Сопротивление материалов

Задачи, методы сопротивления материалов. Внутренние силы и напряжения, кручение, изгиб. Геометрические характеристики поперечных сечений бруса. Расчет статически неопределимых систем методом сил. Основы теории упругости, пластичности. Пластины и оболочки.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 10.10.2011
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Введение

1.1 Задачи и методы сопротивления материалов

сопротивление сила напряжение кручение изгиб

Сопротивление материалов наука о прочности, жесткости и устойчивости элементов инженерных конструкций. Методами сопротивления материалов выполняются расчеты, на основании которых определяются необходимые размеры деталей машин и конструкций инженерных сооружений.

В отличие от теоретической механики сопротивление материалов рассматривает задачи, в которых наиболее существенными являются свойства твердых деформируемых тел, а законами движения тела как жесткого целого здесь пренебрегают. В то же время, вследствие общности основных положений, сопротивление материалов рассматривается как раздел механики твердых деформируемых тел.

В состав механики деформируемых тел входят также такие дисциплины, как: теория упругости, теория пластичности, теория ползучести, теория разрушения и др., рассматривающие, по существу, те же вопросы, что и сопротивление материалов. Различие между сопротивлением материалов и другими теориями механики твердого деформируемого тела заключается в подходах к решению задач.

Строгие теории механики деформируемого тела базируются на более точной постановке проблем, в связи с чем, для решения задач приходится применять более сложный математический аппарат и проводить громоздкие вычислительные операции. Вследствие этого возможности применения таких методов в практических задачах ограничены.

В свою очередь, методы сопротивления материалов базируются на упрощенных гипотезах, которые, с одной стороны, позволяют решать широкий круг инженерных задач, а с другой, получать приемлемые по точности результаты расчетов.

При этом главной задачей курса является формирование знаний для применения математического аппарата при решении прикладных задач, осмысления полученных численных результатов и поиска выбора наиболее оптимальных конструктивных решений. То есть данный предмет является базовым для формирования инженерного мышления и подготовки кадров высшей квалификации по техническим специализациям.

1.2 Реальный объект и расчетная схема

В сопротивлении материалов, как и во всякой отрасли естествознания, исследование вопроса о прочности или жесткости реального объекта начинается с выбора расчетной схемы. Расчетная схема конструкции его упрощенная схема, освобожденная от несущественных в данной задаче особенностей. Выбор расчетной схемы начинается со схематизации свойств материалов сооружения. В сопротивлении материалов принято рассматривать все материалы как однородную сплошную среду, независимо от их микроструктуры. Под однородностью материала понимают независимость его свойств от величины выделенного из тела объема. И хотя в действительности реальный материал, как правило, неоднороден (уже в силу его молекулярного строения), тем не менее указанная особенность не является существенной, поскольку в сопротивлении материалов рассматриваются конструкции, размеры которых существенно превышают не только межатомные расстояния, но и размеры кристаллических зерен.

С понятием однородности тесно связано понятие сплошности среды, под которым подразумевают тот факт, что материал конструкции полностью заполняет весь отведенный ему объем, а значит в теле конструкции нет пустот.

Под действием внешних сил реальное тело меняет свои геометрические размеры. После снятия нагрузки геометрические размеры тела полностью или частично восстанавливаются. Свойство тела восстанавливать свои первоначальные размеры после разгрузки называется упругостью. При решении большинства задач в сопротивлении материалов принимается, что материал конструкций абсолютно упругий.

Обычно сплошная среда принимается изотропной, т.е. предполагается, что свойства тела, выделенного из нее, не зависят от его ориентации в пределах этой среды. Отдельно взятый кристалл материала анизотропен, но т.к. в объеме реального тела содержится бесконечно большое количество хаотично расположенных кристаллов, принимается, что материал изотропен.

При выборе расчетной схемы вводятся упрощения и в геометрию реального объекта. Основным упрощающим приемом в сопротивлении материалов является приведение геометрической формы тела к схемам бруса (стержня) или оболочки. Как известно, любое тело в пространстве характеризуется тремя измерениями. Брусом называется геометрический объект, одно из измерений которого (длина) много больше двух других. Геометрически брус может быть образован путем перемещения плоской фигуры вдоль некоторой кривой, как это показано на рис. 1.1.

Рис. 1.1

Эта кривая называется осью бруса, а плоская замкнутая фигура, располагающая свой центр тяжести на оси бруса и нормальная к ней, называется его поперечным сечением. Брус может иметь как постоянное, так и переменное поперечное сечение. Многие сложные конструкции на практике рассматриваются как комбинации элементов, имеющих форму бруса, поэтому в настоящей книге преимущественно рассматриваются методы расчета бруса как основного геометрического объекта изучения науки сопротивления материалов. Второй основной геометрической формой, рассматриваемой в сопротивлении материалов, является оболочка, под которой подразумевается тело, у которого одно из измерений (толщина) намного меньше, чем два других.

Для соединения отдельных частей конструкции между собой и передачи внешней нагрузки на основание на нее накладываются связи, ограничивающие перемещения тех точек сооружения, к которым они приложены. Связи могут ограничивать либо повороты точек сооружения, либо их линейные смещения, либо и то и другое.

1.3 Внешние и внутренние силы

Метод сечений. Силы являются мерилом механического взаимодействия тел. Если конструкция рассматривается изолированно от окружающих тел, то действие последних на нее заменяется силами, которые называются внешними. Внешние силы, действующие на тело, можно разделить на активные (независимые) и реактивные. Реактивные усилия возникают в связях, наложенных на тело, и определяются действующими на тело активными усилиями.

По способу приложения внешние силы делятся на объемные и поверхностные.

Объемные силы распределены по всему объему рассматриваемого тела и приложены к каждой его частице. В частности, к объемным силам относятся собственный вес сооружения, магнитное притяжение или силы инерции. Единицей измерения объемных сил является сила, отнесенная к единице объема кН/м3.

Поверхностные силы приложены к участкам поверхности и являются результатом непосредственного контактного взаимодействия рассматриваемого объекта с окружающими телами. В зависимости от соотношения площади приложения нагрузки и общей площади поверхности рассматриваемого тела, поверхностные нагрузки подразделяются на сосредоточенные и распределенные. К первым относятся нагрузки, реальная площадь приложения которых несоизмеримо меньше полной площади поверхности тела (например, воздействие колонн на фундаментную плиту достаточно больших размеров можно рассматривать как действие на нее сосредоточенных усилий). Если же площадь приложения нагрузки сопоставима с площадью поверхности тела, то такая нагрузка рассматривается как распределенная. Сосредоточенные усилия измеряются в кН, а распределенные кН/м2.

Взаимодействие между частями рассматриваемого тела характеризуется внутренними силами, которые возникают внутри тела под действием внешних нагрузок и определяются силами межмолекулярного воздействия.

Величины внутренних усилий определяются с применением метода сечений, суть которого заключается в следующем. Если при действии внешних сил тело находится в состоянии равновесия, то любая отсеченная часть тела вместе с приходящимися на нее внешними и внутренними усилиями также находится в равновесии, следовательно, к ней применимы уравнения равновесия.

Рассмотрим тело, имеющее форму бруса (рис. 1.2, а).

Рис. 1.2

Пусть к нему приложена некоторая система внешних сил Р1, Р2, Р3,..., Рn, удовлетворяющая условиям равновесия, т.е. при действии указанных внешних сил тело находится в состоянии равновесия.

Если рассечь брус сечением А на две части и правую отбросить, то, т.к. связи между частями тела устранены, необходимо действие правой (отброшенной) части на левую заменить некоей системой внутренних сил (PА ), действующей в сечении А (рис. 1.2, б).

Обозначая через Pлев и Рправ суммы внешних сил, приложенных соответственно, к левой и правой частям бруса (относительно сечения А), и учитывая, что

Pлев + Рправ = 0(1.1)

для отсеченных частей бруса получим следующие очевидные соотношения:

Рлев + PA = 0;Рправ PA = 0.(1.2)

Последние соотношения показывают, что равнодействующая внутренних сил РА в сечении А может определяться с равным успехом из условий равновесия либо левой, либо правой частей рассеченного тела. В этом суть метода сечений.

Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали. Это требование в механике твердого деформируемого тела носит название условия неразрывности деформаций.

Воспользуемся правилами статики и приведем систему внутренних сил РА к центру тяжести сечения А в соответствии с правилами теоретической механики. В результате получим главный вектор сил и главный вектор момента (рис. 1.3). Далее выбираем декартову систему координат xyz с началом координат, совпадающим с центром тяжести сечения А. Ось z направим по нормали к сечению, а оси x и y расположим в плоскости сечения. Спроектировав главный вектор сил и главный момент на координатные оси x, y, z, получаем шесть составляющих: три силы Nz, Qx, Qy и три момента Mz, Mx, My, называемых внутренними силовыми факторами в сечении бруса.

Составляющая Nz называется нормальной, или продольной силой в сечении. Силы Qx и Qy называются поперечными усилиями. Момент Mz называется крутящим моментом, а моменты Mx и My изгибающими моментами относительно осей x и y, соответственно.

При известных внешних силах все шесть внутренних силовых

факторов в сечении определяются из шести уравнений равновесия,

которые могут быть составлены для отсеченной части.

Пусть R*, M* - результирующая сила и результирующий момент действующие на отсеченной части тела. Если тело при действии полной системы внешних сил находится в равновесном состоянии, то условия равновесия отсеченной части тела имеет вид:

(1.3)

Последние два векторные уравнения равновесия дают шесть скалярных уравнений в проекциях на декартовых осях координат:

(1.4)

которые в общем случае составляют замкнутую систему алгебраических уравнений относительно шести неизвестных внутренних усилий: Qx, Qy, Nz, Mx, My, Mz.

Следовательно, если полная система внешних сил известна, то по методу сечений, всегда можно определить все внутренние усилия действующих в произвольно взятом сечении тела. Данное положение является основополагающим обстоятельством в механике твердого деформируемого тела.

В общем случае в сечении могут иметь место все шесть силовых факторов. Однако достаточно часто на практике встречаются случаи, когда некоторые внутренние усилия отсутствуют такие виды нагружения бруса получили специальные названия (табл. 1).

Рис. 1.3

Сопротивления, при которых в поперечном сечении бруса действует одно внутреннее усилие, условно называются простыми. При одновременном действии в сечении бруса двух и более усилий сопротивление бруса называется сложным.

В заключение заметим, что при выполнении практических расчетов, для наглядности, как правило, определяются графики функций внутренних силовых факторов относительно координатной оси, направленной вдоль продольной оси стержня. Графики изменения внутренних усилий вдоль продольной оси стержня называются эпюрами.

Таблица 1 Простейшие случаи сопротивления

Вид напряженного состояния

Nz

Qx

Qy

Mz

Mx

My

Растяжение/сжатие

+

0

0

0

0

0

Кручение

0

0

0

+

0

0

Чистый изгиб относительно оси х

0

0

0

0

+

0

Чистый изгиб относительно оси у

0

0

0

0

0

+

Поперечный изгиб относительно оси х

0

0

+

0

+

0

Поперечный изгиб относительно оси у

0

+

0

0

0

+

Примечание: + означает наличие усилия, 0 его отсутствие.

1.4 Напряжения

В окрестности произвольной точки К, принадлежащей сечению А некоторого нагруженного тела, выделим элементарную площадку F, в пределах которой действует внутреннее усилие (рис. 1.4, а). Векторная величина

(1.5)

называется полным напряжением в точке К. Проекция вектора полного напряжения на нормаль к данной площадке обозначается через и называется нормальным напряжением.

Рис. 1.4

Проекции вектора на перпендикулярные оси в плоскости площадки (рис. 1.4, б) называются касательными напряжениями по направлению соответствующих осей и обозначаются и . Если через ту же самую точку К провести другую площадку, то, в общем случае будем иметь другое полное напряжение. Совокупность напряжений для множества площадок, проходящих через данную точку, образует напряженное состояние в этой точке.

1.5 Перемещения и деформации

Под действием внешних сил твердые тела изменяют свою геометрическую форму, а точки тела неодинаково перемещаются в пространстве. Вектор , имеющий свое начало в точке А недеформированного состояния, а конец в т. деформированного состояния, называется вектором полного перемещения т. А (рис. 1.5, а). Его проекции на оси xyz называются осевыми перемещениями и обозначаются u, v и w, соответственно.

Для того, чтобы охарактеризовать интенсивность изменения формы и размеров тела, рассмотрим точки А и В его недеформированного состояния, расположенные на расстоянии S друг от друга (рис. 1.5, б).

Рис. 1.5

Пусть в результате изменения формы тела эти точки переместились в положение А и В, соответственно, а расстояние между ними увеличилось на величину S и составило S + S. Величина

(1.6)

называется линейной деформацией в точке А по направлению АВ. Если рассматривать деформации по направлениям координатных осей xyz, то в обозначения соответствующих проекций линейной деформации вводятся индексы x, y, z.

Линейные деформации x, y, z характеризуют изменения объема тела в процессе деформирования, а формоизменения тела угловыми деформациями. Для их определения рассмотрим прямой угол, образованный в недеформированном состоянии двумя отрезками ОD и ОС (рис. 1.5, б). При действии внешних сил указанный угол DOC изменится и примет новое значение DOC. Величина

( DOC DOC) = (1.7)

называется угловой деформацией, или сдвигом в точке О в плоскости СОD. Относительно координатных осей деформации сдвига обозначаются xy, xz, yz.

Совокупность линейных и угловых деформаций по различным направлениям и плоскостям в данной точке образует деформированное состояние в точке.

1.6 Закон Гука и принцип независимостидействия сил

Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам. Впервые указанная закономерность была высказана в 1776 году английским ученым Гуком и носит название закона Гука.

В соответствии с этим законом перемещение произвольно взятой точки А (рис. 1.5, а) нагруженного тела по некоторому направлению, например, по оси x, а может быть выражено следующим образом:

u = x P,(1.8)

где Р сила, под действием которой происходит перемещение u; x коэффициент пропорциональности между силой и перемещением.

Очевидно, что коэффициент x зависит от физикомеханических свойств материала, взаимного расположения точки А и точки приложения и направления силы Р, а также от геометрических особенностей системы. Таким образом, последнее выражение следует рассматривать как закон Гука для данной системы.

В современной трактовке закон Гука определяет линейную зависимость между напряжениями и деформациями, а не между силой и перемещением. Коэффициенты пропорциональности в этом случае представляют собой физикомеханические характеристики материала и уже не связаны с геометрическими особенностями системы в целом.

Системы, для которых соблюдается условие пропорциональности между перемещениями и внешними силами, подчиняются принципу суперпозиции, или принципу независимости действия сил.

В соответствии с этим принципом перемещения и внутренние силы, возникающие в упругом теле, считаются независящими от порядка приложения внешних сил. То есть, если к системе приложено несколько сил, то можно определить внутренние силы, напряжения, перемещения и деформации от каждой силы в отдельности, а затем результат действия всех сил получить как сумму действий каждой силы в отдельности. Принцип независимости действия сил является одним из основных способов при решении большинства задач механики линейных систем.

2. Растяжение и сжатие

2.1 Внутренние силы и напряжения

Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только нормальные силы, а прочие силовые факторы равны нулю.

Рассмотрим однородный прямолинейный стержень длиной l и площадью поперечного сечения F, на двух концах которого приложены две равные по величине и противоположно направленные центральные продольные силы Р (рис. 2.1, а). Поместим начало плоской системы координат yz в центре тяжести левого сечения, а ось z направим вдоль продольной оси стержня.

Для определения величин внутренних усилий воспользуемся методом сечений. Задавая некоторое сечение на расстояние z (0 z l) от начала системы координат и рассматривая равновесие левой относительно заданного сечения части стержня (рис. 2.1, б), приходим к следующему уравнению:

P + Nz = 0,

откуда следует, что

Nz = P = const.

Примем для Nz следующее правило знаков. Если Nz направлена от сечения, т.е. вызывает положительную деформацию (растяжение), то она считается положительной. В обратном случае отрицательной.

Рис. 2.1

Нормальная сила Nz приложена в центре тяжести сечения, является равнодействующей внутренних сил в сечении и, в соответствии с этим, определяется следующим образом:

.

Но из этой формулы нельзя найти закон распределения нормальных напряжений в поперечных сечениях стержня. Для этого обратимся к анализу характера его деформирования.

Если на боковую поверхность этого стержня нанести прямоугольную сетку (рис. 2.1, б), то после нагружения поперечные линии аа, bb и т.д. переместятся параллельно самим себе, откуда следует, что все поверхностные продольные волокна удлинятся одинаково. Если предположить также, что и внутренние волокна работают таким же образом, то можно сделать вывод о том, что поперечные сечения в центрально растянутом стержне смещаются параллельно начальным положениям, что соответствует гипотезе плоских сечений, введенной швейцарским ученым Д. Бернулли, гласящей, что плоские сечения до деформации остаются плоскими и после деформации.

Значит, все продольные волокна стержня находятся в одинаковых условиях, а следовательно, нормальные напряжения во всех точках поперечного сечения должны быть также одинаковы и равны

,

где F площадь поперечного сечения стержня.

Высказанное предположение о равномерном распределении внутренних сил в поперечном сечении справедливо для участков, достаточно удаленных от мест: резкого изменения площади поперечного сечения (рис. 2.1, в); скачкообразного изменения внешних нагрузок; скачкообразного изменения физико-механических характеристик конструкций. Основанием для такого утверждения служит принцип Сен-Венана, справедливый для любого типа напряженного состояния и формулируемый следующим образом: особенности приложения внешних нагрузок проявляются, как правило, на расстояниях, не превышающих характерных размеров поперечного сечения стержня.

2.2 Удлинение стержня и закон Гука

Рассмотрим однородный стержень с одним концом, жестко заделанным, и другим свободным, к которому приложена центральная продольная сила Р (рис. 2.2). До нагружения стержня его длина равнялась l после нагружения она стала равной l + l (рис. 2.2). Величину l называют абсолютным удлинением стержня.

Рис. 2.2

Если в нагруженном стержне напряженное состояние является однородным, т.е. все участки стержня находятся в одинаковых условиях, деформация остается одной и той же по длине стержня и равной

.(2.1)

Если же по длине стержня возникает неоднородное напряженное состояние, то для определения его абсолютного удлинения необходимо рассмотреть бесконечно малый элемент длиной dz (рис. 2.2). При растяжении он увеличит свою длину на величину dz и его деформация составит:

.(2.2)

В пределах малых деформаций при простом растяжении или сжатии закон Гука записывается в следующем виде:

= E .(2.3)

Величина Е представляет собой коэффициент пропорциональности, называемый модулем упругости материала первого рода. Из совместного рассмотрения уравнений (2.2) и (2.3) получим:

,

откуда с учетом того, что

и ,

окончательно получим:

.(2.4)

Если стержень изготовлен из однородного изотропного материала с Е = const, имеет постоянное поперечное сечение F = const и нагружен по концам силой Р, то из (2.4) получим

.(2.5)

При решении многих практических задач возникает необходимость, наряду с удлинениями, обусловленными действием механических нагрузок, учитывать также удлинения, вызванные температурным воздействием. В этом случае пользуются принципом независимости действия сил, и полные деформации рассматривают как сумму силовой и температурной деформаций:

,(2.6)

где коэффициент температурного расширения материала; t перепад температуры тела. Для однородного стержня, нагруженного по концам продольными силами Р и равномерно нагретого по длине, получим:

.(2.7)

2.3 Пример расчета (задача № 1)

Для стального бруса квадратного сечения сжатого силой Р с учетом собственного веса при исходных данных приведенных ниже, требуется (рис. 2.3, а):

1. Определить количество расчетных участков;

2. Составить аналитические выражения для нормальных сил Nz, нормальных напряжений z и вычислить их значения для каждого из участков с учетом их собственных весов;

3. Построить эпюры Nz и z ;

4. Вычислить перемещение верхнего конца колонны от действия силы Р и собственного веса.

Исходные данные: Р = 20 кН; l1 = l2 = l3 = 0,4 м; модуль упругости стали Е = 2,1108 кН/м2; F1 = 410-2 м2; F2 = 910-2 м2; F3 = 2510-2 м2; = 78 кН/м3.

Решение

1. Определение количества участков. Так как нормальная сила Nz зависит от величин внешних сил, в данном случае включающих в себя и собственный вес колонны, а последний, в свою очередь, от размеров поперечного сечения Fi и объемного веса , то границами участков следует назначать те сечения, в которых приложены внешние сосредоточенные силы и где происходит скачкообразное изменение площади поперечного сечения или объемного веса материалов конструкций.

Исходя из вышесказанного, учитывая const, брус будет иметь три участка:

1 участок от 0 до сечения В (где приложена сила Р);

2 участок от сечения В до сечения С;

3 участок от сечения С до сечения D.

Следует заметить, что при определении нормальных напряжений используются те же участки.

Составить аналитические выражения для нормальных сил Nz, нормальных напряжений z и вычислить их значения для каждого из участков, с учетом их собственных весов. Для этого воспользуемся методом сечений.

1 участок (0 В) 0 z1 0,4 м.

Проведя сечение 1 1 на расстоянии z1 от начала координат (точка 0), рассмотрим равновесие верхней части. При этом, к рассматриваемой части прикладываются в центре ее тяжести собственный вес и нормальная сила , заменяющую действие отброшенной нижней части бруса на верхнюю рассматриваемую (рис. 2.3, б). Составив уравнение равновесия рассматриваемой верхней части колонны по оси z, получим:

.

В свою очередь, собственный вес верхней части колонны определяется следующим образом:

кН.

Тогда выражение для нормальной силы будет иметь вид:

кН,

а для нормальных напряжений :

кН/м2.

Так как, и линейно зависят от z1, то для построения их графиков (эпюр) достаточно определить значения этих величин на границах участка, т.е.

при z1 = 0

при z1 = 0,4 мкН;

кН/м2.

Знаки минус при и указывают на то, что принятое направление для этих величин не совпадает с действительным, т. к. в принятой схеме продольная сила не растягивает, а сжимает первый участок.

2 участок (В С) 0,4 м z2 0,8 м.

Аналогично предыдущему проводим сечение 22 на расстоянии z2 (рис. 2.3, в). Для верхней части составляем уравнение равновесия z = 0.

В это уравнение войдут: собственный вес первого участка

Р1 = F1 l1

собственный вес отсеченной части второго участка

;

сосредоточенная сила Р = 20 кН, а также сила .

Тогда уравнение равновесия примет вид:

Р1 + + P + = 0,

Отсюда

= P F1 l1 = 20 78410-20,4 78910-2 (z2 0,4) = 7,02(z2 + 2,62678) кН.

Учитывая постоянство площади поперечного сечения на втором участке, выражение для нормального напряжения может быть записано таким образом:

кН/м2.

Вычислим значения ординат и в граничных сечениях второго участка:

при z2 = 0,4 м кН,

кН/м2;

при z2 = 0,8 м кН,

кН/м2.

3 участок (С D) 0,8 м z3 1,2 м.

Составив уравнение равновесия z = 0 (рис. 2.3, г) для верхней части бруса, получим:

Р1 + Р2 + + P + = 0,

Откуда

= P F1 l1 F2 l2 F3 (z3 l1 l2)= 20 78410-20,4 78910-2 0,4 782510-2 (z3 0,8) = 19,5(z3 + 0,43364) кН.

Выражение для напряжения:

кН/м2.

Вычислим значения ординат и в граничных сечениях третьего участка:

при z3 = 0,8 м(0,8) = 19,5 (0,8 + 0,43364) = 24,056 кН,

(0,8) = 78 (0,8 + 0,43364) = 96,224кН/м2;

при z3 = 1,2 м(1,2) = 19,5 (1,2 + 0,43364) = 31,856 кН,

кН/м2.

3. Построение эпюр Nz и z По причине линейной зависимости нормальной силы и напряжений от координаты z для построения их эпюр достаточно значений Nz и z в граничных сечениях каждого из участков (см. рис. 2.3, д, е). Необходимым условием правильности построения этих графиков является выполнение следующих требований:

скачок в эпюре Nz должен находиться в точке приложения сосредоточенного усилия и быть равным по величине значению этой силы;

скачки в эпюре z должны совпадать с точками приложения внешней силы Р и изменения площади поперечного сечения колонны.

После анализа полученных эпюр (рис. 2.3, д, е) легко можно убедиться, что построения выполнены правильно.

4. Вычисление перемещения верхнего конца колонны от действия всех сил. Полное перемещение согласно закону Гука может быть вычислено по формуле

.

В данном случае это выражение принимает следующий вид:

Так как величины определенных интегралов равны площадям, очерченным соответствующими подынтегральными функциями, то для вычисления перемещений li достаточно вычислить площади эпюры Nz на каждом из этих участков и разделить их на Ei Fi. Следовательно,

м.

2.4 Потенциальная энергия деформации

Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу А на соответствующих перемещениях. Одновременно с этим в упругом теле накапливается потенциальная энергия его деформирования U. При действии динамических внешних нагрузок часть работы внешних сил превращается в кинетическую энергию движения частиц тела К. Приняв энергетическое состояние системы до момента действия данных сил равным нулю, и в условиях отсутствия рассеивания энергии, уравнение баланса энергии можно записать в следующем виде:

А = U + K.(2.8)

При действии статических нагрузок К = 0, следовательно,

А = U.(2.9)

Это означает, что при статическом нагружении работа внешних сил полностью преобразуется в потенциальную энергию деформации. При разгрузке тела производится работа за счет потенциальной энергии деформации, накопленной телом. Таким образом, упругое тело является аккумулятором энергии. Это свойство упругого тела широко используется в технике, например, в заводных пружинах часовых механизмов, в амортизирующих рессорах и др. В случае простого растяжения (сжатия) для вывода необходимых расчетных зависимостей потенциальной энергии деформации рассмотрим решение следующей задачи.

На рис. 2.4, а изображен растягиваемый силой Р стержень, удлинение которого соответствует отрезку l, ниже показан график изменения величины удлинения стержня l в зависимости от силы Р (рис. 2.4, б). В соответствии с законом Гука этот график носит линейный характер.

Пусть некоторому значению силы Р соответствует удлинение стержня l. Дадим некоторое приращение силе Р соответствующее приращение удлинения составит d (l ). Тогда элементарная работа на этом приращении удлинения составит:

dA = (P + d P)d ( l ) = Pd ( l ) + d P d ( l ),(2.10)

вторым слагаемым, в силу его малости, можно пренебречь, и тогда

dA = Pd ( l ).(2.11)

Полная работа равна сумме элементарных работ, тогда, при линейной зависимости “нагрузка перемещение”, работа внешней силы Р на перемещении l будет равна площади треугольника ОСВ (рис. 2.4), т.е.

А = 0,5 Рl.(2.12)

В свою очередь, когда напряжения и деформации распределены по объему тела V равномерно (как в рассматриваемом случае) потенциальную энергию деформирования стержня можно записать в виде:

.(2.13)

Поскольку, в данном случае имеем, что V = F l, P = F и = Е , то

,(2.14)

т.е. подтверждена справедливость (2.9).

С учетом (2.5) для однородного стержня с постоянным поперечным сечением и при Р = const из (2.14) получим:

.(2.15)

2.5 Статически определимые и статическинеопределимые системы

Если при рассмотрении заданной системы, находящейся в равновесном состоянии от действия заданных внешних нагрузок, все реакции в связях закрепления, а также внутренние усилия в ее элементах, можно определить только по методу сечений, без использования дополнительных условий, то такая система называется статически определимой.

Сопоставление предела прочности хрупких материалов при растяжении с пределом прочности при сжатии показывают, что эти материалы обладают, как правило, более высокими прочностными показателями при сжатии, нежели при растяжении. Величина отношения для чугуна составляет 0.2 0.4, для керамических материалов 0.10.2. Для пластичных материалов установлено, что

Большое влияние на проявление свойств материалов оказывает скорость нагружения и температурное воздействие. При высокоскоростном нагружении более резко проявляются свойства хрупкости, а при медленном нагружении - свойства пластичности. Например, хрупкое стекло способно при длительном воздействии нагрузки в условиях нормальной температуры (+20оС) проявляет пластические свойства. Пластичные же материалы, такие, как малоуглеродистая сталь, при воздействии ударных нагрузок проявляет хрупкие свойства. В зависимости от указанных обстоятельств механические свойства материалов проявляются по-разному. Обобщенный анализ свойств материалов с учетом температуры и времени оказывается очень сложным. Функциональная зависимость между четырьмя параметрами , , температурой to и временем t, т.е.

не является адекватной и содержит в сложной форме дифференциальные и интегральные соотношения, входящих в нее величин.

Так как в обобщенной форме, точное аналитическое выражение функции f получить невозможно, то влияние температуры и фактора времени рассматривается в настоящее время применительно только к частным классам задач. Деление на классы производится как по характеру действия внешних сил так и по типу материалов, а также в зависимости от скорости нагружения.

Наиболее, изучаемыми в механике материалов, являются процессы происходящие при действии медленно изменяющихся (статических) нагрузок.

Скорость изменения этих нагрузок во времени настолько мала, что кинетическая энергия деформируемого тела, составляет незначительную долю от работы внешних сил. Поэтому работа внешних сил превращается только в упругую энергию и в необратимую тепловую энергию, связанную с пластическими деформациями тела.

При статических испытаниях материалов

в различных температурных режимах определяется зависимость механических характеристик материалов от температуры. Эта зависимость характеризует изменения внутрикристаллических и межкристаллических связей, а в некоторых случаях и структурными изменениями материалов. В общем случае с ростом температуры, прочностные характеристики материалов существенно падают. При этом, чем выше температура, тем труднее определить механические характеристики материалов. Происходит это не только потому, что возрастают сложности в технике эксперимента, но также вследствие того, что сама характеристика становится менее определенной.

При статическом нагружении, начиная с некоторых значений температур, фактор времени становится очень существенным. Для разных материалов это явление происходит при совершенно различных температурных режимах. Влияние фактора времени обнаруживается и при нормальных температурах. Для металлов его влияние, из-за незначительности, можно пренебречь. А для органических материалов даже при низких температурах время нагружения имеет существенное значения.

В заключение отметим наиболее важные свойства материалов которые обнаруживаются при их испытаниях. Эти свойства имеют фундаментальное значение при построении физических уравнений механики твердого деформируемого тела.

Упругость - это способность твердого деформируемого тела восстанавливать свою форму и объем после прекращения действия внешних нагрузок.

Пластичность - это свойство твердого деформируемого тела до разрушения необратимо изменять свою форму и объем от действия внешних сил.

Вязкость - это свойство оказывать сопротивление за счет трения происходящего при перемещении элементарных частиц тела относительно друг друга в процессе деформирования. Отметим, что при этом, как показывают результаты экспериментов, сила сопротивления, возникающая за счет внутреннего трения материалов, прямым образом зависит от величины скорости перемещения элементарных частиц относительно друг друга.

Упругость, пластичность и вязкость являются главными физическими свойствами твердого деформируемого тела.

Ползучесть - это явление характеризующееся изменения во времени величин деформаций и напряжений в теле при действии статических нагрузок.

Выносливость - при действии периодически изменяющихся по времени нагрузок, это явление, которое характеризуется чувствительностью и изменениями прочностных свойств материалов в зависимости от числа циклов нагружения.

В реальной практике встречаются такие конструкции при расчете которых одних лишь уравнений равновесия оказывается недостаточно, в связи с чем требуется формулирование дополнительных уравнений, связанных с условиями деформирования конструкции.

Системы, в которых количество наложенных связей больше, нежели число независимых уравнений равновесия, называются статически неопределимыми.

По сравнению со статически определимыми системами, в статически неопределимых системах имеются дополнительные связи, которые называются лишними.

Термин “лишние связи” является условным. Эти связи являются лишними с точки зрения расчетных предпосылок. В действительности эти связи создают дополнительные резервы для конструкций, как в плане обеспечения её жесткости, так и прочности.

На рис. 2.5, а изображен кронштейн, состоящий из двух стержней, шарнирно скрепленных между собой. В связи с тем, что на конструкцию действует лишь вертикальное усилие Р, а система является плоской (т.е. все элементы конструкции и вектор внешних сил лежат в одной плоскости), получается, что усилия в стержнях легко определяются из условий равновесия узла А, т.е.

x = 0, y = 0.(2.16)

Раскрывая эти уравнения, получаем замкнутую систему линейных уравнений относительно неизвестных усилий N1 и N2 в которой количество уравнений равно количеству неизвестных:

N1 N2 sin = 0; N2 cos Р = 0.

Рис. 2.5

Если конструкцию кронштейна усложнить, добавив еще один стержень (рис. 2.5, б), то усилия в стержнях N1, N2 и N3 прежним способом определить уже не удастся, т.к. при тех же двух уравнениях равновесия (2.16) имеются уже три неизвестных усилия в стержнях. В таких случаях говорят, что система один раз статически неопределима. Разность между числом неизвестных усилий и количеством независимых (значащих) уравнений равновесия, связывающих эти усилия, называется степенью статической неопределимости рассматриваемой системы.

В общем случае под nраз статически неопределимой системой понимается система, в которой число неизвестных внешних опорных реакций и внутренних усилий превышает число независимых и значащих уравнений равновесия на n единиц.

2.6 Напряженное и деформированное состояниепри растяжении и сжатии

Рассмотрим более подробно особенности напряженного состояния, возникающего в однородном растянутом стержне. Определим напряжения, возникающие на некоторой наклонной площадке, составляющей угол с плоскостью нормального сечения (рис. 2.6, а).

Рис. 2.6

Из условия z = 0, записанного для отсеченной части стержня (рис. 2.6, б), получим:

р F = F,(2.17)

где F площадь поперечного сечения стержня,

F = F/cos

площадь наклонного сечения. Из (2.17) легко установить:

р = сos .(2.18)

Раскладывая напряжение р по нормали и касательной к наклонной площадке (рис. 2.6, в), с учетом (2.18) получим:

= p cos = cos2 ; = p sin = sin 2 .(2.19)

Полученные выражения показывают, что для одной и той же точки тела величины напряжений, возникающих в сечениях, проходящих через эту точку, зависят от ориентации этой площадки, т.е. от угла . При = 0 из (2.19) следует, что = , = 0. При = , т.е. на продольных площадках, = = 0. Это означает, что продольные слои растянутого стержня не взаимодействуют друг с другом. Касательные напряжения принимают наибольшие значения при = , и их величина составляет max=. Важно отметить, как это следует из (2.19), что

.

Следовательно, в любой точке тела на двух взаимно перпендикулярных площадках касательные напряжения равны между собой по абсолютной величине. Это условие является общей закономерностью любого напряженного состояния и носит название закона парности касательных напряжений.

Теперь перейдем к анализу деформаций в растянутом стержне. Наблюдения показывают, что его удлинение в продольном направлении сопровождается пропорциональным уменьшением поперечных размеров стержня (рис. 2.7).

Рис. 2.7

Если обозначить:

прод = ;попер = , = ,

то, как показывают эксперименты, = const для данного материала и является безразмерным коэффициентом Пуассона. Величина является важной характеристикой материала и определяется экспериментально. Для реальных материалов принимает значения 0,1 0,45.

При растяжении стержня возникают не только линейные, но и угловые деформации.

Рассмотрим прямой угол АВС (рис. 2.8, а), образованный отрезками АВ и АС, в недеформированном состоянии.

Рис. 2.8

При растяжении стержня точки А, В и С займут положение А , B , C соответственно. Величина

= ВАС А B C

называется угловой деформацией или угловым сдвигом в точке А.

Совместим точки А и А и рассмотрим взаимное расположение отрезков АВ и А B (рис. 2.8, б). На этом рисунке отметим вспомогательные точки K и L и прямую n, перпендикулярную отрезку А B . Из рис. 2.8, б имеем:

прод = ;попер = ,

откуда с учетом прод = получим:

. (2.20)

Для определения спроектируем ломаную ВLB А на ось

n Ssin = BL cos ( + ) + LB sin( + ),

откуда, учитывая малость угла , т.е. sin , cos 1, получим:

= .(2.21)

В результате совместного рассмотрения (2.20) и (2.21) получим:

= .

Откуда

.

Следовательно,

.(2.22)

Сопоставляя выражение с выражением из (2.17) окончательно получим закон Гука для сдвига:

(2.23)

где величина

называется модулем сдвига или модулем упругости материала второго рода.

2.7 Основные механические характеристики материалов

Для количественной оценки основных свойств материалов, как

Рис. 2.9

правило, экспериментально определяют диаграмму растяжения в координатах и (рис. 2.9), На диаграмме отмечены характерные точки. Дадим их определение.

Наибольшее напряжение, до которого материал следует закону Гука, называется пределом пропорциональности П. В пределах закона Гука тангенс угла наклона прямой = f () к оси определяется величиной Е.

Упругие свойства материала сохраняются до напряжения У, называемого пределом упругости. Под пределом упругости У понимается такое наибольшее напряжение, до которого материал не получает остаточных деформаций, т.е. после полной разгрузки последняя точка диаграммы совпадает с начальной точкой 0.

Величина Т называется пределом текучести материала. Под пределом текучести понимается то напряжение, при котором происходит рост деформаций без заметного увеличения нагрузки. Если необходимо различать предел текучести при растяжении и сжатии Т соответственно заменяется на ТР и ТС. При напряжениях больших Т в теле конструкции развиваются пластические деформации П, которые не исчезают при снятии нагрузки.

Отношение максимальной силы, которую способен выдержать образец, к его начальной площади поперечного сечения носит название предела прочности, или временного сопротивления, и обозначается через, ВР (при сжатии ВС ).

В табл. 2 приводятся значения указанных характеристик (в кН/м2) наиболее распространенных конструкционных материалов.

Таблица 2

Материал

ТР

ТС

ВР

ВС

Е10-8

Сталь

250000

250000

390000

2

Чугун

140000

310000

150000

640000

0.7

Медь

250000

250000

320000

1.1

Алюминий

50000

50000

840000

0.75

При выполнении практических расчетов реальную диаграмму (рис. 2.9) упрощают, и с этой целью применяются различные аппроксимирующие диаграммы. Для решения задач с учетом упругопластических свойств материалов конструкций чаще всего применяется диаграмма Прандтля. По этой диаграмме напряжение изменяется от нуля до предела текучести по закону Гука

= Е ,

а далее при росте ,

= Т (рис. 2.10).

Способность материалов получать остаточные деформации носит название пластичности. На рис. 2.9 была представлена характерная диаграмма для пластических материалов.

Рис. 2.10Рис. 2.11

Противоположным свойству пластичности является свойство хрупкости, т.е. способность материала разрушаться без образования заметных остаточных деформаций. Материал, обладающий этим свойством, называется хрупким. К хрупким материалам относятся чугун, высокоуглеродистая сталь, стекло, кирпич, бетон, природные камни. Характерная диаграмма деформации хрупких материалов изображена на рис. 2.11.

2.8 Общие принципы расчета конструкции

В результате расчета нужно получить ответ на вопрос, удовлетворяет или нет конструкция тем требованиям прочности и жесткости, которые к ней предъявляются. Для этого необходимо прежде всего сформулировать те принципы, которые должны быть положены в основу оценки условий достаточной прочности и жесткости.

Наиболее распространенным методом расчета деталей машин и элементов сооружений на прочность является расчет по напряжениям. В основу этого метода положено предположение, что определяющим параметром надежности конструкции является напряжение или, точнее говоря, напряженное состояние в точке. Расчет выполняется в следующем порядке.

На основании анализа напряженного состояния конструкции выявляется та точка сооружения, где возникают наибольшие напряжения. Расчетная величина напряжений сопоставляется с предельно допустимой величиной напряжений для данного материала, полученной на основе предварительных лабораторных испытаний. Из сопоставления найденных расчетных напряжений и предельных напряжений делается заключение о прочности конструкции.

Указанный метод является не единственным. Например, на практике в некоторых случаях используется метод расчета конструкций по разрушающим нагрузкам. В этом методе путем расчета определяется предельная нагрузка, которую может выдержать конструкция, не разрушаясь и не изменяя существенно свою форму. Предельная (разрушающая) нагрузка сопоставляется с проектной нагрузкой, и на этом основании делается вывод о несущей способности конструкции в эксплуатационных условиях.

Методы расчета конструкций выбираются в зависимости от условий работы конструкций и требований, которые к ней предъявляются. Если необходимо добиться наименьших изменений формы конструкции, то производится расчет по допускаемым перемещениям. Это не исключает и одновременной проверки системы на прочность по напряжениям.

При расчете конструкций по напряжениям условие прочности записывается в виде:

max [],(2.24)

где max расчетное значение напряжения в точке, где возникают наибольшие напряжения, [] допускаемое напряжение.

Величина [] определяется по формуле:

.(2.25)

Здесь n число, большее единицы, называемое коэффициентом запаса по прочности. Для особо ответственных конструкций, для которых требуется не допускать возникновения пластических деформаций, за величину принимается = У. В тех случаях, когда допустимо возникновение пластических деформаций, как правило, принимается = Т. Для хрупких материалов, а в некоторых случаях и умеренно пластических материалов, принимается = В. Здесь В временное сопротивление материала.

Критерий прочности, принятый в методе допускаемых напряжений, а именно, напряжения в точке, не всегда и не полностью характеризует условие наступления разрушения конструкции. В ряде случаев за такой критерий целесообразнее принимать предельную нагрузку, которую может выдержать заданная система, не разрушаясь и несущественно изменяя свою форму.

При определении разрушающей нагрузки для конструкций из пластичного материала применяется схематизированная диаграмма напряжений диаграмма Прандтля (рис. 2.10). Схематизация диаграммы заключается в предположении, что материал на начальном этапе деформирования находится в упругой стадии вплоть до предела текучести, а затем материал обладает неограниченной площадкой текучести. Материал, работающий по такой диаграмме, называется идеально упругопластическим. Такая схематизированная диаграмма деформирования в большей степени соответствует действительной диаграмме деформирования материала, имеющего ярко выраженную площадку текучести, т.е. пластичным материалам (см. п. 2.7).

Если расчет конструкций ведется по предельной нагрузке, то определяющим является выполнение условия

Рmax [P ],(2.26)

где [P ] допускаемая сила, которая определяется по формуле:

,(2.27)

Здесь Р значение внешних нагрузок, при которых происходит разрушение конструкции; n1 коэффициент запаса.

В случае расчета конструкции на жесткость необходимо удовлетворять условию

u [u],(2.28)

где u и [u] расчетное и предельно допустимое значения перемещения.

2.9 Пример расчета (задача № 2)

Абсолютно жесткий брус АЕ (рис. 2.12, а), имеющий одну шарнирно неподвижную опору С и прикрепленный в точках В, Д и Е тремя тягами из упругопластического материала, нагружен переменной по величине силой Р. Площадь поперечного сечения тяг F1, F2, F3, модуль упругости и предел текучести материала тяг Е = 2105 МПа, Т = 240 МПа. Допускаемое напряжение

[]=,

где коэффициент запаса прочности n принят равным 1,5.

Требуется:

1. Найти усилия в тягах, реакцию опоры С и угловое смещение (поворот бруса вокруг точки С) как функции от величины силы Р;

2. Определить в процессе увеличения нагрузки Р такую ее величину, при которой напряжение в одной из тяг достигает предела текучести;

3. Определить в процессе увеличения нагрузки Р ее предельную величину, при которой напряжения в трех тягах достигнут предела текучести, реакцию опоры С и соответствующий этому предельному состоянию угол;

4. Найти величины несущей способности конструкции из расчетов по методам допускаемых напряжений и разрушающих нагрузок при одном и том же коэффициенте запаса прочности. Сопоставить результаты и сделать вывод.

Дано: F1 = 2104 м2; F2 = 1104 м2; F3 = 2104 м2; a = 2 м; b = 1 м; c = 1 м; d = 2 м; l1 = 1 м; l2 = 1 м; l3 = 1,2 м.

Решение

1. Найти усилия в тягах, реакции в опоре С и угловое смещение (поворот бруса вокруг т. С), как функции от величины силы Р. Для определения величин усилий в тягах в зависимости от Р применим метод сечений. Сделав сечение по всем тягам и приложив в местах сечений усилия N1, N2 и N3, возникающие в тягах, рассмотрим равновесие оставшейся части, нагруженной продольными усилиями в тягах N1, N2 и N3 реакциями опоры С (RC и HC) и силой Р (рис. 2.12, б). Составив уравнения равновесия статики для оставшейся части, получим:

1) z = 0,НC = 0;(2.29)

2) y = 0,Р + N1 + RC N2 N3 = 0;(2.30)

3) MC = 0,Р3 + N11 + N21 + N33 = 0.(2.31)

Рис. 2.12

Из уравнений равновесия видно, что система дважды статически неопределима, т.к. два уравнения равновесия (2.30) и (2.31) содержат в своем составе четыре неизвестных. Поэтому для решения задачи необходимо составить два дополнительных уравнения совместности деформаций, раскрывающих статическую неопределимость системы.

Для составления дополнительных уравнений рассмотрим деформированное состояние системы (рис. 2.12, в), имея в виду, что брус абсолютно жесткий и поэтому после деформации тяг останется прямолинейным.

Эти дополнительные уравнения совместности деформаций получим из подобия треугольников ВСВ1DCD1 и BCB1ECE1:

и .

Решая эти уравнения, получим:

(2.32)

.(2.33)

Выразив деформации тяг по формуле определения абсолютного удлинения:

и подставив эти значения в уравнения (2.32) и (2.33), получим:

(2.34)

.(2.35)

Подставив найденные значения N2 и N3 в уравнение (2.31) определяем величину N1:

P3 + N11 + 0,5N11 + 2,5N13 = 0; N1=0,3333P.

Зная N1, из уравнений (2.34) и (2.35), находим N2 и N3:

.

Опорную реакцию RC определяем из уравнения (2.30), подставив найденные значения N1, N2 и N3:

-P + 0,333P + RC 0,167P 0,833P = 0; RC = 1,667P.

После определения величин усилий в тягах N1, N2, N3 и реакции RC необходимо проверить правильность их вычисления. Для этого составим уравнение равновесия статики МA = 0:

N1a RC (a + b) + N2 (a + b + c) + N3 (a + b + c + d) = 0;

0 = 0.

Следовательно, N1, N2, N3 и RC определены правильно.

Угловое смещение бруса (угол ), ввиду его малости, находим как тангенс угла наклона бруса АЕ:

[рад].

2. Определить в процессе увеличения нагрузки Р такую ее величину, при которой напряжение в одной из тяг достигнет предела текучести. Для вычисления величины Р, при которой напряжение в одной из тяг достигнет предела текучести T, определим нормальные напряжения, возникающие в тягах, учитывая то, что тяги работают на растяжение:

Полученные величины напряжений показывают, что в тяге 3 напряжение достигнет предела текучести раньше, чем в тягах 1 и 2, так как 3 1 и 3 2. Поэтому, приравняв напряжение 3 пределу текучести T, определим величину Р, при которой нормальное напряжение в тяге 3 достигнет предела текучести T:

кПа,

Откуда

кН.

3. Определить в процессе увеличения нагрузки Р ее предельную величину, при которой напряжения в трех тягах достигнут предела текучести, реакцию опоры С и соответствующий этому предельному состоянию угол. При исчерпании несущей способности всех тяг напряжения в них достигнут предела текучести T. В этом случае предельные усилия, которые возникнут в тягах, будут равны:

= F1T = 210-424104 = 48 кH;

= F2 T = 110-424104 = 24 кH;

= F3T = 210-424104 = 48 кH.

Предельную величину внешней нагрузки, соответствующую исчерпанию несущей способности, найдем из уравнения (2.31), подставив в него предельные значения , , :

PПР 3 + 481 + 241 + 483 = 0;PПР = кН.

Предельную величину реакции определяем из уравнения (2.30):

72 + 48 + 24 48 = 0; = 96 кН.

При определении наименьшего угла поворота бруса, соответствующего предельному состоянию системы, необходимо знать, в какой из тяг текучесть наступит позже.


Подобные документы

  • Расчет стержня на кручение. Механизм деформирования стержня с круглым поперечным сечением. Гипотеза плоских сечений. Метод сопротивления материалов. Касательные напряжения, возникающие в поперечном сечении бруса. Жесткость стержня при кручении.

    презентация [515,8 K], добавлен 11.10.2013

  • Изгиб вызывается внешними силами, направленными перпендикулярно продольной оси стержня, а также парами внешних сил, плоскость действия которых проходит через эту ось. Внутренние силы в поперечных сечениях изгибаемых стержней определяются методом сечений.

    реферат [1,1 M], добавлен 13.01.2009

  • Расчеты значения продольной силы и нормального напряжения для ступенчатого стального бруса. Центральные моменты инерции сечения. Построение эпюры поперечных сил и изгибающих моментов от расчетной нагрузки. Определение несущей способности деревянной балки.

    контрольная работа [1,8 M], добавлен 01.02.2011

  • Зависимость свойств материалов от вида напряженного состояния. Критерии пластичности и разрушения. Испытание на изгиб. Изучение механических состояний в зависимости от степени деформирования. Задачи теорий пластичности и прочности. Касательное напряжение.

    презентация [2,7 M], добавлен 10.12.2013

  • Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.

    контрольная работа [1,1 M], добавлен 06.08.2013

  • Изучение свойств материалов, установления величины предельных напряжений. Условный предел текучести. Механические характеристики материалов. Испытание на растяжение, сжатие, кручение, изгиб хрупких материалов статической нагрузкой. Измерение деформаций.

    реферат [480,5 K], добавлен 16.10.2008

  • Чистый сдвиг и его особенности. Мембранная аналогия при кручении. Потенциальная энергия при упругих деформациях кручения. Деформация при сдвиге. Кручение тонкостенного бруса замкнутого профиля. Стержни, работающие на кручение за пределами упругости.

    контрольная работа [1,3 M], добавлен 11.10.2013

  • Методика, содержание и порядок выполнения расчетно-графических работ. Расчеты на прочность при растяжении, кручении, изгибе. Расчет бруса на осевое растяжение. Определение размеров сечений балок. Расчет вала на совместное действие изгиба и кручения.

    методичка [8,4 M], добавлен 24.11.2011

  • Сущность статических испытаний материалов. Способы их проведения. Осуществление испытания на растяжение, на кручение и изгиб и их значение в инженерной практике. Проведение измерения твердости материалов по Виккерсу, по методу Бринеля, методом Роквелла.

    реферат [871,2 K], добавлен 13.12.2013

  • Анализ поведения материала при проведении испытания на растяжение материала и до разрушения. Основные механические характеристики пропорциональности, текучести, удлинения, прочности, упругости и пластичности материалов металлургической промышленности.

    лабораторная работа [17,4 K], добавлен 12.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.