распылительной сушке, или в уже готовый сухой препарат. При смешивании готового сухого препарата с наполнителем необходимо, чтобы препарат и наполнитель имели приблизительно одну и ту же степень измельчения и влажность не более 10 - 12 %. При перемешивании наполнителя и препарата, например, в шаровой мельнице за 30 - 40 мин получаются вполне однородные ферментные препараты.
Количество наполнителя можно рассчитать по формуле:
где S - количество наполнителя, необходимое для получения стандартного по активности препарата, кг; а - активность исходного препарата, ед. ФА/r;
b - количество исходного препарата, кг; с - стандартная активность препарата, ед. ФА/г.
Известно, что хорошим стабилизатором амилолитических ферментов является крахмал, пектолитических - крахмал или хлористый натрий. Стандартизировать неполитические препараты можно также диатомитом, желатином, бентонитом. Выбор наполнителя и стабилизатора, определение дозировки, необходимых условий хранения и длительности сохранения активности осуществляются экспериментально.
2. Производство протеолитических ферментных препаратов
Ферменты, обладающие способностью гидролизовать белки, широко используются в самых различных отраслях промышленности, сельском хозяйстве и медицине. Протеолитические ферменты выпускаются промышленностью в большом количестве, это крупнотоннажное производство. Протеиназы применяются в пищевой технологии, где идет процесс с использованием микроорганизмов (дрожжи, молочнокислые бактерии и др.). Введение в процесс протеиназ позволяет в результате гидролиза белков обрабатываемого сырья обеспечить дрожжам нормальные условия жизнедеятельности, что улучшает весь технологический процесс, особенно в пивоварении, спиртовой промышленности, виноделии. В ряде исследований показано, что протеолитические ферменты могут использоваться в хлебопечении для уменьшения длительности замесов при производстве заварных сортов хлеба и специальных изделий, изготавливаемых из муки с сильной клейковиной. Внесение в тесто небольших количеств амилаз и протеиназ увеличивает газообразование, улучшает аромат, цвет корочки и мякиша, позволяет сократить процесс тестоведения. Широко применяются протеиназы для снятия различного рода белковых помутнений в пивоварении и виноделии и для ускорения фильтрационных процессов. Протеолитические ферменты используются для мягчения (тендеризации) мяса, мясных изделий, рыбы, что облегчает и ускоряет обработку полупродуктов, повышает их качество. В мясной, рыбной промышленности и в кулинарии используются не только микробные протеиназы, но и протеиназы, получаемые из растительного и животного сырья. Высокоочищенные протеолитические ферменты могут с успехом использоваться в крахмало-паточной промышленности для выделения особенно чистого крахмала без сопутствующих белков.
Комплексные ферментные препараты, содержащие протеиназы, используются в пищеконцентратной и консервной промышленности при приготовлении концентратов из трудно развариваемых круп, гороха, фасоли и др.
Протеииазы могут использоваться в кожевенной промышленности для обработки кож в процессе их обезволашивания и мягчеиия с большим эффектом: улучшается качество шкуры, сохраняется толщина готовой кожи, отделенная щетина может использоваться как вторичное сырье, а главное - резко улучшаются условия труда работающих. Используются протеиназы при обработке натурального шелка для процесса снятия белка с поверхности шелковой нити.
Самая большая потребность в протеолитических ферментах связана с их использованием в составе синтетических моющих средств (CMC). Особенно эффективна обработка протеиназосодержащими CMC больничного белья, загрязненного кровью и другими выделениями белковой природы.
Протеолитические препараты, особенно животного происхождения, широко используются в медицинской промышленности и медицине. Они применяются для приготовления питательных и диагностических сред, для изготовления ряда лечебных сывороток и вакцин. Протеиназы различной степени очистки используются в качестве лекарственных препаратов для регулирования процессов свертывания крови, при лечении воспалительных процессов, для восполнения недостатка ферментов в организме и т. д.
Источники получения протеиназ.
Протеолитические ферменты синтезируются практически всеми живыми существами. Эти ферменты очень широко распространены в природе. В промышленных целях как источник получения протеиназ используются животные ткани, растения и микроорганизмы. Животными тканями для получения протеиназ является собираемое на мясокомбинатах ферментное сырье, состоящее из поджелудочной железы и слизистой оболочки желудка. Из растений промышленный интерес представляют плоды дынного дерева, побеги и листья инжира и отходы переработки ананасов.
Наиболее широким и перспективным источником протеиназ являются микроорганизмы. Активными продуцентами протеиназ являются бактерии, микроскопические грибы и актиномицеты. Можно назвать сотни микроорганизмов, принадлежащих к различным таксономическим группам, которые используются при промышленном получении протеиназ. Они чаще всего относятся к родам Bacillus, Aspergillus, Penicillium, Streptomyces, Pseudomonas и некоторые другие. Более подробно о продуцентах будет сказано в разделе, посвященном рассмотрению особенностей производства протеолитических препаратов.
Механизм действия, свойства и классификация протеиназ
Субстрат. Субстратами для действия протеолитических ферментов являются пептиды и белки. К последним относятся простые белки, состоящие только из аминокислот, их называют протеинами, и сложные белки, в состав которых наряду с белковой частью молекулы входят соединения небелковой природы (углеводы, витамины, жиры и др.) - протеиды. Все эти соединения имеют большую молекулярную массу и сложны по строению.
Пептиды также могут быть субстратом для протеиназ. Они имеют более низкую молекулярную массу, чем белки, и по составу подобны простым белкам. Они могут быть либо продуктами неполного гидролиза белка, либо природными соединениями. Пептиды могут быть синтезированы в лаборатории и использоваться как специфические субстраты в аналитических работах для определения способности ферментов к разрыву вполне определенных пептидных связей.
До начала 50-х годов все протеолитические ферменты по механизму их действия на субстрат подразделялись на две группы: протеиназы и пептидазы. Считалось, что гидролиз белка протекает в две стадии: сначала под действием протеиназ белки гидролизуются до пептидов, а затем на пептиды действуют пептидазы и расщепляют их до аминокислот.
Позднее, в 60-х годах, протеолитические ферменты классифицировали на четыре подкласса. В настоящее время действует новая классификация, по которой протеиназы относятся к третьему классу четвертому подклассу. С тем чтобы исключить путаницу, все ранее существовавшие подклассы были отброшены и по новой классификации первому подклассу в разделе протеолитических ферментов присвоен номер 11 (КФ 3.4.11). Такие сложности в классификации связаны с тем, что катализируемая суммарная реакция одинакова для всех протеолитических ферментов. Причем ферменты не имеют строгой субстратной специфичности в обычном смысле этого слова - подавляющее большинство этих ферментов действует на все денатурированные и на многие нативные белки. По новой классификации протеолитические ферменты были разделены на две основные группы: пептидазы КФ 3.4.11 - 15 и протеиназы - КФ 3.4.21 - 24.
Пептидазы. В первой группе протеолитических ферментов - пептидазах - подразделение по подподклассам осуществляется на основе механизма расщепления пептидных связей в пептидах. К группе ферментов, входящих в 11-й подподкласс (КФ 3.4.11) - б-аминоацилпептидгидролазы - относятся те, которые гидролитически расщепляют первую с N-конца пептидную связь. Группа КФ 3.4.12 - гидролазы пептидиламинокислот или гидролазы ациламинокислот - объединяет ферменты, действующие на первую пептидную связь с С-конца. Ферменты группы КФ 3.4.13 - дипептидгидролазы - гидролизуют дипептиды; групп КФ 3.4.14 - дипептидилпептид гидролазы - и КФ 3.4.15 - пептидилдипептидгидролазы - гидролизуют дипептиды соответственно с N- и С-конца. С 16-го до 20-го подподкласса в номенклатуре сделан пропуск с учетом будущих открытий ферментов, гидролизующих дипептиды.
Протеиназы. Вторая группа протеолитических ферментов - протеиназы - имеет четыре подподкласса (21 - 24), в котором все ферменты подразделяются в зависимости от особенностей механизма катализа, установленного по функционированию активного центра фермента, а также влияния рН на его активность. Специфичность к субстрату рассматривается лишь с позиции идентификации индивидуальных ферментов в пределах каждой из групп.
Сериновые протеиназы. К подподклассу 3.4.21 относятся протеиназы, для которых характерно наличие в каталитическом центре триады аминокислот: аспарагиновая кислота, гистидин и серии. В этот подподкласс внесены многие хорошо изученные протеийазы животного происхождения (химотрипсин, трипсин, тромбин, плазмин, эластаза и др.) и некоторые микробные протеиназы.
Тиоловые протеиназы. К подподклассу 3.4.22 относятся протеиназы, имеющие в активном центре SH-группу цистеина.
В подподкласс 3.4.22 вошел ряд важных протеиназ растительного происхождения, такие как папаин, фицин, бромелаин, химопапаин, и некоторые микробные протеиназы.
Кислые протеиназы. Они входят в подподкласс (3.4.23) и имеют оптимальный рН ниже 5, в каталитическом акте у этих ферментов участвуют остатки дикарбоновых аминокислот. Наиболее широко известны из этого подподкласса пепсин, катепсин и ряд кислых протеиназ грибного происхождения. В последний под подкласс (3.4.24) входят протеиназы, содержащие ионы металлов. В основном это различные микробные нейтральные протеиназы и некоторые протеиназы животного происхождения.
В классификации и номенклатуре протеолитических ферментов выделена ещё одна, третья группа протеиназ, которые включены в подподкласс 3.4.99. Это протеиназы с неизвестным механизмом катализа. В этот подподкласс внесено 26 ферментов, среди них много микробных протеиназ, но есть протеиназы и животного происхождения. Создание подподкласса 3.4.99 вызвано тем, что многие протеиназы обладают близкой, но не полностью изученной и определенной специфичностью. Они действуют на один и тот же субстрат, однако продукты гидролиза отличаются не только количественно, но и качественно.
Отличительной особенностью многих протеолитических ферментов животного происхождения является то, что они в организме существуют в неактивном состоянии в виде зимогенов, которые только при определенных условиях могут превращаться в активные формы. Это трипсин, химотрипсин, карбоксипептидазы, А и В, пепсины, реннин, катепсины, аминопептидазы, дипептидазы, тромбин, плазмин и др. Многие из данных ферментов получены в кристаллическом виде. Они чаще используются в медицине. Механизм их действия, субстратная специфичность, механизм ингибирования и активации подробно изучены. Имеются данные о строении активного центра, а для некоторых протеиназ известна и структура самого фермента.
Также глубоко и всесторонне изучены основные протеиназы растительного происхождения: папаин, фицин, бромелаин, химопапаин, которые за рубежом широко применяются в медицине и пищевой технологии.
Получение микробных протеиназ
В Номенклатуру и классификацию ферментов внесено большое количество протеолитических ферментов микробного происхождения, которые относятся к различным подподклассам: 3.4.11 (7 ферментов), 3.4.13(5), 3.4.15(1), 3.4.16(1), 3.4.17(5), 3.4.21(4), 3.4.22(3), 3.4.23(1), 3.4.24(4) и 3.4.99(4). Необходимо отметить, что часто под одним номером находится очень много ферментов, получаемых из различных источников, но имеющих сходные свойства. Так, в подподклассе 3.4.21.14 представлена целая серия микробных протеиназ, среди продуцентов которых отмечаются Bacillus subtilis, E. coli, щелочная протеиназа из культур рода Aspergillus, Tritirachium album, Arthrobacter, Pseudomonas aeruginosa, Malbranchea pulchella, Streptomycer rectus, Candida lipolytica и др. Под номером 3.4.23.6 также объединено много ферментов, источниками которых являются микроорганизмы, в основном относящиеся к грибам родов: A. oryzae, A. terricola, A. saitoi, A. niger, P. janthinellum, R. chinensis, M. pusillus, M. miehei, Endothia parasitica, Candida albicans, Saccharomyces carlsbergensis, Rhodotorula glutinis, Physarum polycephalum и др. Все микробные металлопротеиназы объединены под номером 3.4.24.4. Они выделены из культур родов: Streptomyces, Sarcina, Micrococcus, Staphylococcus, Bacillus, Aeromonas, Pseudomonas, Escherichia, Aspergillus, Myxobacter, Serratia.
Однако в промышленности чаще всего получают комплекс протеолитических ферментов, достоинства которого определяются с учетом последующего применения ферментного препарата. Суммарная протеолитическая активность такого препарата определяется на соответствующем субстрате: гемоглобине, желатине, растительном белке, эластине, коллагене и т. д.
Технологические схемы производства микробных протеиназ
Технологические схемы производства микробных протеиназ отличаются друг от друга прежде всего на первой стадии получения микробной культуры продуцента, на стадиях выделения различия меньше.
Продуценты
В качестве продуцентов протеолитических ферментов при глубинном культивировании в промышленных условиях используют бактерии в основном рода Bacillus, реже - актиномицеты и микроскопические грибы. Способность к образованию протеолитических ферментов отмечается практически у всех известных микроорганизмов, так как роль этих ферментов в регуляции жизненных функций организмов очень велика. Протеолитические ферменты в подавляющем большинстве случаев являются внеклеточными.
Регуляция синтеза протеиназ
В самом общем виде гипотетический механизм регуляции биосинтеза внеклеточных протеаз у микроорганизмов представлен на рисунке 14. Авторы этой модели, основываясь на данных литературы и собственных исследованиях, предполагают, что иРНК-экзопротеазосинтезирующая система безуспешно конкурирует с системами других РНК вследствие низкого сродства специфических факторов инициации или РНК-полимеразы с участком инициации на экзобелковом гене. Известно, что синтез РНК контролируется либо соотношением ненагруженных и аминоацилированных тРНК (при этом свободные тРНК являются репрессорами синтеза), либо действием гуанозинтетрафосфата (ppGpp), который образуется при аминокислотном голодании и подавляет биосинтез РНК. Суть предлагаемой модели заключается в следующем. Присутствие в среде в достаточном количестве всех необходимых аминокислот и других источников углерода, азота и серы позволяет поддерживать внутриклеточный пул микроорганизма на высоком уровне. При этих условиях клетка осуществляет интенсивный синтез нетранслируемых РНК и иРНК для внутриклеточных белков. В результате содержание свободных факторов инициации РНК-полимеразы, которые могут принять участие в синтезе иРНК экзопротеаз, незначительно. Вероятно, этим объясняется низкая частота транскрипции иРНК экзопротеаз и, следовательно, низкий уровень образования внеклеточных протеаз, например, в начале роста культуры на такой сбалансированной среде (левая сторона схемы).
Истощение среды в процессе роста культуры по одному или нескольким субстратам приводит к снижению уровня пула внутриклеточных свободных аминокислот, что значительно снижает синтез РНК. В результате освобождаются РНК-полимераза и факторы инициации транскрипции РНК. Увеличиваются частота инициации иРНК экзопротеаз и соответственно синтез внеклеточных протеолитических ферментов (правая сторона схемы). При наличии в среде белков экзопротеазы расщепляют их до пептидов и аминокислот, которые поступают в клетку, пополняя ее пул. Аминокислоты утилизируются клеткой активно и являются лимитирующим субстратом. Поступающие в клетку аминокислоты могут полностью удовлетворить ее потребности, т. е. снять лимитирование по этому субстрату, что приведет к временному торможению биосинтеза экзопротеаз и т. д. Иными словами, имеет место механизм контроля синтеза экзопротеаз по типу метаболитной репрессии. Можно предположить, что регуляторное воздействие субстратов на биосинтез экзопротеаз проявляется на уровне транскрипции. Известно, что пул иРНК поддерживает синтез протеаз в течение нескольких часов.
Глубинным способом культивируют многие продуценты протеолитических ферментов. Для производства нейтральных и щелочных протеиназ используют спороносные бактерии и актиномицеты, для получения кислых - микроскопические грибы.
Наиболее широко в нашей стране применяются штаммы бактерий, относящиеся к видам Bacillus subtilis и В. mesentericus, на основе которых выпускаются препараты протосубтилин и протомезентерин разной степени очистки, предназначенные для самых различных отраслей - от пищевых технологий до использования в моющих средствах и сельском хозяйстве.
Питательные среды и условия культивирования
При конструировании оптимальных питательных сред для каждого продуцента изучаются его физиология, потребность в источниках N, С и других соединениях. Содержание сухого вещества в питательной среде в зависимости от продуцента может изменяться от 6 до 20 %. Питательные вещества могут вноситься в среду сразу или дробно по мере потребления из среды лимитирующего компонента. Оптимальный состав среды устанавливается либо путем длительного изучения особенностей биосинтеза ферментов микроорганизмом, либо с использованием математических методов планирования эксперимента.
Культивирование проводилось на модифицированной среде Номура следующего состава (в %): картофельный крахмал - 2; двузамещённый цитрат аммония - 3; КСl - 0,15; MgSO4 - 0,05; СаС12 - 0,01; экстракт соевых бобов - 1,0. Если в составе среды изменять источник минерального азота (см. табл. 2.37), то биосинтез протеолитических ферментов будет заметно изменяться, особенно, если соль кислая, например NH4NO3. При потреблении аммонийного азота в среде накапливаются ионы азотной кислоты и среда резко подкисляется, и, хотя рост культуры и происходит, биосинтеза протеиназ не наблюдается. Если взять двузамёщенный фосфат аммония за контроль, то при изучении влияния различных источников органического азота для этого же штамма (табл. 4) оказалось, что уровень рН меняется меньше, чем с неорганическим азотом, и только в одном случае - с глютеном - биосинтез протеолитических ферментов ниже контрольного. Кроме того, введение в состав среды помимо (NH4)2HPO4 (1,2 %) кукурузного экстракта (0,8 %) и пивных дрожжей (0,4 %) позволило получить активность в культуральной жидкости до 1 300 ед. ПС/мл, т. е. почти в 20 раз больше контроля.
Экспериментальный способ оптимизации сред приемлем, но он очень длителен и не всегда оправдан, так как для того, чтобы учесть взаимовлияние отдельных компонентов при изменении их соотношения в среде, необходимо исследование многочисленных вариантов. Проще и целесообразнее вести такие исследования на основе математических методов планирования
Таким образом, способность бактерий образовывать внеклеточные протеиназы повысилась почти в 30 раз. Такие высокие показатели удалось достигнуть благодаря предварительной подработке некоторых компонентов сред, что убыстрило рост культуры и повысило её продуктивность. Подработка компонентов среды является эффективным и весьма распространенным приемом в технологии ферментных препаратов.
Выделение ферментов
На основе культуральной жидкости, содержащей внеклеточные протеиназы, можно получить ферментные препараты различной степени очистки, используя разнообразные методы - начиная от высушивания распылением готовой культуральной жидкости и до методов получения высокоочищенных ферментных препаратов и кристаллических протеиназ.
Дальнейшие исследования протеолитических ферментов этого микроорганизма позволили установить в них четыре компонента, которые различались между собой по многим физико-химическим характеристикам, особенно по оптимуму рН. Из таблицы 6 видно, что протеиназа II обладает широким диапазоном действия в интервале рН от 7,5 до 11, протеиназа IV является сильнощелочной и т. д.
Наряду с этим очень продуктивным штаммом в промышленности всё больше используются другие бактериальные продуценты нейтральных и щелочных протеаз, которые являются мутантными вариантами или культурами, отобранными в процессе длительной естественной селекции. Среди промышленных бактериальных штаммов можно назвать: В. cereus, В. mesentericus, В. licheniformis (продуцент препарата субтилизин Карлсберга), В. amyloliquefaciens, В. stearothermophilus, В. subtilis (продуценты промышленных препаратов субтилизин BPN и субтилизин Novo) и некоторые другие.
Среди микроорганизмов - продуцентов протеиназ не менее важное место, чем бактерии, занимают актиномицеты и микроскопические грибы. Актиномицеты образуют внеклеточные протеиназы в значительных количествах, но они сравнительно редко используются в промышленных условиях. Очень многие актиномицеты одновременно с протеиназами образуют большое количество внутриклеточных антибиотиков, поэтому имеется возможность одновременно организовать два производства: антибиотиков - из биомассы продуцента и протеолитических ферментов - из жидкой фазы культуры.
По такому принципу начиная с 60-х годов в Японии получают протеиназы на основе производства стрептомицина при промышленном культивировании Streptomyces griseus. Протеазы Streptomyces griseus получают из фильтрата глубинной культуры путем избирательной сорбции катионообменными смолами. Протеаза после элюции и дальнейшей очистки очищается в 22 - 25 раз и известна на мировом рынке под названием проназы. Проназа является комплексным препаратом, состоящим, по данным различных авторов, из 11 - 13 протеаз: четырех нейтральных, трех щелочных протеиназ и 3 - 5 аминопептидаз и карбоксипептидаз. Это стабильный ферментный препарат, обладающий широкой специфичностью и способностью глубоко (на 70 - 90 %) гидролизовать субстрат до аминокислот. Только кератин и фиброин шелка с трудом гидролизуются проназой. Проназа также гидролизует различные пептиды, амиды и эфиры аминокислот. Она растворима в воде, слабых солевых растворах, водных растворах ацетона и спиртов с концентрацией не выше 50%. Оптимальный рН лежит в щелочной зоне - от 8 до 9; при рН ниже 4 и выше 10 протеазы инактивируются. Стабилизируется проназа ионами кальция, нейтральные протеиназы и пептидазы проназы являются металлоферментами. Пептидазы ингибируются ЭДТА, причем в присутствии ионов кальция и кобальта этот эффект снимается.
Препараты проназы широко используются в различных отраслях промышленности, особенно при щелочных значениях рН. Препараты прекрасно хранятся при комнатной температуре и полностью сохраняют свою активность в течение 3 и более лет. Препараты проназы содержат ферменты, очень близкие по механизму своего воздействия на субстрат к трипсину и химотрипсину. Поэтому в литературе можно встретить для трипсиноподобных протеиназ проназы с различными названиями: протеиназа В, БАЭЭ-гидролаза; трипсин Streptomyces griseus, трипсин проназы и т. д. Протеиназы проназы со свойствами, близкими к химотрипсину, в литературе называются: протеиназа С, протеаза А, n-нитрофенилацетатгидролаза 1 и 2, фракция В, эластазоподобный фермент, эндопептидаза В, химотрипсин проназы и др. Следует отметить, что химотрипсинподобный фермент Streptomyces griseus обладает высокой эластазной активностью. Вероятно, это комплексный фермент, имеющий в своем составе фрагмент эластазного фермента. Наличие в препаратах проназы пептидаз, вероятно, способствует более полному расщеплению белков и пептидов до аминокислот.
Микроскопические грибы очень длительное время использовались для синтеза нейтральных и особенно кислых протеиназ. Наиболее часто для этих целей применялись различные виды аспергилловых грибов: A. oryzae, A. flavus, A. fumigatus, A. terricola, A. sojae, P. chrysogenum, Monilia sitophila. Эти микроорганизмы образуют протеазы, зона действия которых лежит в интервале рН от 4 до 10 с проявлением максимальной активности при рН, близком к нейтральному. Большой интерес представляют продуценты видов: A. awamori, A. saitoi, Rhizopus javanicus, Rh. pygmaues, Penicillium expansum, P. sponolasum и др., которые образуют кислые протеиназы с оптимальным рН 2,0 - 2,5. Все кислые протеиназы по механизму воздействия на субстрат достаточно близки, но пока нет стройной гипотезы, объясняющей существо протекающей реакции и её механизм.
За рубежом выпускаются кислые пепсиноподобные протеиназы, используемые для гидролиза белков соевых бобов, для хлебопечения и в медицине для улучшения пищеварения. Наиболее широко для производства кислых пепсиноподобных внеклеточных протеиназ используются Aspergillus saitoi, Rhizopus chinensis и Penicillium janthinellum. Схема получения на основе этих культур препаратов классическая и особых отличий не имеет.
Подводя итог по характеристике протеолитических ферментов, следует подчеркнуть, что технология этих препаратов освоена наиболее широко. Это многотоннажное производство, объемы которого превышают по денежному выражению реализуемой продукции почти в 2 раза сумму реализации всех непротеолитических ферментов. Причем доля микробных протеаз составляет 1/2 общего объёма выпускаемых протеолитических ферментов. С учетом того, что из года в год область применения протеаз расширяется и объемы выпускаемой продукции возрастают, можно сказать, что это почти самое крупномасштабное производство в технологии ферментных препаратов. Проведены большие исследования протеаз, этому вопросу посвящены обширные работы, обзоры и монографии. В данном разделе книги сделана попытка лишь слегка коснуться основных особенностей производства протеолитических ферментных препаратов и подчеркнуть те стороны технологии, которые требуют ещё изучения и совершенствования.
3. Характеристика и получение протеаз растительного, животного и микробного происхождения
Принципиальная схема получения ферментных препаратов глубинным способом
Обобщённая схема производства ферментных препаратов при глубинном способе культивирования производственной культуры продуцента. Условно можно выделить три этапа: подготовительный этап (стерилизация оборудования, приготовление среды для культивирования, её стерилизация, подготовка культуры продуцента, инокулирование среды, очистка воздуха), этап получения производственной культуры (ферментация) и получение ферментных препаратов с заданными характеристиками.
При сравнении производств ферментативных препаратов, получаемых глубинным способ культивирования, можно отметить, что схемы отличаются в основном на первом и завершающем этапах. Это связано с использованием различных продуцентов и требуемыми качествами ферментативных препаратов. Также можно отметить различные пути использования нерастворимых остатков после этапа производственного культивирования. Он может использоваться для получения биошрота, поступать на культивирование в качестве инокулята или, после соответствующей обработки, входить в состав среды.
Глубинное культивирование микроорганизмов
Этот способ имеет ряд очевидных преимуществ перед поверхностным, так как позволяет значительно сократить производственные площади, исключить тяжелый непроизводительный ручной труд, улучшить гигиену труда, упрощает механизацию и автоматизацию производства, делает возможным переход на непрерывный способ культивирования. При глубинном способе культивирования более рационально используются питательные вещества сред, что дает возможность значительно сократить отходы производства в виде нерастворимых осадков твердой питательной среды, получать препараты ферментов с меньшим содержанием примесей и большей удельной активностью.
Глубинное культивирование проводят в вертикальных емкостях различного размера, называемых ферментаторами. Основное требование к ферментатору - возможность проведения процесса культивирования продуцента в асептических условиях при интенсивном аэрировании среды. В процессе культивирования приходится иметь дело со сложной трехфазной системой жидкость - твердая взвесь - газ. В такой системе затруднены массообменные процессы, и поэтому усложняется аппаратурное оформление всей стадии выращивания.
Существующие промышленные ферментаторы по способу подвода энергии на аэрирование и перемешивание можно подразделить на три группы: аппараты с механическим перемешиванием и барботажем (комбинированные); с эжекционной системой аэрирования (подвод энергии к жидкой фазе) и барботажные (подвод энергии к газовой фазе). Для ферментной промышленности наибольший интерес представляет первая группа аппаратов, предназначенная для асептических процессов. Эти аппараты в основном имеют цилиндрическую форму и отличаются по объему, конструкции отбойников, перемешивающих устройств, уплотнений вращающегося вала и теплообменным устройствам. Максимальный объем ферментаторов с механическим перемешиванием и пеногашением составляет 2000 м3. Фирма «Хемап» располагает внедрёнными разработками герметичных ферментаторов вместимостью до 360 - 400 м3. Из отечественных аппаратов наиболее широко используются герметизированные ферментаторы вместимостью 50 м3 и вместимостью 100 м3 с механическим перемешиванием и барботажем воздуха. Кроме этих двух ферментаторов на многих ферментных предприятиях работают аппараты вместимостью 63 м3 производства ГДР.
Аппараты рассчитаны для работы под избыточным давлением 0,25 МПа и стерилизации при температуре 130 - 140 °С. Во избежание инфицирования культуры предусмотрены торцовые уплотнения вала перемешивающего устройства с паровой защитой. Торцовые уплотнения позволяют практически полностью предотвратить утечку среды или попадание воздуха в полость аппарата в месте выхода из него вала, что очень важно для обеспечения асептических условий процесса.
Важным фактором с точки зрения асептики процесса культивирования продуцента является правильная обвязка ферментатора. Под обвязкой подразумевают подвод всех коммуникаций с учетом возможности стерилизации острым паром участков, которые могут явиться источником заражения.
Анализ монтажных схем показывает, что они обычно состоят из типовых элементов. Рассмотрим одну из монтажных схем с нижним спуском среды, применяемых в самых различных микробиологических производствах. Ее характерной особенностью является установление термических затворов 3 и 5 для предупреждения проникновения посторонней микрофлоры в аппарат по коммуникациям через неплотности в уплотнениях «седло - клапан» запорной арматуры. В материальные трубопроводы, непосредственно соединенные с внутренней полостью аппарата, постоянно подается пар, а образующаяся пароконденсатная смесь отводится в канализацию или специальное устройство (при наличии открытых трубных окончаний). Как показывает опыт микробиологических производств, такие термические затворы обеспечивают весьма эффективную защиту аппаратов и коммуникаций от инфицирования.
В процессе культивирования ведётся постоянный контроль за уровнем пены, накоплением ферментов, состоянием биомассы продуцента, рН среды, потреблением некоторых составляющих среды и т. д. По окончании культивирования культуральная жидкость подаётся либо непосредственно в производство, где она используется (спиртовое, пивоваренное, производство глюкозы и т. д.), либо на отделение жидкой фазы от биомассы и твёрдых нерастворимых частиц среды с целью использования фильтрата культуральной жидкости. В некоторых случаях биомасса продуцента поступает на получение ферментных препаратов различной степени очистки.
Последовательность процесса получения культуры микроорганизма является общей как для поверхностного, так и для глубинного способа культивирования. Она включает стадии приготовления посевного материала, приготовления питательной среды, её стерилизации, охлаждения, засева посевным материалом и выращивания. Однако в зависимости от способа культивирования аппаратурное оформление технологической схемы существенно различается.
Технологические схемы глубинного культивирования аэробных и анаэробных микроорганизмов почти не отличаются одна от другой, за исключением того, что в схемах культивирования анаэробных микроорганизмов исключается стадия подготовки воздуха и используются ферментаторы без аэрирующих и перемешивающих устройств.
Получение ферментных препаратов из культур микроорганизмов
Культура микроорганизмов, выращенная поверхностным способом, и культуральная жидкость после глубинного культивирования содержат большое количество балластных веществ. Выделение и очистка ферментов - трудоёмкий и дорогостоящий процесс поэтому, если ферментный препарат можно использовать в виде неочищенной культуры микроорганизмов, его очистку не проводят. В таких отраслях, как спиртовая и кожевенная, целесообразнее использовать именно неочищенную культуру микроорганизма; то же самое можно сказать и об использовании культур микроорганизмов в сельском хозяйстве при приготовлении комбикормов и при непосредственной обработке кормов на фермах.
В большинстве отраслей пищевой промышленности (хлебопекарной, пивоварении, виноделии, сыроделии, крахмало-паточном и сокоэкстрактном производствах), а также в текстильной, меховой, микробиологической промышленности и особенно медицине можно использовать только очищенные препараты ферментов, частично или полностью освобожденные от балластных веществ.
Исходным материалом для получения очищенных ферментных препаратов может служить фильтрат культуральной жидкости, реже - биомасса продуцента или водный экстракт из поверхностной культуры продуцента. Ферментные препараты могут быть получены в виде порошков или жидких концентратов. В процессе выделения происходит повышение доли активного белка в общей массе препарата, т. е. увеличивается его удельная активность.
Принципиальная схема получения ферментных препаратов
Схема очистки фермента от балластных веществ сводится к освобождению его от нерастворимых веществ, сопутствующих растворимых веществ и других ферментов. Процессы получения очищенных препаратов из поверхностных и глубинных культур несколько различны. Из поверхностных культур труднее получить высокоочищенные препараты из-за большого количества балластных веществ. Из глубинных культур получить очищенные препараты несколько легче, но при этом приходится вести выделение из разбавленных растворов, если выделение ферментов проводится из жидкой части культуры. Выделение осложняется, если фермент внутриклеточный, и тогда необходимо разрушать клетки микроорганизмов.
Далее в зависимости от свойств выделяемого фермента и сопутствующего ему балласта схема очистки и получения ферментного препарата может включать различные приемы и методы, такие, как концентрирование, диализ, осаждение органическими растворителями, солями, гель-фильтрование, афинная хроматография, иммобилизация, сушка термолабильных материалов и т. д. Поэтому рассмотрим этапы получения ферментных препаратов.
Технологическая схема получения очищенных ферментных препаратов.
Схемы получения ферментных препаратов зависят от свойств выделяемого фермента и методов очистки, примененных для получения препарата нужной степени чистоты. В качестве примера рассмотрим технологическую схему получения препаратов из поверхностной и глубинной культур в виде жидких концентратов, сухих технических препаратов, получаемых сушкой распылением, и препаратов, осажденных органическими растворителями.
Для получения более очищенного препарата концентрат из сборника подается на осаждение органическим растворителем. Предварительно концентрат охлаждают в теплообменнике до температуры 2 - 3 °С и подают через дозатор в осадитель. Одновременно в осадитель дозируется охлажденный растворитель. Образовавшийся осадок отделяют на сепараторе 16. Надосадочную жидкость направляют на регенерацию, а осадок - на промывку спиртом и повторное сепарирование. Промытый осадок высушивают в вакууме, измельчают, взвешивают, смешивают с наполнителем и направляют на фасование и упаковывание.
Рис. 1. Принципиальная технологическая схема получения очищенных препаратов из культур микроорганизмов, выращенных глубинным и поверхностным способами: 1 - сборник фильтрата культуральной жидкости; 2 - подогреватель вакуум-выпарной установки; 3 - сборник экстракта поверхностной культуры; 4 - конденсатор; 5 - сборник конденсата; 6 - вакуум-выпарной аппарат; 7 - сборник концентрата; 8 - распылительная сушилка; 9 - теплообменники; 10 - циклон; 11 - бункер для высушенного препарата; 12 - шнек; 13 - фильтр рукавный; 14 - осадитель; 15 - дозаторы; 16 - сепаратор; 17 - насос для спирта; 18 - мерник для спирта; 19 - смеситель промывки осадка спиртом: 20 - центрифуга; 21 - вакуум-сушилка роторная; 22 - бункер для высушенного осадка; 23. 25 - бункера для наполнителей; 24 - бункер для сухого препарата; 26 - установки дисмембраторов; 27, 28 - весы; 29 - смесители непрерывного действия; 30 - бункера для стандартизированного препарата; 31 - установки для фасования и упаковывания препаратов; 32 - установка для экстракции ферментов; 33 - сушилка для биошрота; 34 - резервуар для воды
При получении ферментных препаратов из культур микроорганизмов, выращенных поверхностным способом, процесс очистки начинается с экстракции ферментов водой. Нерастворимый осадок высушивают и в виде сухого биошрота утилизируют на корм скоту.
Экстракт с содержанием сухого вещества 7 - 14 % при получении из него сухих препаратов не нуждается в дополнительном концентрировании и поэтому может быть сразу направлен на распылительную сушку с целью получения технического препарата, или же экстракт направляется в охладитель, а затем на осаждение органическими растворителями или солевыми растворами. Из экстракта можно получать стабильный жидкий концентрат с содержанием сухого вещества 50%, для чего экстракт направляют в сборник, затем в подогреватель и на вакуум-выпарную установку. Готовый жидкий концентрат фасуют в специальные емкости и направляют на склад готовой продукции. Из глубинной культуры можно также получать жидкие концентраты, например, методом ультрафильтрации.
Подобные документы
Место хлеба в пищевом рационе человека, уровень его потребления. Получение хлеба высокого качества как основная цель хлебопекарной промышленности. Хлебопекарные улучшители и добавки. Преимущества использования ферментных препаратов в производстве хлеба.
презентация [4,3 M], добавлен 19.03.2015Производство ферментных препаратов. Технология производства глюкоамилазы, расчёт необходимого оборудования. Подбор оборудования и оптимального процесса стерилизации для проведения культивирования и выделения препарата из культур микроорганизмов.
курсовая работа [1,5 M], добавлен 03.06.2015Краткая история развития пивоварения. Технологические качества ячменя. Химический состав сухих хмелевых шишек. Процесс получения солода: периоды сушки, очистка и дробление. Пивное сусло: затирание, фильтрация, кипячение. Применение ферментных препаратов.
презентация [1,8 M], добавлен 06.10.2013Технологическая и аппаратная схема производства настойки пустырника, определение количества экстрагента. Методы очистки новогаленновых препаратов. Требования, предъявляемые к пропеллентам. Современные приборы и установки для определения биодоступности.
контрольная работа [589,0 K], добавлен 18.07.2011Методы производства композиционных ультрадисперсных порошков: способы формования, реализуемые при спекании механизмы. Получение и применение корундовой керамики, модифицированной допированным хромом, оксидом алюминия, а также ее технологические свойства.
дипломная работа [1,6 M], добавлен 27.05.2013Древесные материалы и их классификация. Круглые лесоматериалы хвойных и лиственных пород. Шпон строганый, его назначение, получение, виды. Фанера: получение, свойства, виды, применение. Строение и свойства металлов. Классификация клеёв и требования к ним.
курс лекций [100,3 K], добавлен 18.12.2011Методы получения антибиотика Грамицидина С. Характеристика основных условий культивирования. Выбор и обоснование оборудования. Аппаратурная схема получения целевого продукта. Мероприятия по обеспечению асептики в соответствии с требованиями GMP.
курсовая работа [263,8 K], добавлен 14.01.2015Производство товарно-известнякового щебня, цемента, облицовочной известняковой плитки. Получение глицерина из торфяных гидрализатов. Технологическая схема производства гексаторфа. Получение активных углей на основе торфа и полукокса.
реферат [666,1 K], добавлен 26.11.2003Классификация сточных вод и основные методы их очистки. Гидромеханические, химические, биохимические, физико-химические и термические методы очистки промышленных сточных вод. Применение замкнутых водооборотных циклов для защиты гидросферы от загрязнения.
курсовая работа [63,3 K], добавлен 01.04.2011Характеристика древесной зелени, ее использование, производство и состав. Производство хвойно-эфирных масел, биологически-активных препаратов и хвойно-витаминной муки. Классификация экстрактивных веществ: смола и летучие масла, терпены и их соединения.
курсовая работа [665,2 K], добавлен 26.01.2016