Получение и применение ферментов
Классификация и номенклатура ферментов, их характеристика и стандартизация. Производственные способы выделения ферментных препаратов, получение протеиназ, питательная среда и условия культивирования. Методы очистки и экстрагирования ферментных препаратов.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 18.12.2014 |
Размер файла | 214,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Существуют многочисленные схемы получения ферментных препаратов различной степени очистки, вплоть до кристаллических и гомогенных препаратов. Такие схемы, созданные в различных странах мира, в большинстве своём очень сложны и сочетают в себе самые различные комбинации технологических приёмов. Поэтому давать какие-то общие рекомендации крайне трудно, и в каждом конкретном случае необходимо проводить кропотливые исследования на всех стадиях выделения фермента из данной культуры продуцента. Только в результате такой работы можно прийти к практическим рекомендациям, которые будут справедливы только для данного фермента, данной культуры микроорганизма и для данной среды.
Получение неочищенных ферментных препаратов
Неочищенные ферментные препараты представляют собой культуру микроорганизма вместе с остатками питательной среды, высушенную при мягком режиме до влажности не более 8 - 12 %.
Неочищенный ферментный препарат может быть получен на основе поверхностной или глубинной культуры. Глубинная культура может быть перед сушкой очищена от нерастворимой части (твердая взвесь среды и биомассы продуцента) или высушена вместе с ней.
Большинство продуцентов накапливает основную часть синтезируемых ими ферментов в питательной среде. При получении очищенных ферментных препаратов нерастворимую часть среды вместе с биомассой продуцента отделяют на фильтрах, центрифугах или сепараторах.
На этой стадии стерильность процесса чаще всего нарушается.
Эффективность отделения биомассы во многом зависит не только от типов используемых аппаратов, но и от состава среды, размеров отделяемых частиц, количества нерастворимой фракции, физико-химических характеристик фильтрующих материалов, температурных режимов и т. д. Для улучшения процесса фильтрования проводят предварительную химическую обработку культуральной жидкости. Для этого культуральную жидкость подщелачивают до рН 8 - 8,5 и вводят 0,1 %-ный раствор хлористого кальция, в результате образуется гель фосфата кальция, который способствует наиболее полному отделению осадка при наименьших потерях. Но предварительная химическая обработка не всегда дает хорошие результаты, поэтому для повышения эффективности процесса часто используют различные кизельгуры, например, диатомит и радиолит (Япония), микрозил (Франция), диатомит (Бельгия), кларгель (Великобритания) и т. д. Использование этих наполнителей может резко повысить скорость фильтрования, но вместе с этим увеличиваются потери активности на этой технологической стадии.
Полученную биомассу продуцента вместе с нерастворимыми частицами среды (биошрот) при необходимости стерилизуют, высушивают и используют на корм животным. Фильтрат культуральной жидкости нестабилен, он не может храниться и должен немедленно направляться на дальнейшую обработку для получения очищенных ферментных препаратов.
Экстрагирование ферментов
Все ферменты являются водорастворимыми белками, поэтому наилучшим экстрагентом для них является вода. Для извлечения ферментов из дрожжей или бактерий необходимо подвергнуть механическому или автолитическому разрушению их клеточные стенки, обладающие высоким диффузионным сопротивлением. Оболочки мицелиальных нитей имеют меньшее диффузионное сопротивление, чем оболочки бактериальных и дрожжевых клеток, поэтому дезинтеграции культуры грибов не требуется.
Извлечение ферментов проводят как из влажных, так и из сухих поверхностных культур грибов. Сухая культура может храниться длительное время без потери активности ферментов, и из нее получают более концентрированные экстракты. Технологически это выгоднее, но при подсушивании культуры имеют место потери активности, и потому экстрагирование целесообразно вести из влажной культуры. При экстрагировании различные водорастворимые вещества извлекаются из культуры с неодинаковой скоростью, происходит их частичное фракционирование, удельная активность ферментов в экстракте повышается в 3,5 - 4 раза по сравнению с исходной культурой в результате отделения большой части веществ (до 75 %) с нерастворимым остатком - биошротом.
На полноту экстрагирования ферментов из культур оказывают влияние многие факторы: температура, рН, длительность процесса, конструктивные особенности экстракционных аппаратов, природа извлекаемого фермента, количество отобранного экстракта с единицы массы загруженной в аппарат культуры и т. д.
Одновременно с ферментами экстрагируются многие другие соединения, и часто скорость извлечения балластных веществ больше скорости экстрагирования из культуры целевого фермента. Поэтому рациональнее пойти на некоторые потери фермента и закончить экстрагирование на оптимальном значении отношения активности фермента в экстракте к сумме извлекаемых веществ. Этот вопрос решается экспериментально для каждого вида продуцента.
Влиять на процесс экстрагирования с помощью такого фактора, как температура, практически невозможно, так как ферменты очень термолабильны и инактивируются даже при 35 - 40 °С (рис. 2). Кроме того, повышение температуры до 35 - 40 °С влечет за собой увеличение содержания сухого вещества в экстракте и уменьшение удельной ферментативной активности на 1 г сухого вещества, повышение опасности инфицирования экстрактов. Поэтому при проведении экстракции в заводских условиях стремятся подавить развитие микрофлоры путем максимального снижения температуры воды до 22 - 25 °С и применения антисептиков (формалин, бензол, толуол, хлороформ и др.). В большинстве случаев ферменты наиболее полно извлекаются при рН 5 - 7.
Рис. 2. Температурные показатели
Для получения концентрированных экстрактов при небольших потерях ферментов с биошротом необходимо применять специальные экстракционные установки. Ранее широко использовались диффузионные батареи. В них можно получить экстракт с содержанием сухого вещества от 7 до 14 % в зависимости от вида культуры, среды и величины отбора экстракта. Но эти установки для экстрагирования ферментов из поверхностной культуры имели сравнительно небольшую производительность, требовали больших затрат ручного труда, и в них наблюдались сравнительно большие потери активности.
Более перспективным в этом отношении является экстрактор непрерывного действия фирмы «Ниро Атомайзер» (Япония), работающий под избыточным давлением (рис. 3). Экстрактор представляет собой наклонную цилиндрическую емкость, снабженную двумя шнеками, теплообменными рубашками и насосами. Культура через дозирующее устройство 5 подается внутрь цилиндра, а с противоположной стороны вводится растворитель (вода). Экстракт выходит из установки через самоочищающийся фильтр, а биошрот удаляется с противоположного конца. В случае необходимости, если ферменты экстрагируются не полностью, можно осуществлять двухступенчатое экстрагирование, увеличивая длительность процесса. Вторичный экстракт может быть использован в качестве растворителя для первой ступени экстрагирования. Общая продолжительность экстрагирования регулируется частотой вращения шнеков. Вторичный биошрот используется как компонент среды или после обеспложивания в кормопроизводстве.
Рис. 3. Структура экстрактора
Концентрирование ферментных растворов методом вакуум-выпаривания
Экстракты из поверхностных культур микроорганизмов и фильтраты глубинной культуры являются нестабильными при хранении. Для получения готовых форм технических препаратов (П2х и Г2х) их необходимо сконцентрировать. Чаще всего для этих целей в технологии ферментных препаратов используются методы вакуум-выпаривания. Вакуум-выпаривание также применяется как один из этапов получения сухих технических или очищенных ферментных препаратов. Ферменты очень чувствительны к температуре выпаривания, поэтому основным условием концентрирования ферментных растворов является кратковременное ведение процесса при низких температурах кипения, чтобы выпариваемая жидкость не перегрелась, а ферменты не инактивировались. Следует учитывать, что чем чище раствор, чем меньше он содержит сопутствующих веществ, тем ферменты более чувствительны к воздействию высоких температур. При концентрировании экстрактов из поверхностных культур инактивация ферментов значительно меньше, так как в экстракте содержится очень большое количество защитных соединений, которые препятствуют инактивации ферментов. При концентрировании фильтратов культуральной жидкости наблюдаются несколько большие потери, поэтому ферменты культуральной жидкости стабилизируют различными соединениями. В процессе концентрирования ферментных растворов происходят изменение растворимости многих соединений и выпадение их осадков, и суммарное содержание сухого вещества в концентрате снижается на 11 - 20 %, изменяется рН концентрата (рис. 4). В осадок выпадают минеральные соли, некоторые органические вещества и продукты их распада, наблюдается потеря азота в результате уноса аммиака.
Рис. 4. Выпадение минеральных солей в осадок
При концентрировании культуральной жидкости В. mesentericus значительно изменяется минеральный состав концентрата. Наиболее резко снижается содержание кальция, меди и магния, заметно уменьшается содержание цинка и марганца. Такое изменение минерального состава культуральной жидкости сказывается на стабильности ферментов в процессе концентрирования. При сгущении культуральной жидкости до содержания сухого вещества 10 % количество кальция снижается всего на 5 %, а меди - на 75 %. Известно, например, что медь оказывает на ферменты ингибирующее действие, а кальций - стабилизирующее. Поэтому на первых стадиях концентрирования наблюдается повышение активности ферментов, особенно протеиназ. При более глубоком концентрировании вместе с резким снижением содержания кальция снижается активность ферментов.
Большинство ферментов очень чувствительно к термической обработке и нуждается в мягких режимах концентрирования. На рисунке были приведены данные по инактивации нейтральной протеиназы В. subtilis 103 в зависимости от температуры кипения раствора от 20 до 50 °С и температуры греющего пара от 90 до 120 °С. Из рисунка видно, что очень большое влияние оказывает температура теплоносителя. При низких температурах кипения (25 - 30 °С) происходит заметная инактивация ферментов (до 12 %), если температура греющего пара равна 120 °С. При температуре теплоносителя 90 - 100 °С и температуре кипения 35 - 40 °С потери активности не превышают 10 %. В зависимости от вида продуцента культуральная жидкость имеет различный химический состав и содержит различный комплекс ферментов, поэтому тепловые режимы вакуум-выпаривания уточняются экспериментальным путем.
Суммарные потери активности при вакуум-выпаривании в значительной степени зависят не только от режима концентрирования, но и от конструкции аппарата. Аппараты для стадии вакуум-выпаривания в последние годы значительно усовершенствованы, в десятки раз сокращена длительность процесса, что привело к значительному уменьшению потерь активности ферментов, а также позволило несколько ужесточить температурные режимы концентрирования ферментных растворов. Помимо трубчатых вакуум-выпарных установок с различным расположением трубой (горизонтальным, вертикальным и наклонным), со встроенной и выносной поверхностью нагрева, с использованием принудительной циркуляции созданы новые конструкции пленочных выпарных аппаратов, ультрацентробежных вакуум-выпарных установок и пластинчатых испарителей. Особый интерес представляют ротационные пленочные выпарные аппараты, где упариваемая жидкость в виде пленки движется по внутренней стенке аппарата. Лопатки, смонтированные на вращающемся роторе, непрерывно направляют движение ее сверху вниз. Время прохождения жидкости через аппарат составляет несколько секунд. В настоящее время фирма «Альфа-Лаваль» изготовляет вакуум-выпарные центробежные аппараты типа «Центритерм». Они очень компактны, время контакта ферментного раствора с обогревающей поверхностью предельно сокращено (не более 1 с), потери не превышают 10 %, производительность этих установок от 800 до 4800 л/ч.
Создана центробежная вакуум-выпарная установка пленочного типа производительностью 800 л/ч по испаренной влаге. Время контакта культуральной жидкости с теплоносителем не более 1 с, температура греющего пара 60 - 80 °С. Для увеличения производительности можно монтировать установку из трех модулей, каждый из которых работает либо автономно, либо последовательно, либо первые два модуля работают параллельно и соединены с третьим модулем последовательно. Представляет интерес для ферментной промышленности центробежная пленочного типа вакуум-выпарная установка «Единство» (Югославия) производительностью до 200 л/ч и с температурой упаривания 30 - 40 °С. Хорошие технологические показатели имеют роторные выпарные аппараты фирмы «Люва» (Швейцария), имеющие производительность по испаренной влаге от 50 до 200 л/(м2·ч). Французская фирма APV изготовляет пластинчатые вакуум-выпарные установки производительностью до 20 000 л/ч.
Несмотря на наличие высокопроизводительных вакуум-выпарных аппаратов полностью устранить недостатки метода вакуум-выпаривания не удается (потери активности, выпадение осадков и т. д.), и этот метод все больше заменяется методом ультрафильтрации.
Другие промышленные методы очистки, концентрирования и стабилизации ферментных препаратов
В ферментной промышленности для очистки белков от различных низкомолекулярных примесей (ионов солей, сахаров и т.д.) применяют мембранные методы очистки: диализ и электродиализ и баромембранные методы: обратный осмос, ультрафильтрацию, микрофильтрацию и тонкую фильтрацию.
Также используют осаждение белков органическими растворителями, высаливанием, органическими полимерами и путём избирательной денатурации; разделение белов хроматографическими методами.
Сушка ферментных препаратов имеет целью получить стабильный при хранении ферментный препарат из культуральной жидкости, её концентратов, из пастообразной массы, образующейся при высаливании, осаждении фермента спиртом или другими осадителями и т. д. Для обезвоживания ферментных растворов и осадков применяют сушку в вакуум-сушильных шкафах, распылительных и сублимационных установках. При этом возникает ряд проблем, связанных с большой термолабильностью ферментов.
Получаемые ферменты порой с целью стабилизации иммобилизуют, микрокапсулируют, гранулируют.
Микробиологический и биохимический контроль производства
Независимо от способа культивирования с момента засева продуцентом стерильной питательной среды ведется контроль за ростом культуры и образованием ферментов. Для каждого вида продуцента и способа культивироваиня устанавливается своя периодичность отбора средних проб растущей культуры. Отобранные пробы подвергаются микроскопированию и визуальному просмотру. С целью выявления возможных заражений производится периодический высев проб на агаризорованные среды с введением факторов, подавляющих рост продуцента. Постоянно ведется определение накопления в культуре ферментативной активности. При глубинном культивировании ведут контроль за потреблением основных лимитирующих компонентов среды (углеводы, N, Р), измеряют рН культуры.
Все показатели роста культуры, изменения состава среды и накопления ферментов и т. д. заносятся в лабораторный журнал.
На всех стадиях выделения ферментов проводят анализы активности, определяют величины потерь и выход товарного продукта. Готовые препараты ферментов подвергают особенно тщательному исследованию, особенно те, которые применяются в медицине и в пищевых продуктах. Препараты медицинского назначения не должны содержать микроорганизмов. Препараты для хлебопекарной, мясной и рыбной промышленности контролируют на содержание спор грибов-продуцентов и на присутствие спороносных бактерий. Споры или клетки продуцента в готовом продукте должны отсутствовать, а предельная норма обсеменённости микрофлорой определяется в каждом конкретном случае. Например, в грибных препаратах из поверхностных культур она не должна превышать 1·105 клеток на 1 г препарата. При контроле готовых препаратов на обсеменённость микроорганизмами делают высевы проб от каждой партии на твердые среды (МПА и сусло-агар) в чашки Петри. Заражение выражается количеством микроорганизмов на 1 г препарата. Контроль на зараженность спороносными бактериями проводится путем высева нагретых до 80 °С проб на чашах Петри с агаризорованной средой. Культивирование для выявления бактериального заражения ведут при 37 °С в течение 24 ч, а для грибного - при 30 °С в течение 48 - 72 ч.
В готовых препаратах определяют влажность и активность в стандартных единицах на 1 г препарата.
Технические жидкие и сухие ферментные препараты анализируют на активность ферментов, содержание сухого вещества и в зависимости от назначения на наличие микробного загрязнения. При контроле высокоочищенных препаратов помимо определения загрязненности микробами и активности ферментов проводятся анализы на содержание белка, зольных элементов, углеводов и других специфических свойств ферментов.
Кроме того, любой ферментный препарат перед промышленным производством подвергают длительной проверке в специальных медицинских учреждениях на токсичность, особенно если препарат предназначен для пищевой и медицинской промышленности. Токсичность препарата зависит от способности микроорганизма синтезировать в процессе жизнедеятельности токсины или канцерогенные вещества, а также от состава используемой для культивирования среды и способов выделения фермента. Исследования на токсичность проводят на лабораторных животных, которым вводят внутримышечно и перорально ферментные препараты в различном виде и дозировке и наблюдают реакцию организма.
Только после тщательного биологического исследования при положительных результатах дается разрешение на промышленное производство препарата и на его применение в пищевой промышленности, медицине, сельском хозяйстве и других областях.
4. Иммобилизованные ферменты
Иммобилизированные ферменты (от лат. immobiiis -- неподвижный) - это препараты ферментов, молекулы которых связаны с матрицей, или носителем (как правило, полимером), и сохраняют при этом полностью или частично свои каталитические свойства. Иммобилизованные ферменты обычно не растворимы в воде; между двумя фазами возможен обмен молекулами субстрата, продуктов каталитической реакции, ингибиторов и активаторов.
Существует несколько основных способов иммобилизации ферментов.
Способы иммобилизации ферментов:
1) путем образования ковалентных связей между ферментом и матрицей;
2) полимеризацией мономера, образующего матрицу, в присутствии фермента, который при этом оказывается включенным в сетку полимера - обычно геля;
3) благодаря электростатическому взаимодействию противоположно заряженных групп фермента и матрицы;
4) сополимеризацией фермента и мономера, образующего матрицу;
5) связыванием фермента и матрицы в результате невалентных взаимодействий - гидрофобных, с образованием водородных связей и др.;
6) инкапсулированием - созданием около молекул фермента полупроницаемой капсулы, например, включением фермента в липосомы;
7) сшиванием молекул фермента между собой, например, глутаровым альдегидом, диметиловым эфиром диимида адипиновой кислоты.
Особый случай иммобилизации - проведение ферментативных реакций в двухфазной системе, когда фермент находится в водной фазе, а субстраты и продукты реакции распределяются между органической и водной фазами, что позволяет в зависимости от коэффициента распределения веществ между фазами сдвигать равновесие реакции в нужную сторону; диспергирование фаз увеличивает поверхность их раздела и тем самым улучшает доступ субстрата к ферменту. Среди способов иммобилизации наибольшее распространение получили ковалентное связывание фермента с матрицей и включение фермента в гель. В первом случае в качестве матрицы обычно используют целлюлозу, декстрановые гели (сефароэу, агарозу), микропористые стекла или кремнеземы, а также синтетические полимеры. Матрицу при ковалентной иммобилизации ферментов обычно предварительно активируют, обрабатывая, например, бромцианом, азотистой кислотой или цианурхлоридом. Благодаря этому она становится носителем активных группировок, которые способны вступать в реакцию сочетания, взаимодействуя с группами NH2, ОН, СООН. Во втором случае в качестве гелеобразующего полимера используют полиакриламид. На практике иммобилизация часто осуществляется одновременно несколькими способами.
Конкретные примеры использования иммобилизированных ферментов: производство фруктозы из глюкозных сиропов.
Иммобилизованные ферменты в промышленности
Сегодня в промышленности реализовано всего четыре крупномасштабные технологии на основе иммобилизованных ферментов:
1. Глюкозоизомеразы.
2. Аминоацилазы.
3. Пенициллинацилазы.
4. Лактазы.
Перспективные ферменты
В обозримом будущем иммобилизованные ферменты могут быть использованы для следующих целей.
1. Холинэстераза. Она может применяться для определения пестицидов. Степень ингибирования этого фермента в присутствии пестицидов оценивают электрохимическими или колориметрическими методами.
2. Карбоангидраза. Аналогичным образом другие ферменты могут использоваться для определения токсических веществ. Так, карбоангидраза очень чувствительна даже к малым концентрациям хлорпроизводных углеводородов,
3. Гексокиназа -- чувствительна к хлордану, линдану и токсафену.
4. Диизопропилфторфосфатаза. Иммобилизованная диизопропилфтор- фосфатаза нервных клеток кальмара может найти применение для обезвреживания фосфоорганических нервных газов (зомана, зарина).
5. Гепариназа. Иммобилизованная гепариназа может применяться для предотвращения тромбообразования в аппаратах искусственного кровообращения.
6. Билирубиноксидаза. Иммобилизованная билирубиноксидаза может использоваться для удаления билирубина из крови новорожденных, страдающих желтухой.
7. Гемоглобин. Предложен новый способ применения иммобилизованного гемоглобина. Суть его состоит в том, что включенный в полиуретановую матрицу белок образует «гемогубку», способную поглощать кислород прямо из воды с эффективностью 80%. Затем кислород высвобождается из полимера под действием слабого электрического разряда или в вакууме. Предполагается, что такая система может снабжать кислородом водолазов либо работающие под водой двигатели.
Следующий этап в применении иммобилизованных ферментов - это создание систем сразу из нескольких иммобилизованных ферментов, подобно тому, как это делается в живой клетке.
Возможно, вскоре удастся создать такие простейшие системы из нескольких иммобилизованных ферментов. Так, если заключить в микрокапсулы три фермента -- уреазу, глутаматдегидрогеназу и глюкозодегидрогеназу, то их можно будет использовать для удаления мочевины из крови больных с почечной недостаточностью.
5. Применение ферментов в технологиях мясных продуктов
Для ускорения процесса созревания мяса, а также с целью повышения нежности и уровня водосвязывающей способности сырья, содержащего грубые мышечные волокна, значительное количество соединительной ткани, имеющей жесткую консистенцию, в практике мясного производства используют различные способы интенсификации созревания и тендеризации мясного сырья.
Их условно подразделяют на физические, химические, механические и биологические. Физические включают в себя повышение температуры среды, избыточное давление, ультразвуковое воздействие, электростимуляцию, химические - введение в парное мясо под давлением под давлением до (2-7) * 105 Па различных воды, рассолов, растворов фосфатов и газов, механические - накалывание, отбивание, массирование, тумблирование.
Химические способы тендеризации основаны на введении в мясо
жидких и газообразных компонентов. Введение в парное мясо воды при 38 °С методом шприцевания в количестве 1...3 % к массе туши сопровождается повышением нежности мяса и увеличением уровня водосвязывающей способности в результате разрыва мышечных волокон и активации деятельности гидролитических ферментов. Введение в парное мясо водных растворов хлорида натрия низких массовых концентраций (около 0,9 % NaCl) задерживает образование актомиозинового комплекса, тормозит развитие посмертного окоченения. Введение в парное мясо водных растворов триполифосфатов и их смеси с хлоридом натрия способствует существенному повышению как нежности мяса, так и его водосвязывающей способности.
Наконец, биологические методы обработки, получившие свое развитие в последние 20-30 лет, включают в себя обработку мясного сырья протеолитическими ферментными препаратами микробного, растительного, животного происхождения или из гидробионтов.
В соответствии с современной классификацией все ферменты по типу субстрата, подвергающегося каталитическому воздействию, делят на 6 классов. Среди них большое практическое и прикладное значение имеют гидролазы (класс III), ускоряющие реакции расщепления органических соединений при участии воды. В зависимости от характера субстрата, подвергающегося гидролизу, гидролазы делят на ряд подклассов, среди которых в биохимии и технологии мяса наиболее важны протеолитические ферменты, относящиеся к подклассу пептид-гидролаз, катализирующих гидролиз пептидных связей в белках и пептидах.
Среди пептид-гидролаз различают протеиназы (эндопептидазы), катализирующие гидролиз внутренних пептидных связей в белковой молекуле с образованием пептидов, и пептидазы (экзопептидазы), отщепляющие от пептидной цепи свободные аминокислоты.
По происхождению ферментные препараты можно классифицировать на препараты растительного, животного и микробного происхождения, а также ферменты из гидробионтов.
По структурному признаку активного центра и особенностям механизма катализа протеиназы делят на следующие группы:
- сериновые, для которых характерно наличие в активном центре триады аминокислот (аспарагиновой, гистидина и серина); представителями их являются химотрипсин, трипсин, эластаза, тромбин, плазмин, некоторые микробные ферменты;
- тиоловые, имеющие в активном центре SH-группу цистеина (папаин, фицин, бромелаин, химопапаин и др.);
- кислые (карбоксильные) протеиназы, имеющие оптимум ниже 5,0 и включающие остатки карбоксильных групп аминокислот в активный центр (пепсин, катепсин D, протеиназы микромицетов);
- металло-протеиназы, содержащие в активном центре ионы металлов (коллагеназа, микробные протеиназы, включая компонент протеиназы термолизин).
Среди пептидаз различают амино- и карбоксипептидазы. Первые отщепляют от пептида свободные аминокислоты, начиная с конца молекулы, обладающего свободной NH2-rpyппoй, вторые - свободной СООН-группой.
Принимая во внимание ферментативную природу процессов, протекающих при созревании и посоле мяса, применение различных протеолитических ферментных препаратов, в том числе микробного происхождения, способствует их интенсификации. При выборе ферментных препаратов необходимо учитывать рН-оптимум действия содержащейся в них протеиназы и рН мяса, поскольку их действие наиболее эффективно в условиях, близких к тем, при которых активны тканевые протеиназы. Если вводимые в мясо ферментные препараты являются синергистами с тканевыми протеиназами, эффект их совместного действия на белковые макромолекулы существенно возрастает. Опыт показывает, что искусственно внесенные в сырье препараты протеаз обеспечивают аналогичный автолитическому эффект преобразования белковых структур, однако процессы созревания мяса под их влиянием протекают в 3...5 раз интенсивнее и заканчиваются в более короткий срок. Хотя протеолитические ферментные препараты отличаются специфичностью воздействия на такие белки мяса, как миозин, коллаген, эластин, конечные результаты этих процессов имеют много общего. При этом интенсивность и глубина превращений белковых структур зависит от дозировки препаратов, физико-химических условий, продолжительности обработки, способа применения. Действие протеолитических ферментов в конечном итоге вызывает существенные изменения белков мяса и системы экстрактивных веществ.
С целью токсикологической оценки ферментных препаратов, используемых при обработке пищевых продуктов, они могут быть подразделены на 5 классов:
1. Ферменты, полученные из тканей животных, обычно используемых в пищу.
2. Ферменты, полученные из частей растений, используемых в пищу.
3. Ферменты, полученные из микроорганизмов, традиционно используемых в приготовлении пищи. Эти препараты также рассматриваются как продукты питания и считаются допустимыми при условии, что они снабжены удовлетворительными микробиологическими и химическими спецификациями.
4. Ферменты, полученные из непатогенных микроорганизмов, являющихся контаминантами пищи. Эти препараты не считаются продуктами питания. Для них необходимо разработать спецификации, проведя токсикологические исследования, после чего устанавливается величина допустимого суточного потребления.
5. Ферменты, получаемые из малоизвестных микроорганизмов. Эти препараты требуют химических и микробиологических спецификаций и более подробного токсикологического изучения.
Для ферментации используют протеолитические ферментные препараты растительного (папаин, фицин, бромелин), животного (пепсин, трипсин, химотрипсин) и микробного происхождения (протоорезин, прототерризин, протосубтилин).
Опыт практического применения ферментов в мясной промышленности свидетельствует о высокой эффективности их использования для следующих целей:
· ускорения созревания мяса;
· смягчения жесткого мяса;
· улучшения качества и повышения пищевой ценности колбас, консервов, соленых мясных изделий;
· выработки мясных паст, эмульсий, соусов, гидролизатов для применения в качестве белковых обогатителей пищевых продуктов общего испециального назначения,
· а также для лечебного питания;
· получения и очистки коллагеновых субстанций в желатиновом производстве и в производстве съедобных колбасных оболочек и пленочных покрытий.
Применение ферментов для обработки мяса основано на ферментативном гидролизе белков, изменении на этой основе структурных элементов мяса, улучшении биохимических и физико-химических показателей его качества.
В мясной промышленности традиционно принята многосортовая жиловка мяса, требующая значительных затрат ручного труда. При этом из мяса выделяют до 3 % коллагенсодержащих включений в виде жилок, сухожилий, шкурки. В потребительской кооперации это сырье, как правило, не используется на пищевые цели, а направляется в зверосовхозы в качестве корма.
В то же время установлено, что мышечные белки в сочетании с соединительнотканными стимулируют двигательную функцию желудка и кишечника, сокоотделение, оказывают благоприятное действие на состояние полезной микрофлоры кишечника. По данным Laser-Reutersward (Швеция, 1982), усвояемость коллагена после специальной обработки составляет 95 %. Установлена прямая зависимость между показателями чистого усвоения белка (NPV) и массовой долей коллагена в продуктах.
Позднее это было доказано рядом отечественных ученых и специалистов (А.И. Рогов, В.Г. Боресков, Г.П. Козюлин, М.Н. Липатов, Л.В. Антипова и др.).
Анализ информационных источников свидетельствует о том, что для увеличения ресурсов полноценного пищевого белка большие перспективы имеет ферментативная обработка низкосортного мясного сырья. Актуальным остается вопрос применения ферментных препаратов, обладающих коллагеназной активностью, в производстве полуфабрикатов. С целью обоснования технологических режимов и способов применения ферментных препаратов в производстве полуфабрикатов необходимо изучение их физико-химических характеристик и биохимических особенностей. Практическое значение имеет изучение влияния внешних технологических факторов (рН среды, температура, наличие активаторов, и ингибиторов) на протеолитическую активность ферментных препаратов.
Установлено, что применяемые для улучшения качества мяса ферментные препараты должны иметь следующие свойства: вызывать изменения в соединительной ткани (расщеплять мукополисахаридный комплекс, способствуя уменьшению устойчивости соединительной ткани к нагреву, стимулировать гидролиз коллагена и эластина); слабо действовать на мышечную ткань; иметь возможно более высокий температурный оптимум действия, сохраняя способность частично изменять ткани при тепловой обработке; действовать в слабокислой или нейтральной среде с максимальной активностью; быть безвредными для человека.
Заключение
Продукты на основе злаков полезны для здоровья благодаря содержанию в них растворимых и нерастворимых пищевых волокон, которые, уменьшая уровень холестерина, способствуют снижению риска сердечно-сосудистых заболеваний, а также стабилизируют пищеварительные функции организма, предупреждая заболевания желудочно-кишечного тракта.
Мясо и мясная продукция являются источником полноценных белков, жиров, комплекса минеральных веществ, витаминов (А, D, группы В) и экстрактивных веществ. В состав мяса и мясных продуктов входят мышечная, жировая, соединительная, костная ткань и кровь.
Мышечная ткань содержит белки - миозин, миоген, актин, глобулин. Они содержат в большом количестве все незаменимые аминокислоты (валин, гистидин, метионин, триптофан, треонин, фенилаланин, лизин, лейцин, изолейцин), которые благоприятно сбалансированы и мало изменяются под влиянием тепловой обработки.
В соединительной ткани мяса имеются менее ценные белки - коллаген и эластин.
Жировая ткань мяса по своей химической структуре представляет смесь триглицеридов - сложных эфиров глицерина и жирных кислот (пальмитиновая, стеариновая, олеиновая). Жиры мяса относятся к тугоплавким. Наиболее высока усвояемость говяжьего жира.
Костная ткань относится к менее ценным составным частям мяса. Основной пищевой ценностью является костный мозг трубчатых костей. Кости мяса используются при приготовлении бульонов.
Важная составная часть мяса - экстрактивные вещества, которые придают мясу аромат и возбуждают деятельность пищеварительных желез. Они делятся на азотистые (карнозин, креатин, ансерин, пуриновые основания) и безазотистые (гликоген, глюкоза, молочная кислота).
Мясо является существенным источником минеральных веществ, количество их достигает 1,2%. В мясе имеются почти все витамины, причем некоторые из них в существенном количестве.
Список использованной литературы
экстрагирование промышленный фермент протеиназа
1. Федеральный Закон "О качестве и безопасности пищевых продуктов". Принят Государственной Думой Российской Федерации 1 декабря 1998 г., одобрен Советом Федерации 23 декабря 1999 г.
2. Концепция Государственной Политики в области здорового питания населения Российской Федерации на период до 2005 года. Постановление РФ от 10 августа 1998г. №917.
3. Основы управления инновациями в пищевых отраслях АПК (наука, технология, экономика)/ Под ред. В.И. Тужилкина -- М.: МГУПП, 1998. -- 842 с.
4. Богатырев А.Н., Нечаев А.П., Панфилов В.А., Тужилкин В.А. и др. Система научного и инженерного обеспечения пищевых и перерабатывающих отраслей АПК России. -- М.: Пищевая промышленность, 1995. -- 525 с.
5. Голубев В.Н. Основы пищевой химии. -- М.: Биоинформсервис, 1997. -- 223 с.
6. Нечаев А.П., Траубенберг С.Е., Попов М.П. и др. Пищевая химия: Курс лекций: В 2 ч. - М.: МГУПП, 1998. - 258 с.
7. Скурихин И.М., Нечаев А.П. Все о пище с точки зрения химика. -- М.: Высшая школа, 1991. -- 287с.
8. Тупгельян В.А., Суханов Б.Н., Андриевских А.Н., Поздняковский В.М. Биологически активные добавки в питании человека. -- Томск: Научно-техническая литература, 1999. -- 229 с.
9. Baltes W. Lebensmittel-chemie. -- Springer, 1995. -- 476 p.
10. Березов Т., Коровкин Б.Ф. Биологическая химия. Учебник. / Под ред. Дебова С.С. - М.: Медицина, 1990. - 528 с.
11. Вакар А.Б. Белковый комплекс клейковины. / В кн. Растительные белки и их биосинтез. - М.: Наука, 1975. - С. 38 - 58.
12. Дудкин М.С., Щелкунов Л.Ф. Новые продукты питания. -- М.: Наука, 1998. -- 304с.
13. Конарев В.Г. Белки пшеницы. -- М.: Колос, 1980. -- 351 с.
14. Мак-Мюррей У. Обмен веществ у человека. / Пер. с англ. Горкина В.З. -- М.: Мир, 1980.-368с.
15. Марри Р., ГреннерД., Мейес П., Родуэлп В. Биохимия человека. / В 2-х томах. / Пер. с англ. -- М.: Мир., 1993.
16. Мосолов В.В., Валуева Т. А. Растительные белковые ингибиторы протеолитических ферментов. -- М.: Наука, 1993. -- 414 с.
17. Нечаев А.П., Попов М.П., Траубенберг С.Е. Пищевая химия. Курс лекций. /В 2-х частях./Ч. 1. - М.: ИКМГУПП, 1998.-131с.
18. Практическая химия белка. / Пер. с англ. / Под ред. Дарбре А. -- М.: Мир, 1989.-623с.
19. Витол И.С., Кобелева И.Б., Траубенберг С.Е. Ферменты и их применение в пищевой промышленности -- М.: ИК МГУПП, 2000. -- 80 с.
Размещено на Allbest.ru
Подобные документы
Место хлеба в пищевом рационе человека, уровень его потребления. Получение хлеба высокого качества как основная цель хлебопекарной промышленности. Хлебопекарные улучшители и добавки. Преимущества использования ферментных препаратов в производстве хлеба.
презентация [4,3 M], добавлен 19.03.2015Производство ферментных препаратов. Технология производства глюкоамилазы, расчёт необходимого оборудования. Подбор оборудования и оптимального процесса стерилизации для проведения культивирования и выделения препарата из культур микроорганизмов.
курсовая работа [1,5 M], добавлен 03.06.2015Краткая история развития пивоварения. Технологические качества ячменя. Химический состав сухих хмелевых шишек. Процесс получения солода: периоды сушки, очистка и дробление. Пивное сусло: затирание, фильтрация, кипячение. Применение ферментных препаратов.
презентация [1,8 M], добавлен 06.10.2013Технологическая и аппаратная схема производства настойки пустырника, определение количества экстрагента. Методы очистки новогаленновых препаратов. Требования, предъявляемые к пропеллентам. Современные приборы и установки для определения биодоступности.
контрольная работа [589,0 K], добавлен 18.07.2011Методы производства композиционных ультрадисперсных порошков: способы формования, реализуемые при спекании механизмы. Получение и применение корундовой керамики, модифицированной допированным хромом, оксидом алюминия, а также ее технологические свойства.
дипломная работа [1,6 M], добавлен 27.05.2013Древесные материалы и их классификация. Круглые лесоматериалы хвойных и лиственных пород. Шпон строганый, его назначение, получение, виды. Фанера: получение, свойства, виды, применение. Строение и свойства металлов. Классификация клеёв и требования к ним.
курс лекций [100,3 K], добавлен 18.12.2011Методы получения антибиотика Грамицидина С. Характеристика основных условий культивирования. Выбор и обоснование оборудования. Аппаратурная схема получения целевого продукта. Мероприятия по обеспечению асептики в соответствии с требованиями GMP.
курсовая работа [263,8 K], добавлен 14.01.2015Производство товарно-известнякового щебня, цемента, облицовочной известняковой плитки. Получение глицерина из торфяных гидрализатов. Технологическая схема производства гексаторфа. Получение активных углей на основе торфа и полукокса.
реферат [666,1 K], добавлен 26.11.2003Классификация сточных вод и основные методы их очистки. Гидромеханические, химические, биохимические, физико-химические и термические методы очистки промышленных сточных вод. Применение замкнутых водооборотных циклов для защиты гидросферы от загрязнения.
курсовая работа [63,3 K], добавлен 01.04.2011Характеристика древесной зелени, ее использование, производство и состав. Производство хвойно-эфирных масел, биологически-активных препаратов и хвойно-витаминной муки. Классификация экстрактивных веществ: смола и летучие масла, терпены и их соединения.
курсовая работа [665,2 K], добавлен 26.01.2016