Травление полупроводников и диэлектриков
Основные виды загрязнений, встречающиеся при подготовке материала к травлению, причины их возникновения и методы удаления. Основные виды травления на полупроводниковых и диэлектрических пластинах, оборудование, используемое для этого и результаты.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 23.06.2012 |
Размер файла | 43,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Московский государственный технический
университет имени Н.Э. Баумана
Калужский филиал
Факультет электроники, информатики и управления (ЭИУК)
Кафедра «Материаловедения» (ЭИУ4-КФ)
Курсовая работа
по курсу: Процессы микро - и нанотехнологий
Тема работы: Травление полупроводников и диэлектриков
Студент: Давыдов Р.Ф.
группа ФТМ _61_
Руководитель: Парамонов В.В.
Содержание
Введение
1. Возникновение загрязнений
2. Источники загрязнений
3. Виды загрязнений
4. Типичные загрязнения
5. Удаление загрязнений
6. Обезжиривание
7. Травление
8. Промывание пластин и подложек
9. Газовое травление
10. Ионное травление
11. Плазмохимическое травление
12. Электрохимическое травление
Заключение
Литература
Введение
травление полупроводник диэлектрик
За каждое десятилетие число элементов в аппаратуре увеличивается в 5-20 раз. Разрабатываемые сейчас сложные комплексы аппаратуры и системы содержат миллионы и десятки миллионов элементов. В этих условиях исключительно важное значение приобретают проблемы повышения надежности аппаратуры и ее элементов, микроминиатюризации электро-радиокомпонентов и комплексной миниатюризации аппаратуры. В этих условиях, развитие травления, как отрасли исследований, очень важно.
В данной работе рассмотрены основные виды загрязнений, встречающиеся при подготовке материала к травлению, причины их возникновения и методы удаления, а также основные виды травления на полупроводниковых и диэлектрических пластинах, оборудование, используемое для этого и результаты.
Основной задачей данной работы является подробное рассмотрение основных методов травления.
1. Возникновение загрязнений
Электрические характеристики ИМС и их надежность во многом обусловливаются степенью совершенства кристаллической решетки и чистотой обрабатываемой поверхности пластин и подложек. Поэтому обязательным условием получения бездефектных полупроводниковых и пленочных структур является отсутствие на поверхности пластин и подложек нарушенного слоя и каких-либо загрязнений.
Как известно, нарушенный приповерхностный слой полупроводниковых пластин является следствием их механической обработки. Используемые при подготовке пластин методы шлифования, полирования и травления позволяют удалить нарушенный слой.
Однако атомы материала пластины (подложки), расположенные на ее поверхности, имеют намного больше ненасыщенных связей, чем атомы в объеме. Этим объясняются высокие адсорбционные свойства и химическая активность поверхности пластин. В условиях производства ИМС пластины и подложки соприкасаются с различными средами, и полностью защитить их от адсорбции различного рода примесей невозможно. В то же время получить идеально чистую поверхность (без посторонних примесей) тоже практически невозможно. Поэтому применяемое в технике понятие «чистая поверхность» имеет относительный характер. Технологически чистой считают поверхность, которая имеет концентрацию примесей, не препятствующую воспроизводимому получению заданных значений и стабильности параметров ИМС. Допустимая концентрация примесей на поверхности пластин зависит от сложности ИМС и способа ее формирования, в худшем случае она не должна превышать .
Для обеспечения эффективной очистки с целью получения технологически чистой поверхности пластин (подложек) необходимо знать источник и вид загрязнения, характер его поведения на поверхности, методы удаления.2. Источники загрязнений
Основными источниками загрязнений поверхности пластин и подложек являются: абразивные и клеящие материалы, кремниевая пыль при механической обработке; пыль в производственных помещениях; предметы, с которыми соприкасаются пластины и подложки (оборудование, инструмент, оснастка, технологическая тара); технологические среды; органические и неорганические реагенты, вода; одежда и открытые участки тела операторов и др.
Загрязнение пластин и подложек практически возможно на всех операциях технологического процесса изготовления кристаллов и сборки ИМС.
3. Виды загрязнений
Возможные загрязнения на поверхности пластин и подложек классифицируют, как правило, по их физико-химическим свойствам, так как они определяют выбор методов удаления загрязнений. На поверхности пластин и подложек одновременно могут присутствовать загрязнения различных видов. Наиболее распространенными являются загрязнения следующих видов:
Физические загрязнения - пылинки, ворсинки, абразивные материалы, силикаты, кремниевая пыль и другие посторонние частицы, химически не связанные с поверхностью пластин и подложек.
Загрязнения, химически связанные с поверхностью пластин и подложек - оксиды, нитриды и другие соединения.
Органические загрязнения - неполярные жиры, масла, силиконы и другие неионные примеси.
Растворимые в воде полярные загрязнения - соли, кислоты, остатки травителей, флюсы и пр.
Газы, адсорбированные поверхностью пластин и подложек.
4. Типичные загрязнения
Загрязнения полупроводниковых пластин и их источники
Загрязнения |
Возможные источники |
|
Волокна (нейлон, целлюлоза и т. д.) |
Одежда, ткани, бумажные изделия |
|
Силикаты |
Горные породы, песок, почва, зола, пепел |
|
Окислы и окалина |
Продукты окисления некоторых металлов |
|
Масла и жиры |
Масла от машинной обработки, отпечатки пальцев, жиры с открытых участков тела, средства для волос, мази, лосьоны |
|
Силиконы |
Аэрозоли для волос, кремы, лосьоны после бритья, лосьоны для рук, мыло |
|
Металлы |
Порошки и отходы машинной обработки и шлифовки; изготовление металлических частей; частицы из металлических банок для хранения и металлических контейнеров |
|
Ионные примеси |
Продукты дыхания, отпечатки пальцев (хлорид натрия); примеси из очищающих растворов, содержащие ионные детергенты; некоторые флюсы; примеси от предварительной химической операции, такой, как травление или металлизация |
|
Неионные примеси |
Неионные детергенты, органические материалы для обработки |
|
Растворимые примеси |
Очищающие растворители и растворы |
Наиболее трудно удаляются органические и химически связанные с поверхностью загрязнения, а также загрязнения от абразивных материалов, полярные газы и ионы, внедренные в приповерхностный слой пластин.
5. Удаление загрязнений
К физическим методам удаления загрязнений относят растворение, отжиг, обработку поверхности ускоренными до больших энергий ионами инертных газов. Эти методы используют в основном для удаления загрязнений, расположенных на поверхности. Для удаления загрязнений на поверхности и в приповерхностном слое, в том числе тех, которые находятся в химической связи с материалом пластины или подложки, также используют химические методы удаления. Они основаны на переводе путем химической реакции загрязнений в новые соединения, которые затем легко удаляются (травление, обезжиривание).
Жидкостная очистка предусматривает использование водных и других растворов различных реактивов. Целый ряд органических жировых загрязнений не растворяется в воде и препятствует смачиванию водой и большинством растворов обрабатываемой поверхности (поверхность гидрофобная). Для обеспечения равномерной очистки поверхность пластин и подложек переводят в гидрофильное, т. е. хорошо смачиваемое водой, состояние.
Сухая очистка основана на использовании отжига, газового, ионного и плазмохимического травления. Эти способы исключают применение дорогостоящих и опасных в работе жидких химических реактивов; они более управляемы и легче поддаются автоматизации. Процессы сухой очистки являются наиболее эффективными также при обработке локальных участков и рельефной поверхности.
6. Обезжиривание
Физическое обезжиривание основано на отрыве молекул жира от поверхности при ее взаимодействии с органическими растворителями. Отрыв вызывается собственными колебаниями молекул жира и притяжением их молекулами растворителя. Для этого пластины (подложки) погружают в резервуар (ванну) с растворителем. После отрыва молекулы жира равномерно распределяются по всему объему ванны, что приводит к загрязнению растворителя и обратному процессу - адсорбции молекул жира очищенной поверхностью. Во избежание последнего требуется постоянное освежение растворителя.
В качестве растворителей наиболее часто применяют четыреххлористый углерод, бензол, толуол, изопропиловый спирт, фреон и др., в которых эффективно растворяется большинство жировых загрязнений.
Определяющими параметрами процесса являются температура и время. Растворимость жиров увеличивается с повышением температуры. Поэтому обезжиривание осуществляют в горячих или кипящих растворителях.
Несмотря на высокую эффективность очистки в органических растворителях, технология такого обезжиривания связана с определенными трудностями (многократная очистка, большой расход, высокая стоимость и токсичность большинства растворителей).
Исключительными особенностями обладает фреон, который не токсичен и обеспечивает высокую эффективность очистки.
Химическое обезжиривание основано на разрушении молекул жира растворителями, не воздействующими на материал пластины (подложки). Его отличительной особенностью является отсутствие вероятности повторного загрязнения пластин.
Для химического обезжиривания кремниевых пластин наиболее часто применяют горячий (75-80°С) перекисно-аммиачный раствор (водный раствор смеси пергидроля и щелочи ), который удаляет все жиры. Процесс обезжиривания сопровождается выделением атомарного кислорода в результате разложения пергидроля (этому способствует и наличие щелочи). Атомарный кислород окисляет как органические, так и неорганические загрязнения.
Для очистки, основанной на переводе омыляемых жиров в легко растворимые в воде мыла` (соли), применяют обработку поверхности в мыльных растворах. Этим способом удаляют растительные и животные жиры - загрязнения от остатков сложных эфиров глицерина и высокомолекулярных органических кислот. Химическое обезжиривание характеризуется низкими токсичностью и стоимостью.
7. Травление
Процесс травления пластин и подложек состоит в растворении их поверхности при взаимодействии с соответствующими химическими реагентами (щелочами, кислотами, их смесями и солями). В результате удаляются приповерхностный слой и имеющиеся на поверхности загрязнения. Различают химическое и электрохимическое травление.
Химическое травление пластин кремния происходит на границе твердой и жидкой сред, и его можно рассматривать как гетерогенную реакцию.
Процесс травления состоит из пяти стадий: диффузии реагента к поверхности; адсорбции реагента; поверхностной химической реакции; десорбции продуктов реакции; диффузии продуктов реакции от поверхности. Скорость всего процесса определяется скоростью наиболее медленной (контролирующей) стадии. При травлении кремния контролирующими стадиями могут быть либо диффузия реагента к поверхности, либо поверхностная химическая реакция, что определяется видом травителя и энергией активации стадий процесса.
Скорость травления в полирующих травителях определяется скоростью диффузии реагента и зависит от градиента его концентрации:
(1)
где D - коэффициент диффузии реагента, зависящий от природы и энергии активации молекул реагента; и - концентрация реагента в объеме и на поверхности; - толщина приповерхностного слоя травителя, в котором существует градиент концентрации. При этом скорость травления нечувствительна к физическим и химическим неоднородностям поверхности, слабо зависит от температуры. Вследствие более высокого градиента концентрации выступы на поверхности травятся быстрее впадин. Поэтому полирующие травители хорошо сглаживают шероховатости, выравнивая микрорельеф. Типичными полирующими травителями для кремниевых пластин являются смеси азотной и фтористоводородной (плавиковой) кислот.
Следует отметить, что очистке поверхности полупроводниковых пластин путем их обработки в полирующих травителях предшествует обязательное обезжиривание поверхности.
Для ряда травителей энергия активации химической реакции на порядок и более превышает энергию активации, определяющую скорость диффузии реагента. В этом случае скорость травления определяется скоростью химической реакции :
(5)
где и - концентрации реагирующих веществ; R - универсальная газовая постоянная; а и b - показатели, численно равные коэффициентам в уравнении химической реакции. Поскольку энергия активации химической реакции зависит от неоднородности поверхности, скорость травления чувствительна к состоянию поверхности и температуре.
Травление с большой разницей скоростей травления в различных кристаллографических направлениях называется анизотропным.
Селективное травление используют для локальной обработки полупроводниковых пластин, в том числе для создания изолирующих областей при изготовлении ИМС.
8. Промывание пластин и подложек
На различных этапах изготовления ИМС производят неоднократно промывание пластин и подложек. Для промывания применяют дистиллированную, бидистиллированную и деионизованную воду.
Промывание обязательно производится после обезжиривания и травления. Его назначение - удаление остатков загрязнений, продуктов реакции и остатков реагентов.
Наиболее распространенными и эффективными способами жидкостной обработки в промышленных условиях являются ультразвуковая очистка в растворителях, химико-динамическое травление, анодно-механическое травление.
9. Газовое травление
Сущность газового травления заключается в химическом взаимодействии материала пластин с газообразными веществами и образовании при этом легко улетучиваемых соединений. В процессе газового травления загрязнения удаляются вместе со стравливаемым приповерхностным слоем пластин.
Газовое травление как метод окончательной очистки применяют в первую очередь непосредственно перед теми технологическими процессами, в которых определяющую роль играет структура поверхностного слоя (например, перед эпитаксиальным наращиванием). В качестве травителей используют смеси водорода или гелия с галогенами (фтор, хлор, бром), галогеноводородами (HBr, HC1), сероводородом, гексафторидом серы.
Молярное содержание этих веществ в водороде или гелии может изменяться от десятых долей процента до единиц процентов. Очистку осуществляют при температурах 800-1300°С в установках термического окисления либо непосредственно в реакторах эпитаксиального наращивания.
Наибольшее распространение получило травление кремниевых пластин хлористым водородом при температурах 1150-1250°С, при этом происходит реакция:
(9)
Скорость травления зависит от температуры и концентрации HC1 в водороде. Аналогично происходит травление кремния в HBr.
Травление кремниевых пластин в парах тетрахлорида кремния сопровождается реакцией:
(10)
При хлорном травлении в качестве газоносителя используют гелий. Травление осуществляют при температуре около 1000°С и содержании хлора в гелии не более 0,2% в соответствии с реакцией:
(11)
Травление кремния в парах сероводорода происходит по реакции:
(12)
При этом получаются большие скорости травления (до 15 мкм/мин). Однако сероводород токсичен. Гексафторид серы, наоборот, не токсичен и обеспечивает хорошее качество поверхности при травлении кремния и сапфира. Травление кремния сопровождается реакцией:
(13)
Газовое травление обеспечивает получение более чистых поверхностей по сравнению с жидкостной, обработкой. Однако его применение ограничено из-за высоких температур процессов и необходимости использования газов особой чистоты.
10. Ионное травление
Сущность ионного травления состоит в удалении поверхностных слоев материала при его бомбардировке потоком ионов инертных газов высокой энергии. При этом ускоренные ионы при столкновении с поверхностью пластин или подложек передают их атомам свою энергию и импульс.
Если во время столкновения энергия, передаваемая атому, превышает энергию химической связи атома в решетке, а импульс, сообщаемый атому, направлен наружу от поверхности, то происходит смещение атомов, их отрыв от поверхности - распыление. Для реализации этого процесса требуются определенные вакуумные условия, а ионы должны обладать определенными значениями энергий, достаточными для распыления материалов.
Разновидностью ионного травления является ионно-химическое (реактивное) травление, основанное на введении в плазму химически активного газа, обычно кислорода. При этом изменяется скорость травления вследствие химического взаимодействия между подложкой и добавленным газом.
11. Плазмохимическое травление
В отличие от ионного плазмохимическое травление основано на разрушении обрабатываемого материала ионами активных газов, образующимися в плазме газового разряда и вступающими в химическую реакцию с атомами материала при бомбардировке поверхности пластин или подложек. При этом молекулы газа в разряде распадаются на реакционно-способные частицы - электроны, ионы и свободные радикалы, химически взаимодействующие с травящейся поверхностью. В результате химических реакций образуются летучие соединения.
Для травления кремния и его соединений (оксида и нитрида кремния) наиболее часто используют высокочастотную плазму тетрафторида углерода (возможно применение гексафторида серы и фреона-12 - ).
При взаимодействии этих газов с электронами плазмы происходит разложение и образуются ионы фтора и другие радикалы:
(14)
Ионы фтора, а в ряде случаев и радикал активно взаимодействуют с кремнием, образуя летучее соединение . Уравнения, характеризующие химические реакции травления кремния, оксида и нитрида кремния в плазме , имеют вид
(15)
Характерно, что частицы, участвующие в травлении, травят различные материалы с разной скоростью. На этом основано свойство плазмохимического травления. Скорость травления определяется концентрацией атомов фтора и постоянной скорости химической реакции :
(16)
Концентрация обусловливается скоростью генерации атомов, что определяется конструкцией и мощностью реактора, а также временем жизни частиц в реакторе, которое зависит от скорости газового потока, давления и условий рекомбинации частиц.
Скорость травления строго зависит от температуры; ее влияние предопределяется физическими свойствами травящегося материала и газовым составом плазмы. Так, добавка кислорода к чистой плазме повышает скорость травления.
В плазме фторсодержащих газов можно травить некоторые металлы. Для травления применяют также плазму хлорсодержащих газов. Для удаления органических материалов используют кислородную плазму.
12. Электрохимическое травление
Электрохимическое травление основано на химических превращениях, которые происходят при электролизе. Для этого полупроводниковую пластину (анод) и металлический электрод (катод) помещают в электролит, через который пропускают электрический ток. Процесс является окислительно-восстановительной реакцией, состоящей из анодного окисления (растворения) и катодного восстановления.
Кинетика анодного растворения определяется концентрацией дырок, генерируемых на поверхности полупроводниковой пластины.
Электрохимическое травление кремниевых пластин производят в растворах, содержащих плавиковую кислоту, при возрастающей плотности тока. При этом вначале происходит образование на поверхности пластины слоя оксида кремния, в состав которого входит фтористокремниевый комплекс , окисляющийся в водных растворах с выделением водорода согласно реакции:
(6)
(7)
Затем происходит анодное растворение кремния в плавиковой кислоте:
(8)
Такой процесс называют также электрополировкой.
Электрохимическое травление применяют как для очистки поверхности пластин, так и для их локальной обработки.
Заключение
Были рассмотрены основные методы травления (газовое, ионное, плазмохимическое, электрохимическое), виды загрязнений, наиболее часто встречающиеся в процессах травления и обработки материала, способы их удаления, источники загрязнений. Приведены конкретные примеры с кремнием, как одним из наиболее часто применяемых материалов.
Приведена классификация методов очистки пластин и подложек.
Список литературы
Черняев В.Н. Технология производства интегральных микросхем и микропроцессоров. Учебник для ВУЗов - М; Радио и связь, 2007 - 464 с.
Технология СБИС. Пер. с англ. - М.: Мир, 2006.-786 с.
Готра З.Ю. Технология микроэлектронных устройств. Справочник. - М.: Радио и связь, 2001.-528 с.
Достанко А.П., Баранов В.В., Шаталов В.В. Пленочные токопроводящие системы СБИС.-Мн.: Высш. шк., 2000.-238 с.
5. Таруи Я. Основы технологии СБИС Пер. с англ. - М.: Радио и связь, 2000-480 с.
Размещено на Allbest.ru
Подобные документы
Сущность плазмохимического травления. Факторы, определяющие технологические параметры процесса плазменного травления. Внешний вид установки LAM690. Аттестация оборудования, виды брака и их причины. Операции фотолитографии по стандартной технологии.
дипломная работа [4,8 M], добавлен 08.07.2014Характеристика процесса травления и описание получаемых при этом объектов. Основные свойства и неоднородность травления алюминиевой фольги. Математическое описание процесса формовки анодной алюминиевой фольги для электролитических конденсаторов.
контрольная работа [25,8 K], добавлен 14.05.2011Виды загрязнений, встречающиеся на поверхностях молочного оборудования. Способы санитарной обработки автоматов розлива и фасовки. Композиционные составы жидких моющих средств. Физико-химические свойства электролитов. Методы оценки моющих веществ.
курсовая работа [550,6 K], добавлен 17.11.2014Основные пассивные функции диэлектриков в составе микроэлектронных и оптоэлектронных устройств. Примеры объемных и поверхностных удельных сопротивлений диэлектриков. Электрическая прочность и ее виды. Полимеры и техническая керамика и ее применение.
реферат [898,1 K], добавлен 15.12.2015Макроструктурный анализ как изучение строения металлов и сплавов невооруженным глазом или при небольшом увеличении, с помощью лупы, его основные этапы, принципы и подходы к реализации. Исследование изломов, макроструктуры металла после травления.
лабораторная работа [997,7 K], добавлен 27.03.2011Механический цех: оборудование, специализация, особенности управления. Основные группы механических цехов и организация их работы, используемое оборудование. Характеристика заготовительного цеха: производственная структура, оборудование, кадры.
отчет по практике [476,9 K], добавлен 12.04.2019Процесс удаления влаги из материала путем испарения или выпаривания. Выбор и обоснование способа сушки и типа лесосушильных камер. Спецификация пиломатериалов. Формирование сушильных штабелей. Технология проведения камерной сушки. Виды и причины брака.
курсовая работа [36,4 K], добавлен 10.12.2013Виды электродов, сталей для ручной дуговой сварки, используемое в данном процессе оборудование, принадлежности и инструмент. Физическая сущность процесса сварки и технология ее реализации, контроль качества. Организация оплаты труда, требования к ней.
курсовая работа [63,7 K], добавлен 23.06.2012Изучение устройства и принципа металлографического микроскопа. Порядок приготовления микрошлифа, демонстрация его вида до и после травления. Оптическая схема микроскопа, методика приготовления макрошлифа. Зарисовка макроструктуры полученного образца.
лабораторная работа [27,3 K], добавлен 12.01.2010Травление меди, окислительно-восстановительный процесс, в котором окислителем является травильный раствор. Совместимость травителей и применяемых резистов. Операции для придания диэлектрику способности к металлизации. Сенсибилизация и активация.
реферат [186,7 K], добавлен 09.12.2008