Сопротивление материалов

Задачи, методы сопротивления материалов. Внутренние силы и напряжения, кручение, изгиб. Геометрические характеристики поперечных сечений бруса. Расчет статически неопределимых систем методом сил. Основы теории упругости, пластичности. Пластины и оболочки.

Рубрика Производство и технологии
Вид курс лекций
Язык русский
Дата добавления 10.10.2011
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Из условий закрепления балки при z = 0 имеем: y0 = 0; М0=0.

Подставляя числовые значения, получим:

.

В данном выражении неизвестно 0. Из условия закрепления балки при

z = b + c + e

имеем, что y = 0. Вычисляя прогиб на правом конце балки и приравнивая его к нулю, получим уравнение для определения 0:

.

Отсюда E I 0 = 20,84 кНм2. Теперь выражение для определения прогибов будет иметь вид:

.

Соответственно, выражение для определения углов поворота будет:

.

С помощью этих выражений определяем yD и D:

кHм3.

кНм2.

Вычисляем жесткость сечения (Е = 2108 кН/м2):

кНм2.

Тогда, окончательно,

рад.

Перемещение точки D происходит вниз, а сечение поворачивается по часовой стрелке.

5.9 Косой изгиб

Под косым изгибом понимается такой случай изгиба, при котором плоскость изгибающего момента не совпадает ни с одной из главных осей поперечного сечения (рис. 5.27, а). Косой изгиб удобнее всего рассмотреть как одновременный изгиб бруса относительно главных осей x и y поперечного сечения бруса. Для этого общий вектор изгибающего момента М, действующего в поперечном сечении бруса, раскладывается на составляющие момента относительно этих осей (рис. 5.27, б):

Mx = Msin; My = Mcos.(5.25)

Введем следующее правило знаков для моментов Mx и My момент считается положительным, если в первой четверти координатной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.

Рис. 5.27

На основании принципа независимости действия сил нормальное напряжение в произвольной точке, принадлежащей к поперечному сечению бруса и имеющей координаты x, y, определяется суммой напряжений, обусловленных моментами Mx и My, т.е.

.(5.26)

Подставляя выражения Mx и My из (5.25) в (5.26), получим:

.

Из курса аналитической геометрии известно, что последнее выражение представляет собой уравнение плоскости. Следовательно, если в каждой точке сечения отложить по нормали вектор напряжения , то концы векторов образуют геометрическое место точек, принадлежащих одной плоскости, как и при поперечном изгибе.

Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, найдем, полагая в (5.26) = 0:

.

Откуда определяется:

.(5.27)

Поскольку свободный член в (5.27) равен нулю нейтральная линия всегда проходит через начало координат. Как видно из выражения (5.26), эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении возникают в точках наиболее удаленных от нейтральной линии. В том случае, когда сечение имеет простую форму (прямоугольник, круг), положение наиболее опасных точек легко определяется визуально. Для сечений, имеющих сложную форму, необходимо применить графический подход.

Далее покажем, что при косом изгибе нейтральная линия не перпендикулярна к плоскости действия изгибающего момента, как это всегда выполнялось при поперечном изгибе. Действительно угловой коэффициент K1 следа момента (рис. 5.27, б) равен:

K1 = tg .(5.28)

Угловой же коэффициент нейтральной линии, как это следует из (5.27), определяется выражением:

tg = K2 .(5.29)

Так как в общем случае Ix Iy, то условие перпендикулярности прямых, известное из аналитической геометрии, не соблюдается, поскольку K1 . Брус, образно выражаясь, предпочитает изгибаться не в плоскости изгибающего момента, а в некоторой другой плоскости, где жесткость на изгиб будет минимальной.

5.10 Пример расчета (задача № 11)

Стальная балка АВ, расчетная схема и поперечное сечение которой показаны на рис. 5.28, а, (c = 0,03 м) нагружена силами Р1 и Р2. Требуется:

1. Построить эпюры изгибающих моментов в главных плоскостях инерции;

2. Установить по эпюрам изгибающих моментов опасное сечение балки. Найти для опасного сечения положение нулевой линии;

3. Вычислить наибольшие растягивающие и сжимающие нормальные напряжения;

4. Определить значение полного прогиба в середине пролета балки и указать его направление.

Решение

1. Построить эпюры изгибающих моментов в главных плоскостях инерции. Ввиду симметричности сечения балки относительно осей x и y (рис. 5.28, а), можно сделать вывод, что эти оси главные. Для построения эпюр изгибающих моментов, используя принцип независимости действия сил, представим косой изгиб как изгиб в двух главных плоскостях инерции бруса (рис. 5.28, б, г). Определив опорные реакции, составим аналитические выражения изгибающих моментов и вычислим их значения в характерных сечениях. Построим эпюры изгибающих моментов Mx и My (рис. 5.28, в, г), откладывая ординаты со стороны растянутых волокон. В соответствии с принятым правилом знаков (п. 5.9), Mx < 0, My > 0.

2. Установить по эпюрам изгибающих моментов опасное сечение балки. Найти для опасного сечения положение нулевой линии. Сравнивая ординаты эпюр Mx и My, делаем вывод, что опасными могут быть сечения D или С, т.к. в них предположительно возникают наибольшие по величине изгибающие моменты. Для того, чтобы установить, какое из них является наиболее опасным, нужно вычислить возникающие в сечениях C и D наибольшие нормальные напряжения и сравнить их. Теоретически доказано, что если контур поперечного сечения так вписывается в прямоугольник, что четыре крайние точки сечения совпадают с углами прямоугольника, то максимальное нормальное напряжение будет в одном из углов прямоугольника и определится по формуле:

,

где все величины берутся по абсолютной величине. У нас именно такой случай. Осевые моменты инерции сечения вычислим по следующим зависимостям:

м4;

м4.

Моменты сопротивления сечения Wx и Wy определятся следующим образом:

м3;

м3.

Таким образом, наибольшие напряжения в сечениях С и D равны:

сечение С

кПа = 10,29 МПа;

сечение D

кПа = 10,38 МПа.

Рис. 5.29

Сравнивая эти значения, заключаем опасным является сечение D. Подставив значения Ix, Iy, Mx, My в формулу (5.29) получим:

= 0,535, откуда 28,17.

Нулевая линия пройдет в тех четвертях поперечного сечения, в которых изгибающие моменты будут вызывать нормальные напряжения разных знаков. В нашем случае это будут первая и третья четверти. Поэтому, отложив угол 28,17 от оси x против хода часовой стрелки, проведем нулевую линию (рис. 5.29).

3. Вычислить наибольшие растягивающие и сжимающие нормальные напряжения. Вершины стрелок нормальных напряжений, определяемых по формуле (5.26) будут лежать на плоскости, пересекающей плоскость поперечного сечения по нулевой линии. При взгляде на плоскость напряжений вдоль нулевой линии мы увидим ее в виде прямой, ординаты которой показаны в виде эпюры на рис. 5.29. Наибольшие нормальные напряжения будут иметь место в точках 2 и 4 и различаться только знаком. Действительно, подставляя в формулу (5.26) координаты точек 2 и 4, получаем:

точка 2

10385 кН/м2 10,38 МПа;

точка 4

10385 кН/м2 10,38МПа.

Отложив в удобном масштабе полученные величины напряжений, построим эпюру напряжений (рис. 5.29).

4. Определить значение полного прогиба в середине пролета балки и указать его направление. Полный прогиб (перемещение центра тяжести сечения С) вычисляем по формуле:

,

где проекции полного прогиба на главные оси. Эти величины можно определить методом начальных параметров. Начало координат поместим на левом конце балки в точке А.

Прогиб в плоскости x0z. Начальные параметры:

кН.

Составим выражение прогибов fx (z) с помощью универсального уравнения упругой линии балки:

.(5.30)

Величину 0 определим из условия, что при fx (l) = 0. Подставляя в выражение (5.30) z = l = 4 м, получим:

;

.

Окончательно выражение прогибов fx (z) будет иметь вид:

.(5.31)

Для определения прогиба в середине пролета подставим z == 0,5l = 2 м в выражение (5.31):

кНм3.

Учитывая, что Е = 2108 кН/м2 и Iy = 891108 м4, получаем:

м = 7,4510-4 м.

Прогиб в плоскости y0z. Начальные параметры:

кН.

Выражение для прогибов fy (z) получаем с помощью метода начальных параметров:

.(5.32)

Подставляя z = l = 4 м в выражение (5.32) и учитывая, что в т. В прогиб равен нулю, получаем уравнение для определения 0:

,

Откуда

.

Окончательно выражение для прогибов fy (z) будет иметь вид:

.(5.33)

Для определения прогиба в середине пролета подставим z = 0,5 l = 2 м в выражение (5.33):

кНм3;

м = 0,64104 м.

Определим величину модуля вектора полного прогиба

м.

Направление вектора полного прогиба показано на рис. 5.30. При этом, угол определим по формуле:

; = 40,5.

5.11 Внецентренное растяжение и сжатие

Внецентренное сжатие и растяжение как и косой изгиб относится к сложному виду сопротивления бруса. При внецентренном растяжении (сжатии) равнодействующая внешних сил не совпадает с осью бруса, как при простом растяжении, а смещена относительно оси z и параллельна ей (рис. 5.31).

Пусть в точке А(xA, yA ) приложена равнодействующая внешних сил Р. Тогда относительно главных осей x и y равнодействующая сила Р вызывает моменты:

Mx = PyA ; My = PxA.(5.34)

Таким образом, при внецентренном растяжении (сжатии) в поперечном сечении бруса возникает нормальная сила Nz= P и изгибающие моменты Mx и My. Следовательно, на основании принципа независимости действия сил в произвольной точке В с координатами x, y нормальное напряжение определяется следующим выражением:

.(5.35)

Используя выражения для квадратов радиусов инерции сечения:

можно (5.35) преобразовать к следующему виду:

Уравнение нейтральной линии получим, приравнивая нулю выражение для нормальных напряжений :

.(5.36)

Из (5.36) можно легко определить отрезки, которые отсекает нейтральная линия на координатных осях. Если приравнять x = 0, то получим:

.

где ay координата точки пересечения нейтральной линии и оси y.

Решая это уравнение, получим:

.

Аналогичным образом можно определить координату пересечения нейтральной линии и оси x:

.

Можно решить и обратную задачу определить координаты приложения силы Р при заданных отрезках аx и аy. Опуская простейшие выкладки, приведем окончательные выражения:

.

Наибольшее напряжения, как и при косом изгибе, имеют место в точке наиболее удаленной от нейтральной линии. При внецентренном растяжении (сжатии) в отличие от косого изгиба нейтральная линия не проходит через центр тяжести сечения. Расстояние от начала координат x0y до прямой a

y + b x + c = 0,

как известно из курса аналитической геометрии, определяется по формуле:

.

Следовательно, в данном случае (рис. 5.32):

Рис. 5.32

(5.37)

Тогда, как это следует из (5.37), по мере того, как точка приложения силы приближается к центру тяжести сечения, нейтральная линия удаляется от него.

При xA 0, yA 0, получаем 0 C . Сила в данном случае становится центральной, а напряжения в этом случае распределены по сечению равномерно. В тех случаях, когда нейтральная линия пересекает сечение, в нем возникают напряжения разного знака. В противном случае в сечении во всех точках возникают напряжения одного знака. Следовательно, в окрестности центра тяжести всегда существует некая область, называемая ядром сечения, такая, что если точка приложения силы Р расположена в пределах указанной области, то в поперечном сечении возникают напряжения лишь одного знака. При этом если сила приложена по границе ядра сечения, то нейтральная линия касается контура сечения.

Данный факт имеет большое значение при проектировании колонн из хрупких материалов, (например, бетона, кирпича и т.д.), которые, как правило, имеют существенно меньшую прочность на растяжение, нежели на сжатие. Поэтому при проектировании таких конструкций необходимо предусмотреть, чтобы равнодействующая сжимающая сила была расположена в пределах ядра сечения.

5.12 Пример расчета (задача № 12)

На брус заданного поперечного сечения (a = 1,05 м, b = 1 м, с = 0,15 м, d = 0,2 м) в точке D верхнего торца действует продольная сила Р = 150 кН (рис. 5.33). Требуется:

1. Найти положение нулевой линии;

2. Определить наибольшие (растягивающие и сжимающие) напряжения;

3. Построить ядро сечения.

Решение

1. Найти положение нулевой линии.

1.1 Нахождение положения главных центральных осей. Так как поперечное сечение бруса (рис. 5.33) имеет две оси симметрии xС и yС, то они и будут главными центральными осями инерции. Площадь поперечного сечения бруса равна:

м2.

1.2 Определение главных центральных моментов инерции и главных радиусов инерции. Моменты инерции определяем по формулам:

521,6104 м;

м4.

Вычисляем квадраты главных радиусов инерции:

м2 ;

м2.

1.3 Определение положения нулевой линии. Отрезки, отсекаемые нулевой линией на главных центральных осях инерции, определяем по формулам:

м;

м,

где xP = 0,525 м и yP = 0,5 м координаты точки приложения силы Р (точка D на рис. 5.33). Отложив отрезки и , соответственно, на осях xC и yC, и проведя через их концы прямую, получим нулевую линию сечения, т.е. геометрическое место точек, где нормальные напряжения равны нулю ( = 0). На рис. 5.33 эта линия обозначена nn.

2. Определить наибольшие (растягивающие и сжимающие) напряжения. Точка D, координаты которой xD = 0,525 м и yD = 0,5 м, наиболее удалена от нулевой линии в сжатой зоне сечения, поэтому наибольшие сжимающие напряжения возникают в ней и определяются по формуле:

1,436 кН/м2.

Наибольшие растягивающие напряжения возникают в точке К, имеющей координаты xK = 0,525 м и yK = 0,5 м:

0,996 кН/м2.

По полученным значениям D и К строим эпюру нормальных напряжений (рис. 5.33).

3. Построить ядро сечения. Для построения ядра симметричного сечения рассмотрим два положения касательной к контуру сечения II и IIII (рис. 5.33). Отрезки, отсекаемые касательной II на осях координат, равны:

= ; = 0,5 м.

Координаты граничной точки I ядра сечения определяются по формулам:

м.

Касательная IIII отсекает отрезки = 0,525 м, = .

Соответственно, координаты граничной точки 2:

.

Координаты граничных точек второй половины ядра сечения можно не определять, т.к. сечение бруса симметричное. Учитывая это, для касательных IIIIII, IVIV координаты граничных точек 3 и 4 будут:

м;.

Соединив последовательно точки 1, 2, 3 и 4 прямыми, получим ядро рассматриваемого сечения (рис. 5.33).

5.13 Теории прочности

Как показывают экспериментальные исследования, прочность материалов существенно зависит от вида напряженного состояния. В общем случае нагруженного тела напряженное состояние в какойлибо точке вполне может быть определено величиной напряжений в трех координатных плоскостях, проходящих через эту точку. При произвольном выборе положения координатных плоскостей, в каждой из них, вообще говоря, имеются и нормальные, и касательные напряжения. Для них вводятся соответствующие обозначения в плоскости xy: zz, zx, zy ; в плоскости xz: yy, yx, yz; в плоскости yz: xx, xy, xz. Здесь первый индекс показывает ориентацию площадки, в которой действует напряжение, т.е. какой из координатных осей она перпендикулярна. Второй индекс указывает направление напряжения по координатной оси.

В каждой точке тела существуют три взаимно перпендикулярные плоскости, свободные от касательных напряжений, носящие название главных площадок. Нормальные напряжения в этих площадках называются главными напряжениями и обозначаются 1, 2, 3. При этом всегда 1 > 2 > 3. Заметим, что более подробно вопросы теории напряженного состояния в точке обсуждены в десятом разделе настоящей книги, и по данному вопросу имеется обширная литература.

Напряженные состояния разделяются на три группы. Напряженное состояние называется: а) объемным или трехосным, если все главные напряжения 1, 2, 3 не равны нулю; б) плоским или двухосным, если одно из трех главных напряжений равно нулю; в) одномерным или одноосным, если два из трех главных напряжений равны нулю.

Основной задачей теории прочности является установление критерия прочности, позволяющего сравнить между собой опасность различных напряженных состояний материала.

Выбранный критерий прочности должен быть обоснован на основе экспериментальных данных путем проведения испытаний различных материалов в зависимости от вида напряженного состояния, как функция от соотношений между значениями главных напряжений.

Заметим, что, так как в настоящее время строгой единой теории прочности материалов, в зависимости от вида напряженного состояния, не существует, поэтому при выполнении практических расчетов применяются упрощенные критерии.

Как отмечалось в п. 2.8, наиболее распространенным и наглядным критерием проверки конструкций на прочность, при простейших случаях напряженного состояния (сжатиерастяжение, кручение, чистый изгиб), является выполнение условия:

max ,(5.38)

где max максимальное расчетное значение напряжения, возникающее в наиболее опасной точке конструкции; допускаемое значение напряжения для материала конструкции.

В настоящее время при выполнении расчетов конструкций на прочность, при произвольных напряженных состояниях, широко используются три теории прочности.

Согласно первой теории критерием прочности является ограничение главного максимального напряжения:

max = 1 ,(5.39)

где предельное напряжение, полученное из опытов на одноосное растяжение.

Основным недостатком этой теории является не учет двух других главных напряжений.

В основу второй теории прочности заложена гипотеза о том, что критерием оценки работы конструкции является ограничение наибольшего удлинения. В формулировке данного положения через главные напряжения (1 и 2 ) это условие для плоского напряженного состояния записывается следующим образом:

1 2 ,

где напряжение, при котором было вызвано предельное удлинение образца в опытах на одноосное растяжение; коэффициент бокового расширения.

При объемном напряженном состоянии вторая теория прочности записывается в виде:

1 (2 3) ,(5.40)

Экспериментальная проверка не всегда подтверждает правильность теории прочности наибольших линейных деформаций при простых нагружениях, т.е. при чистом растяжении или чистом сдвиге. Однако до настоящего времени эта теория имела широкое применение при выполнении инженерных расчетов..

В основу третьей теории прочности заложена гипотеза о том, что причиной разрушения материалов являются сдвиговые деформации, происходящие на площадках максимальных касательных напряжений, т.е.

max < ,(5.41)

где max расчетное максимальное касательное напряжение, возникающее в опасной точке нагруженного тела; предельное значение касательного напряжения, полученное из опытов.

Для плоского напряженного состояния по третьей теории условие прочности записывается в виде:

1 2 < .(5.42)

В случае поперечного изгиба балки (2 = 0), если выразить главные напряжения 1 и 3 через и , то условие прочности (5.42) преобразуется в виде:

,(5.43)

где R расчетное сопротивление материала балки при изгибе.

5.14 Пример расчета (задача № 13)

Дан пространственный консольный брус с ломаным очертанием осевой линии, нагруженный сосредоточенной силой Р = 1 кН и равномерно распределенной нагрузкой q = 2 кН/м. На рис. 5.34, а этот брус показан в аксонометрии в соответствии с прямоугольной системой координат xyz. Вертикальный элемент бруса имеет поперечное сечение в виде круга диаметром d = 0,06 м (рис. 5.34, в), горизонтальные элементы бруса имеют поперечные сечения в виде прямоугольника (рис. 5.34, б). Ширина сечения b = d = 0,06 м, а высота сечения c = 0,5 d = 0,03 м. Ориентация главных осей поперечных сечений на каждом участке показана на рис. 5.34, г.

Требуется:

1. Построить в аксонометрии эпюры Mx, My, Mz, Nz, Qx, Qy ;

2. Указать вид сопротивления для каждого участка бруса;

3. Определить максимальные напряжения в опасном сечении каждого участка от внутренних усилий Nz, Mx, My и Mz (касательными напряжениями от Qx и Qy можно пренебречь);

4. Проверить прочность при расчетном сопротивлении R = 180 МПа.

Решение

1. Построить в аксонометрии эпюры Mx, My, Mz, Nz, Qx, Qy. Заметим, что так как заданная система пространственная, при произвольном характере нагружения, в опорном сечении, где установлена заделка, возникает шесть опорных реакций (три опорные силы и три момента). Для определения опорных реакций, в данном случае, можем применить шесть уравнений равновесия статики. Так как число независимых уравнений равновесия равно числу опорных реакций, то можно сделать вывод, что рассматриваемая система в виде ломаного бруса, с заделанным одним концом, является статически определимой. Поэтому рассматриваемая система разрешима по методу сечений. Далее, учитывая особенности конструкции, определение величин внутренних усилий можно осуществить без предварительного вычисления величин опорных реакций.

Стальная балка АВ, расчетная схема и поперечное сечение которой показаны на рис. 5.28, а, (c = 0,03 м) нагружена силами Р1 и Р2. Требуется:

1. Построить эпюры изгибающих моментов в главных плоскостях инерции;

2. Установить по эпюрам изгибающих моментов опасное сечение балки. Найти для опасного сечения положение нулевой линии;

3. Вычислить наибольшие растягивающие и сжимающие нормальные напряжения;

4. Определить значение полного прогиба в середине пролета балки и указать его направление.

5.10 Пример расчета (задача № 11)

Решение

1. Построить эпюры изгибающих моментов в главных плоскостях инерции. Ввиду симметричности сечения балки относительно осей x и y (рис. 5.28, а), можно сделать вывод, что эти оси главные. Для построения эпюр изгибающих моментов, используя принцип независимости действия сил, представим косой изгиб как изгиб в двух главных плоскостях инерции бруса (рис. 5.28, б, г). Определив опорные реакции, составим аналитические выражения изгибающих моментов и вычислим их значения в характерных сечениях. Построим эпюры изгибающих моментов Mx и My (рис. 5.28, в, г), откладывая ординаты со стороны растянутых волокон. В соответствии с принятым правилом знаков (п. 5.9), Mx < 0, My > 0.

2. Установить по эпюрам изгибающих моментов опасное сечение балки. Найти для опасного сечения положение нулевой линии. Сравнивая ординаты эпюр Mx и My, делаем вывод, что опасными могут быть сечения D или С, т.к. в них предположительно возникают наибольшие по величине изгибающие моменты. Для того, чтобы установить, какое из них является наиболее опасным, нужно вычислить возникающие в сечениях C и D наибольшие нормальные напряжения и сравнить их. Теоретически доказано, что если контур поперечного сечения так вписывается в прямоугольник, что четыре крайние точки сечения совпадают с углами прямоугольника, то максимальное нормальное напряжение будет в одном из углов прямоугольника и определится по формуле:

,

где все величины берутся по абсолютной величине. У нас именно такой случай. Осевые моменты инерции сечения вычислим по следующим зависимостям:

м4;

м4.

Моменты сопротивления сечения Wx и Wy определятся следующим образом:

м3;

м3.

Таким образом, наибольшие напряжения в сечениях С и D равны:

сечение С

кПа = 10,29 МПа;

сечение D

кПа = 10,38 МПа.

Рис. 5.29

Сравнивая эти значения, заключаем опасным является сечение D. Подставив значения Ix, Iy, Mx, My в формулу (5.29) получим:

= 0,535, откуда 28,17.

Нулевая линия пройдет в тех четвертях поперечного сечения, в которых изгибающие моменты будут вызывать нормальные напряжения разных знаков. В нашем случае это будут первая и третья четверти. Поэтому, отложив угол 28,17 от оси x против хода часовой стрелки, проведем нулевую линию (рис. 5.29).

3. Вычислить наибольшие растягивающие и сжимающие нормальные напряжения. Вершины стрелок нормальных напряжений, определяемых по формуле (5.26) будут лежать на плоскости, пересекающей плоскость поперечного сечения по нулевой линии. При взгляде на плоскость напряжений вдоль нулевой линии мы увидим ее в виде прямой, ординаты которой показаны в виде эпюры на рис. 5.29. Наибольшие нормальные напряжения будут иметь место в точках 2 и 4 и различаться только знаком. Действительно, подставляя в формулу (5.26) координаты точек 2 и 4, получаем:

точка 2

10385 кН/м2 10,38 МПа;

точка 4

10385 кН/м2 10,38МПа.

Отложив в удобном масштабе полученные величины напряжений, построим эпюру напряжений (рис. 5.29).

4. Определить значение полного прогиба в середине пролета балки и указать его направление. Полный прогиб (перемещение центра тяжести сечения С) вычисляем по формуле:

,

где проекции полного прогиба на главные оси. Эти величины можно определить методом начальных параметров. Начало координат поместим на левом конце балки в точке А.

Прогиб в плоскости x0z. Начальные параметры:

кН.

Составим выражение прогибов fx (z) с помощью универсального уравнения упругой линии балки:

.(5.30)

Величину 0 определим из условия, что при fx (l) = 0. Подставляя в выражение (5.30) z = l = 4 м, получим:

;

.

Окончательно выражение прогибов fx (z) будет иметь вид:

.(5.31)

Для определения прогиба в середине пролета подставим z == 0,5l = 2 м в выражение (5.31):

кНм3.

Учитывая, что Е = 2108 кН/м2 и Iy = 891108 м4, получаем:

м = 7,4510-4 м.

Прогиб в плоскости y0z. Начальные параметры:

кН.

Выражение для прогибов fy (z) получаем с помощью метода начальных параметров:

.(5.32)

Подставляя z = l = 4 м в выражение (5.32) и учитывая, что в т. В прогиб равен нулю, получаем уравнение для определения 0:

,

Откуда

.

Окончательно выражение для прогибов fy (z) будет иметь вид:

.(5.33)

Для определения прогиба в середине пролета подставим z = 0,5 l = 2 м в выражение (5.33):

кНм3;

м = 0,64104 м.

Определим величину модуля вектора полного прогиба

м.

Направление вектора полного прогиба показано на рис. 5.30. При этом, угол определим по формуле:

; = 40,5.

5.11 Внецентренное растяжение и сжатие

Внецентренное сжатие и растяжение как и косой изгиб относится к сложному виду сопротивления бруса. При внецентренном растяжении (сжатии) равнодействующая внешних сил не совпадает с осью бруса, как при простом растяжении, а смещена относительно оси z и параллельна ей (рис. 5.31).

Пусть в точке А(xA, yA ) приложена равнодействующая внешних сил Р. Тогда относительно главных осей x и y равнодействующая сила Р вызывает моменты:

Mx = PyA ; My = PxA.(5.34)

Таким образом, при внецентренном растяжении (сжатии) в поперечном сечении бруса возникает нормальная сила Nz= P и изгибающие моменты Mx и My. Следовательно, на основании принципа независимости действия сил в произвольной точке В с координатами x, y нормальное напряжение определяется следующим выражением:

.(5.35)

Используя выражения для квадратов радиусов инерции сечения:

можно (5.35) преобразовать к следующему виду:

Уравнение нейтральной линии получим, приравнивая нулю выражение для нормальных напряжений :

.(5.36)

Из (5.36) можно легко определить отрезки, которые отсекает нейтральная линия на координатных осях. Если приравнять x = 0, то получим:

.

где ay координата точки пересечения нейтральной линии и оси y.

Решая это уравнение, получим:

.

Аналогичным образом можно определить координату пересечения нейтральной линии и оси x:

.

Можно решить и обратную задачу определить координаты приложения силы Р при заданных отрезках аx и аy. Опуская простейшие выкладки, приведем окончательные выражения:

.

Наибольшее напряжения, как и при косом изгибе, имеют место в точке наиболее удаленной от нейтральной линии. При внецентренном растяжении (сжатии) в отличие от косого изгиба нейтральная линия не проходит через центр тяжести сечения. Расстояние от начала координат x0y до прямой a y + b x + c = 0, как известно из курса аналитической геометрии, определяется по формуле:

.

Следовательно, в данном случае (рис. 5.32):

Рис. 5.32

(5.37)

Тогда, как это следует из (5.37), по мере того, как точка приложения силы приближается к центру тяжести сечения, нейтральная линия удаляется от него.

При xA 0, yA 0, получаем 0 C . Сила в данном случае становится центральной, а напряжения в этом случае распределены по сечению равномерно. В тех случаях, когда нейтральная линия пересекает сечение, в нем возникают напряжения разного знака. В противном случае в сечении во всех точках возникают напряжения одного знака. Следовательно, в окрестности центра тяжести всегда существует некая область, называемая ядром сечения, такая, что если точка приложения силы Р расположена в пределах указанной области, то в поперечном сечении возникают напряжения лишь одного знака. При этом если сила приложена по границе ядра сечения, то нейтральная линия касается контура сечения.

Данный факт имеет большое значение при проектировании колонн из хрупких материалов, (например, бетона, кирпича и т.д.), которые, как правило, имеют существенно меньшую прочность на растяжение, нежели на сжатие. Поэтому при проектировании таких конструкций необходимо предусмотреть, чтобы равнодействующая сжимающая сила была расположена в пределах ядра сечения.

5.12 Пример расчета (задача № 12)

На брус заданного поперечного сечения (a = 1,05 м, b = 1 м, с = 0,15 м, d = 0,2 м) в точке D верхнего торца действует продольная сила Р = 150 кН (рис. 5.33). Требуется:

1. Найти положение нулевой линии;

2. Определить наибольшие (растягивающие и сжимающие) напряжения;

3. Построить ядро сечения.

Решение

1. Найти положение нулевой линии.

1.1. Нахождение положения главных центральных осей. Так как поперечное сечение бруса (рис. 5.33) имеет две оси симметрии xС и yС, то они и будут главными центральными осями инерции. Площадь поперечного сечения бруса равна:

м2.

1.2 Определение главных центральных моментов инерции и главных радиусов инерции. Моменты инерции определяем по формулам:

521,6104 м;

м4.

Вычисляем квадраты главных радиусов инерции:

м2 ;

м2.

1.3 Определение положения нулевой линии. Отрезки, отсекаемые нулевой линией на главных центральных осях инерции, определяем по формулам:

м;

м,

где xP = 0,525 м и yP = 0,5 м координаты точки приложения силы Р (точка D на рис. 5.33). Отложив отрезки и , соответственно, на осях xC и yC, и проведя через их концы прямую, получим нулевую линию сечения, т.е. геометрическое место точек, где нормальные напряжения равны нулю ( = 0). На рис. 5.33 эта линия обозначена nn.

2. Определить наибольшие (растягивающие и сжимающие) напряжения. Точка D, координаты которой xD = 0,525 м и yD = 0,5 м, наиболее удалена от нулевой линии в сжатой зоне сечения, поэтому наибольшие сжимающие напряжения возникают в ней и определяются по формуле:

=1,436 кН/м2.

Наибольшие растягивающие напряжения возникают в точке К, имеющей координаты xK = 0,525 м и yK = 0,5 м:

=0,996 кН/м2.

По полученным значениям D и К строим эпюру нормальных напряжений (рис. 5.33).

3. Построить ядро сечения. Для построения ядра симметричного сечения рассмотрим два положения касательной к контуру сечения II и IIII (рис. 5.33). Отрезки, отсекаемые касательной II на осях координат, равны:

= ; = 0,5 м.

Координаты граничной точки I ядра сечения определяются по формулам:

м.

Касательная IIII отсекает отрезки = 0,525 м, = .

Соответственно, координаты граничной точки 2:

.

Координаты граничных точек второй половины ядра сечения можно не определять, т.к. сечение бруса симметричное. Учитывая это, для касательных IIIIII, IVIV координаты граничных точек 3 и 4 будут:

м;.

Соединив последовательно точки 1, 2, 3 и 4 прямыми, получим ядро рассматриваемого сечения (рис. 5.33).

5.13 Теории прочности

Как показывают экспериментальные исследования, прочность материалов существенно зависит от вида напряженного состояния. В общем случае нагруженного тела напряженное состояние в какойлибо точке вполне может быть определено величиной напряжений в трех координатных плоскостях, проходящих через эту точку. При произвольном выборе положения координатных плоскостей, в каждой из них, вообще говоря, имеются и нормальные, и касательные напряжения. Для них вводятся соответствующие обозначения в плоскости xy: zz, zx, zy ; в плоскости xz: yy, yx, yz; в плоскости yz: xx, xy, xz. Здесь первый индекс показывает ориентацию площадки, в которой действует напряжение, т.е. какой из координатных осей она перпендикулярна. Второй индекс указывает направление напряжения по координатной оси.

В каждой точке тела существуют три взаимно перпендикулярные плоскости, свободные от касательных напряжений, носящие название главных площадок. Нормальные напряжения в этих площадках называются главными напряжениями и обозначаются 1, 2, 3. При этом всегда 1 > 2 > 3. Заметим, что более подробно вопросы теории напряженного состояния в точке обсуждены в десятом разделе настоящей книги, и по данному вопросу имеется обширная литература.

Напряженные состояния разделяются на три группы. Напряженное состояние называется: а) объемным или трехосным, если все главные напряжения 1, 2, 3 не равны нулю; б) плоским или двухосным, если одно из трех главных напряжений равно нулю; в) одномерным или одноосным, если два из трех главных напряжений равны нулю.

Основной задачей теории прочности является установление критерия прочности, позволяющего сравнить между собой опасность различных напряженных состояний материала.

Выбранный критерий прочности должен быть обоснован на основе экспериментальных данных путем проведения испытаний различных материалов в зависимости от вида напряженного состояния, как функция от соотношений между значениями главных напряжений.

Заметим, что, так как в настоящее время строгой единой теории прочности материалов, в зависимости от вида напряженного состояния, не существует, поэтому при выполнении практических расчетов применяются упрощенные критерии.

Как отмечалось в п. 2.8, наиболее распространенным и наглядным критерием проверки конструкций на прочность, при простейших случаях напряженного состояния (сжатиерастяжение, кручение, чистый изгиб), является выполнение условия:

max ,(5.38)

где max максимальное расчетное значение напряжения, возникающее в наиболее опасной точке конструкции; допускаемое значение напряжения для материала конструкции.

В настоящее время при выполнении расчетов конструкций на прочность, при произвольных напряженных состояниях, широко используются три теории прочности.

Согласно первой теории критерием прочности является ограничение главного максимального напряжения:

max = 1 ,(5.39)

где предельное напряжение, полученное из опытов на одноосное растяжение.

Основным недостатком этой теории является не учет двух других главных напряжений.

В основу второй теории прочности заложена гипотеза о том, что критерием оценки работы конструкции является ограничение наибольшего удлинения. В формулировке данного положения через главные напряжения (1 и 2 ) это условие для плоского напряженного состояния записывается следующим образом:

1 2 ,

где напряжение, при котором было вызвано предельное удлинение образца в опытах на одноосное растяжение; коэффициент бокового расширения.

При объемном напряженном состоянии вторая теория прочности записывается в виде:

1 (2 3) ,(5.40)

Экспериментальная проверка не всегда подтверждает правильность теории прочности наибольших линейных деформаций при простых нагружениях, т.е. при чистом растяжении или чистом сдвиге. Однако до настоящего времени эта теория имела широкое применение при выполнении инженерных расчетов..

В основу третьей теории прочности заложена гипотеза о том, что причиной разрушения материалов являются сдвиговые деформации, происходящие на площадках максимальных касательных напряжений, т.е.

max < ,(5.41)

где max расчетное максимальное касательное напряжение, возникающее в опасной точке нагруженного тела; предельное значение касательного напряжения, полученное из опытов.

Для плоского напряженного состояния по третьей теории условие прочности записывается в виде:

1 2 < .(5.42)

В случае поперечного изгиба балки (2 = 0), если выразить главные напряжения 1 и 3 через и , то условие прочности (5.42) преобразуется в виде:

,(5.43)

где R расчетное сопротивление материала балки при изгибе.

5.14 Пример расчета (задача № 13)

Дан пространственный консольный брус с ломаным очертанием осевой линии, нагруженный сосредоточенной силой Р = 1 кН и равномерно распределенной нагрузкой q = 2 кН/м. На рис. 5.34, а этот брус показан в аксонометрии в соответствии с прямоугольной системой координат xyz. Вертикальный элемент бруса имеет поперечное сечение в виде круга диаметром d = 0,06 м (рис. 5.34, в), горизонтальные элементы бруса имеют поперечные сечения в виде прямоугольника (рис. 5.34, б). Ширина сечения b = d = 0,06 м, а высота сечения c = 0,5 d = 0,03 м. Ориентация главных осей поперечных сечений на каждом участке показана на рис. 5.34, г.

Требуется:

1. Построить в аксонометрии эпюры Mx, My, Mz, Nz, Qx, Qy ;

2. Указать вид сопротивления для каждого участка бруса;

3. Определить максимальные напряжения в опасном сечении каждого участка от внутренних усилий Nz, Mx, My и Mz (касательными напряжениями от Qx и Qy можно пренебречь);

4. Проверить прочность при расчетном сопротивлении R = 180 МПа.

Решение

1. Построить в аксонометрии эпюры Mx, My, Mz, Nz, Qx, Qy. Заметим, что так как заданная система пространственная, при произвольном характере нагружения, в опорном сечении, где установлена заделка, возникает шесть опорных реакций (три опорные силы и три момента). Для определения опорных реакций, в данном случае, можем применить шесть уравнений равновесия статики. Так как число независимых уравнений равновесия равно числу опорных реакций, то можно сделать вывод, что рассматриваемая система в виде ломаного бруса, с заделанным одним концом, является статически определимой. Поэтому рассматриваемая система разрешима по методу сечений. Далее, учитывая особенности конструкции, определение величин внутренних усилий можно осуществить без предварительного вычисления величин опорных реакций.

6. Расчет статически неопределимыхсистем методом сил

6.1 Стержневые системы.Степень статической неопределимости

Под стержневой системой понимается всякая конструкция, состоящая из элементов, имеющих форму бруса. Если элементы конструкции работают только на растяжение или сжатие система называется фермой (рис. 6.1). Ферма состоит из шарнирно опертых между собой прямых стержней, образующих треугольники и для нее характерно приложение внешних сил в узлах заданной системы.

Если элементы стержней системы работают в основном на изгиб или кручение, то такая система называется рамой (рис. 6.2).

Если все элементы стержневой системы расположены в одной плоскости, в которой также действуют все внешние силы, включая реакции опор, то система называется плоской (рис. 6.1, 6.2).

Если все элементы заданной системы расположены в одной плоскости, а внешние силы действуют в перпендикулярной плоскости, то система называется плоскопространственной (рис. 6.3). Стержневые системы, не относящиеся к двум указанным категориям, называются пространственными (рис. 6.4).

Все стержневые системы принято разделять на статически определимые и статически неопределимые. Под статически определимой понимается такая система, для которой усилия во всех ее элементах могут быть определены по методу сечений с применением лишь уравнений равновесия. Если этого сделать нельзя, то такая система называется статически неопределимой.

Разность между числом неизвестных усилий (реакций опор и внутренних силовых факторов) и числом независимых уравнений равновесий, которые могут быть составлены для рассматриваемой системы, называется степенью статической неопределимости системы.

Связи, наложенные на систему, бывают внешними и внутренними. Под внешними понимают ограничения, накладываемые на абсолютные перемещения точек системы, как единое целое. Внутренние же связи ограничивают взаимные (относительные) перемещения элементов системы. Следовательно, статическая неопределимость системы может быть вызвана как внешними, так и внутренними связями.

Если рассматривать внешние связи, то можно отметить, что положение жесткого тела на плоскости x,y характеризуется тремя независимыми параметрами координатами x, y и углом поворота рассматриваемой плоскости. Таким образом, необходимое для равновесия число наложенных внешних связей должно быть равно трем (по количеству уравнений равновесия x = 0, y = 0, m = 0). Если плоская система состоит из D частей, каждую из которых можно рассматривать как жесткое тело, то количество параметров, определяющих положение этой системы будет равно 3 D. Каждый шарнир, соединяющий две части системы, разрешает лишь их взаимный поворот, устраняя возможность их взаимных смещений следовательно он уменьшает количество возможных перемещений системы на две единицы. Кроме этого, каждый опорный стержень устраняет возможность перемещения системы в соответствующем направлении. Таким образом, подсчитать степень статической неопределимости системы, определяемую внешними связями, можно по следующей формуле:

W = 3 D 2 Ш С,

где D число частей (“дисков”) системы, каждая из которых может рассматриваться как абсолютно жесткое тело, Ш количество шарниров в системе, соединяющих “диски”, С число опорных стержней. Для статически определимых систем W =0. При W<0 система является статически неопределимой.

Наиболее характерные типы внешних связей и их схематичные изображения рассмотрены в п. 5.1.

На рис. 6.5 показана плоская рама, имеющая в первом (а) случае три внешние связи, а во втором случае (б) пять. Значит, в первом случае рама имеет необходимое для статической определимости количество внешних связей, а во втором же две дополнительные внешние связи. Однако в обеих ситуациях рама статически неопределима, т.к. конфигурация ее такова, что не позволяет определить усилия во всех ее элементах, используя только уравнения равновесия. Следовательно, для окончательного ответа на вопрос о статической определимости системы необходимо проведение совместного анализа наложенных на систему внешних и внутренних связей (более подробно этот вопрос рассматривается в курсе строительной механики).

Рис. 6.5

Методы расчета статически неопределимых систем основаны на определении перемещений в ее точках. Выше мы рассматривали метод начальных параметров для вычисления перемещений в балках. При всех достоинствах этого метода он обладает одним существенным недостатком при большом количестве участков вычислительные формулы становятся весьма громоздкими. Особенно это существенно в случае криволинейной оси стержневой системы.

В связи с этим, рассмотрим более универсальный метод определения перемещений метод Мора, названный так по имени немецкого ученого, предложившего его.

6.2 Определение перемещений методом Мора

Суть метод Мора в следующем. Если необходимо определить перемещение в заданной точке по заданному направлению, то наряду с заданной системой внешних сил в этой точке прикладывается внешнее усилие Ф = 1 в интересующим нас направлении.

Далее составляется выражение потенциальной энергии системы, состоящей из n участков с учетом одновременного действия заданной системы внешних сил и силы Ф:

(6.1)

,

где Кх, Ку безразмерные величины, зависящие от геометрической формы сечения и учитывают неравномерность распределения касательных напряжений в сечении при поперечном изгибе. Так, например, для прямоугольника Кх = Ку = 1,2, а для двутавра при изгибе в плоскости его стенки

K = F/FCT,

где F площадь всего сечения двутавра, FCT площадь стенки; Nz, Qx, Qy, Mz, Mx, My внутренние силовые факторы, возникающие в поперечных сечениях заданной стержневой системы; внутренние силовые факторы, возникающие в поперечных сечениях заданной системы, от действия усилия Ф = 1.

Дифференцируя выражение (6.1) по Ф, и полагая после этого Ф = 0, находим искомое перемещение в искомой точке в нужном направлении.

.(6.2)

Полученные интегралы называются интегралами Мора и широко применяются при вычислении перемещений стержневых систем.

Для систем, элементы которых работают на растяжение или сжатие (например, шарнирностержневые системы фермы), в формуле Мора (6.2) отличен от нуля будет только слагаемое, содержащее продольные силы. При расчете балок или рамных систем, работающих в основном на изгиб, влияние поперечной и продольной силы на перемещение несущественно и в большинстве случаев их влияние не учитывается. В случае пространственной работы стержня или стержневой системы, элементы которой работают, в основном, на изгиб и кручение, в формуле Мора обычно ограничиваются рассмотрением слагаемых, содержащих изгибающие и крутящие моменты.

Подробно рассмотрим случай, когда брус работает только на изгиб (Mx 0, Nz = Mz = My = Qx = Qy = 0). В этой ситуации выражение (6.2) принимает вид:

.(6.3)

Согласно (6.3) для определения перемещения произвольной точки в произвольном направлении, последовательно необходимо выполнять следующее:

1. Построить эпюру моментов Мx от заданной системы внешних сил;

2. Исключая внешние силы и в точке, где необходимо определить перемещение по заданному направлению, прикладывается единичное усилие (сила если требуется определить линейное перемещение; момент если требуется определить угловое перемещение), и от действия единичного усилия строится эпюра моментов ;

3. По формуле Мора (6.3) вычисляется искомое перемещение.

Рис. 6.6

Если принять E I = const, то перемещение в некоторой точке стержня определяется как интеграл от произведения двух функций моментов Мx и . В общем виде интеграл Мора можно выразить следующей формулой:

. (6.4)

Часто встречаются случаи, когда на участке стержня длиной l необходимо вычислить интеграл Мора при условии, что по крайней мере одна из функций линейная (рис. 6.6). Пусть

f2 = b + k z,

тогда из (6.4) получим:

(6.5)

где 1 площадь эпюры f1 ; f2 (zC) ордината линейной эпюры под центром тяжести криволинейной эпюры (рис. 6.6).

Приведенное решение носит имя русского ученого Верещагина, впервые его получившего. Таким образом, по способу Верещагина операция интегрирования выражения (6.4) в случае линейности хотя бы одной из подынтегральных функций существенно упрощается и сводится к перемножению площади криволинейной эпюры на ординату второй (линейной) функции под центром тяжести криволинейной.

Используя способ Верещагина, приведем результаты вычисления интегралов Мора для двух наиболее часто встречающихся случаев:

1. Обе функции f1 и f2 линейные (рис. 6.7), тогда

;(6.6)

2. Функция f1 квадратная парабола, f2 линейная функция (рис. 6.8). Такая ситуация встречается, когда на участке длиной l приложена равномерно распределенная нагрузка q, тогда

,(6.7)

где f “стрелка” квадратной параболы (рис. 6.8),

.

В общем случае, если площадь эпюры моментов имеет сложную геометрию и представляется возможным ее разбить на площади k (k = 1,2,3,...), имеющие элементарную геометрию, то интеграл Мора I от произведения эпюры на эпюру моментов M, может быть представлен в виде:

.(6.8)

Для расчета усилий в статически неопределимых стержневых системах существуют различные методы. Здесь рассмотрим метод сил.

6.3 Метод сил

Суть этого метода заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и внутренних, а их действие заменяется соответствующими силами и моментами. Их величины, в дальнейшем, подбираются так, чтобы перемещения системы соответствовали тем бы ограничениям, которые на нее накладываются отброшенными связями.

Система, освобожденная от дополнительных связей, становится статически определимой. Она носит название основной системы. Для каждой статически неопределимой заданной системы (рис. 6.9, а) можно подобрать, как правило, различные основные системы (рис. 6.9, б, в), однако их должно объединять следующее условие основная система должна быть статически определимой и геометрически неизменяемой (т.е. не должна менять свою геометрию без деформаций элементов).

Рис. 6.9

Рассмотрим систему, которая дважды статически неопределима (рис. 6.10, а). Заменим в основной системе действие отброшенных связей неизвестными усилиями X1 и X2 (рис. 6.10, б). Принятая основная система будет работать также, как и заданная, если на нее наложить условие отсутствия вертикальных перемещений в точках A и B (т.е. в тех местах, где в заданной системе стоят опоры):

(6.9)

Рис. 6.10

Уравнения (6.9) называются уравнениями совместности деформаций и при их выполнении фактически устанавливается условие эквивалентности между заданной и основной системой при действии внешней силы Р и неизвестных усилий X1 и X2. На основании принципа независимости действия сил (6.9) можно представить в следующем виде:

(6.10)

где yA(P), yB(P), yA(X1), yB(X1), yA(X2), yB(X2) вертикальные перемещения точек А и В основной системы соответственно от действия сил Р, Х1, Х2.

Вводя обозначения 11, 12, 1P вертикальные перемещения точки А основной системы, соответственно, от последовательного действия сил X1 = 1, X2 = 1, от внешней силы Р; 21, 22, 2P вертикальные перемещения точки B основной системы, соответственно, от последовательного действия сил X1 = 1, X2 = 1, от внешней силы Р, и учитывая существование линейности связи между силой и перемещением, систему уравнений (6.3) можно преобразовать в канонической форме:

(6.11)

Последние уравнения носят названия канонических уравнений метода сил.

Для вычисления коэффициентов при неизвестных X1 и X2 используют формулу Мора:

, (i, j = 1,2).(6.12)

Легко видеть, что , это свойство называется законом парности коэффициентов при неизвестных. Свободные же коэффициенты определяются по формуле:

.(6.13)

После решения системы (6.11) определяются величины неизвестных усилий X1 и X2. Если их значения получились отрицательными, это означает, что реально они действуют в направлении противоположном принятому. Окончательная эпюра моментов определяется по зависимости

.(6.14)

Эпюра поперечных сил QOK может быть построена по эпюре моментов МОК с использованием зависимости

и величин приложенных к системе усилий.

6.4 Пример расчета (задача № 14)

Для балки (рис. 6.11) задано: l1 = 2 l2, P = q l1, m = q.

Рис. 6.11

Требуется:

1. Определить степень статической неопределимости системы и составить уравнение совместности деформаций;

2. Определить коэффициенты и решить каноническое уравнение метода сил;

3. Построить эпюры моментов М и поперечных сил Q.

Решение

1. Определить степень статической неопределимости системы и составить уравнение совместности деформаций. Используя зависимость W из пункта 6.1, подсчитаем степень статической неопределимости системы. D = 1, Ш = 0, С = 4 W = 31 20 4= 1, следовательно система один раз статически неопределима. Основную систему получим путем отбрасывания опоры в точке А и замены ее действия неизвестным усилием X1 (рис. 6.12). Каноническое уравнение метода сил в данном случае запишется в следующем виде:

Рис. 6.12

11 X1 + 1P = 0.

2. Определить коэффициенты и решить каноническое уравнение метода сил. От силы X1 строим эпюру M1 (рис. 6.13). Для определения величины 11 воспользуемся выражением (6.12). Фактически эпюру M1 нужно умножить саму на себя и проинтегрировать это произведение:

Для определения свободного коэффициента в каноническом уравнении строим в основной системе эпюру моментов MP от внешней нагрузки (рис. 6.14) и в соответствии с (6.7) получаем:

При вычислении 1P было учтено, что эпюры М1 и МP имеют разный знак, т.к. вызывают растяжение разных волокон об этом говорит отрицательный знак при 1P. Кроме этого, криволинейный участок в эпюре МP был представлен как разность трапеции и параболического сегмента.

Напишем уравнение совместности деформаций в виде

E I 11 X1 + E I 1P = 0,

и, подставляя найденные величины перемещений, получим:

, откуда X1 =.

3. Построить эпюры изгибающих моментов и поперечных сил. Окончательную эпюру изгибающих моментов получим по формуле:


Подобные документы

  • Расчет стержня на кручение. Механизм деформирования стержня с круглым поперечным сечением. Гипотеза плоских сечений. Метод сопротивления материалов. Касательные напряжения, возникающие в поперечном сечении бруса. Жесткость стержня при кручении.

    презентация [515,8 K], добавлен 11.10.2013

  • Изгиб вызывается внешними силами, направленными перпендикулярно продольной оси стержня, а также парами внешних сил, плоскость действия которых проходит через эту ось. Внутренние силы в поперечных сечениях изгибаемых стержней определяются методом сечений.

    реферат [1,1 M], добавлен 13.01.2009

  • Расчеты значения продольной силы и нормального напряжения для ступенчатого стального бруса. Центральные моменты инерции сечения. Построение эпюры поперечных сил и изгибающих моментов от расчетной нагрузки. Определение несущей способности деревянной балки.

    контрольная работа [1,8 M], добавлен 01.02.2011

  • Зависимость свойств материалов от вида напряженного состояния. Критерии пластичности и разрушения. Испытание на изгиб. Изучение механических состояний в зависимости от степени деформирования. Задачи теорий пластичности и прочности. Касательное напряжение.

    презентация [2,7 M], добавлен 10.12.2013

  • Расчет закрепленного вверху стального стержня, построение эпюры продольных усилий, перемещений поперечных сечений бруса. Выбор стальной балки двутаврового поперечного сечения. Построение эпюры крутящих, изгибающих моментов в двух плоскостях для вала.

    контрольная работа [1,1 M], добавлен 06.08.2013

  • Изучение свойств материалов, установления величины предельных напряжений. Условный предел текучести. Механические характеристики материалов. Испытание на растяжение, сжатие, кручение, изгиб хрупких материалов статической нагрузкой. Измерение деформаций.

    реферат [480,5 K], добавлен 16.10.2008

  • Чистый сдвиг и его особенности. Мембранная аналогия при кручении. Потенциальная энергия при упругих деформациях кручения. Деформация при сдвиге. Кручение тонкостенного бруса замкнутого профиля. Стержни, работающие на кручение за пределами упругости.

    контрольная работа [1,3 M], добавлен 11.10.2013

  • Методика, содержание и порядок выполнения расчетно-графических работ. Расчеты на прочность при растяжении, кручении, изгибе. Расчет бруса на осевое растяжение. Определение размеров сечений балок. Расчет вала на совместное действие изгиба и кручения.

    методичка [8,4 M], добавлен 24.11.2011

  • Сущность статических испытаний материалов. Способы их проведения. Осуществление испытания на растяжение, на кручение и изгиб и их значение в инженерной практике. Проведение измерения твердости материалов по Виккерсу, по методу Бринеля, методом Роквелла.

    реферат [871,2 K], добавлен 13.12.2013

  • Анализ поведения материала при проведении испытания на растяжение материала и до разрушения. Основные механические характеристики пропорциональности, текучести, удлинения, прочности, упругости и пластичности материалов металлургической промышленности.

    лабораторная работа [17,4 K], добавлен 12.01.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.