Синхронный двигатель
Сущность, назначение и область применения синхронных машин. Устройство синхронного двигателя с возбуждением от постоянных магнитов. Особенности конструкции и принцип действия синхронного двигателя. Особенности пуска двигателей с постоянными магнитами.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 15.12.2010 |
Размер файла | 522,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Содержание
1. Введение
2. Назначение и область применения
3. Устройство
4. Принцип работы синхронной машины
5. Особенности пуска двигателей с постоянными магнитами
1. Введение
Применение постоянных магнитов в магнитных системах синхронных машин так же, как и в других типах электрических машин, обусловлено стремлением уменьшить габариты и вес машины, упростить конструкцию, увеличить к.п.д., повысить надежность в эксплуатации.
Постоянные магниты в синхронных машинах предназначены для создания магнитного поля возбуждения, причем для этого могут применяться постоянные магниты, комбинированные с электромагнитами, по катушкам которых протекает постоянный ток. Использование комбинированного возбуждения позволяет получить требуемые регулировочные характеристики по напряжению и частоте вращения при значительно уменьшенной мощности возбуждения и объеме магнитной системы по сравнению с классическими электромагнитными системами возбуждения синхронных машин.
В настоящее время постоянные магниты применяются при мощности синхронных машин до одного или нескольких киловольт-ампер. По мере создания с постоянных магнитов с улучшенными характеристиками, мощности машин возрастают.
2. Назначение и область применения
Синхронные машины, являются машинами переменного тока. Применяются в качестве двигателя и генератора.
Синхронные двигатели применяются в основном в приводах большой мощности. Мощность их достигает нескольких десятков мегаватт. На тепловых станциях, металлургических заводах, шахтах, Холодильниках приводят в движение насосы, и другие механизмы, работающие с неизменной скоростью. Синхронные двигатели могут работать с различной реактивной мощностью. Таким образом, Эти двигатели позволяют улучшить коэффициент мощности предприятия. Однако стоимость приводов с синхронным двигателями выше, чем с асинхронными.
Специальные двигатели малой мощности используют в устройствах, где строгое постоянство скорости, электрочасы, автоматические самопишущие приборы, устройства с программным управлением и др.
На крупных подстанциях электрических систем устанавливают специальные синхронные машины, работающие в режиме холостого хода и отдающие в сеть только реактивную мощность, которая необходима для асинхронных двигателей. Эти машины называют синхронными компенсаторами.
3. Устройство синхронного двигателя с возбуждением от постоянных магнитов
Изобретение относится к области использования трехфазных синхронных машин для выработки электроэнергии. Устройство состоит из расположенных на одном валу трехфазного синхронного двигателя и трехфазного синхронного генератора, которые выполнены с возбуждением от постоянных магнитов. Ротор и статор двигателя и генератора имеют явно выраженные полюса. Обмотки статора намотаны вокруг полюсов статора. Постоянные магниты возбуждения в двигателе и генераторе размещены в спинках ротора между его полюсами. В центре полюсов ротора генератора находятся плоские компенсационные постоянные магниты, размещенные в плоскостях, проходящих через ось генератора.
На фиг.1 приняты следующие обозначения:
1 - “спинка” статора (СС)
2 - полюса статора (ПС)
3 - обмотки статора (ОС)
4 - полюса ротора (ПР)
5 - “спинка” ротора (СР)
6 - постоянные магниты возбуждения (ПМВ)
Описание изобретения:
Изобретение связано с использованием трехфазных синхронных машин специальной конструкции с возбуждением от постоянных магнитов, НО 2 К 21/27.В настоящее время широко известны конструкции трехфазных синхронных машин (двигателей и генераторов), в том числе и с возбуждением от постоянных магнитов. Описание конструкции синхронных машин с возбуждением от постоянных магнитов могут быть приняты за прототип синхронных машин, предлагаемых в настоящем изобретении. Недостатком существующих синхронных машин является то, что магнитный поток, создаваемый постоянными магнитами полюсов ротора, пересекает проводники обмотки статора, располагаемые в пазах внутренней поверхности статора. При этом генерируемая электрическая мощность в генераторе равна требуемой механической мощности, подводимой к ротору генератора (без учета потерь энергии в статоре и механических потерь энергии в роторе). Точно также механическая мощность, развиваемая двигателем, равна мощности, потребляемой двигателем от источника питания (без учета потерь энергии). В связи с изложенным эффективность существующих синхронных машин, принятых за прототипы, всегда меньше единицы.
Технический результат, на достижение которого направлено настоящее изобретение, состоит в создании трехфазных электрических машин (двигателя и генератора) с эффективностью, большей единицы, объединяемых на одном валу в агрегат, позволяющий обеспечить выработку электроэнергии без затрат каких-либо энергоносителей. Устройство синхронного двигателя-генератора (СДГ) состоит из трехфазного синхронного двигателя (ТСД) и трехфазного синхронного генератора (ТСГ), находящихся на одном валу, помещенных в общий корпус. Двигатель и генератор выполнены с явно выраженными полюсами статора и ротора, с обмотками статора (ОС), намотанными “вокруг” полюсов статора. Статор, состоящий из полюсов статора (ПС) и “спинки” статора (СС), выполнен из листовой электротехнической стали.
Ротор, состоящий из полюсов ротора (ПР) и спинки ротора (СР), выполнен из монолитной электротехнической стали. В спинке ротора размещены постоянные магниты возбуждения (ПМВ).В центре полюсов ротора генератора дополнительно размещены плоские небольшой толщины компенсационные постоянные магниты (ПМК), располагаемые в плоскости, содержащей ось генератора.
Особенностью конструкции двигателей ТСД является малая толщина постоянных магнитов возбуждения (2hПМП).Длина полюсов статора вдоль внутренней поверхности статора (lПС) составляет 60 “электрических” градусов; длина полюсов ротора вдоль наружной поверхности ротора (lПР ) составляет 120 “электрических” градусов. Число полюсов статора (mC) кратно трем и равно mC=3Р, где Р - число пар полюсов в машине. Число полюсов ротора (m P) равно: mP=2P.Все части магнитопроводов двигателя и генератора являются “ненасыщенными”, что позволяет учитывать магнитное сопротивление только постоянных магнитов и воздушных зазоров. Схематические поперечные сечения ТСД и ТСГ приведены на фиг.1
4. Принцип действия синхронной машины
синхронный двигатель магнит
Принцип действия синхронных машин основан на взаимодействии магнитных полей статора и ротора. Схематически вращающееся магнитное поле статора можно изобразить полюсами магнитов вращающихся в пространстве со скоростью вращения магнитного поля статора (рис. 1). Поле ротора также можно изобразить в виде постоянного магнита, вращающегося синхронно с полем статора.
При отсутствии внешнего вращающего момента, приложенного к валу машины, оси полей статора и ротора совпадают (рис. 1 а)). Силы притяжения F действуют на ротор вдоль оси полюсов и взаимно компенсируют друг друга. Угол между осями полей статора и ротора равен нулю.
Если на вал машины действует тормозной момент, то ротор смещается в сторону запаздывания на угол (рис. 1 б). В результате силы притяжения F раскладываются на составляющие, направленные вдоль оси полюсов ротора (осевая составляющая) и перпендикулярно оси полюсов (тангенциальная составляющая). Осевые составляющие взаимно компенсируются, а тангенциальные создают вращающий момент , компенсирующий внешний момент, приложенный к валу (D - диаметр точек приложения тангенциальных сил). Машина при этом работает в режиме двигателя, компенсируя расходуемую на валу механическую мощность потреблением активной мощности из сети, питающей статор.
В случае если к ротору прикладывается внешний момент, создающий ускорение, т.е. действующий в направлении вращения вала, картина взаимодействия полей меняется на обратную. Направление углового смещения изменяется на противоположное, соответственно изменяется направление тангенциальных сил и направление действия электромагнитного момента. В этом случае он становится тормозным, а машина работает генератором, преобразующим подводимую в валу машины механическую энергию, в электрическую энергию, отдаваемую в сеть, питающую статор.
Вращающий момент в синхронной машине может возникать и при отсутствии собственного магнитного поля у ротора. Пусть, например, обмотка возбуждения явнополюсного ротора отключена от питания. Тогда картина магнитного поля машины будет иметь вид, представленный на рисунке 2. Здесь явнополюсный ротор связан с системой координат d-q таким образом, что ось d-d совмещена с осью симметрии в направлении максимальной магнитной проводимости, а ось q-q с направлением минимальной магнитной проводимости. Ось d-d совпадает также с осью магнитного поля возбужденного ротора и называется продольной осью, а ось q-q соответственно - поперечной.
При отсутствии внешнего момента явнополюсный ротор займет положение, при котором продольная ось будет совпадать с осью полюсов магнитного поля статора. Это положение соответствует минимальному магнитному сопротивлению для магнитного потока статора.
Если на вал машины будет действовать тормозной момент, то ротор отклонится на угол. При этом магнитное поле статора деформируется, т.к. магнитный поток будет стремиться замкнуться по пути наименьшего сопротивления. Магнитный поток определяется через магнитные силовые линии, т.е. линии, направление которых в каждой точке соответствует направлению действия силы, поэтому деформация поля приведет, также как и в случае возбужденного ротора, к появлению результирующей тангенциальной силы . Отличие от возбужденного ротора будет состоять в том, что тангенциальная сила будет функцией двойного угла ?. Это отличие возникает вследствие того, что у возбужденного ротора возможно только одно положение устойчивого равновесия при , а невозбужденный ротор может находиться в равновесии при .
Вращающий момент, возникающий в машине с невозбужденным ротором за счет тангенциальных сил называется реактивным моментом и его зависимость от выражается функцией.
Очевидно, что необходимым условием возникновения реактивного момента является магнитная асимметрия ротора.
Рассмотренные выше процессы в синхронной машине наглядно демонстрируют принцип обратимости электрических машин, т.е. способность любой электрической машины изменять направление преобразования энергии на противоположное. В синхронных машинах для перехода от режима работы двигателем в режим генератора достаточно изменить направление (знак) момента нагрузки на валу.
5. Особенности пуска двигателей с постоянными магнитами
Подавляющее большинство синхронных двигателей пускается как асинхронные, для чего они снабжаются пусковой обмоткой. Однако в отличие от двигателей с электромагнитным возбуждением постоянные магниты на время пуска невозможно "отключить". Поэтому в процессе разгона поток постоянных магнитов индуцирует в обмотке статора ЭДС, под действием которой по обмотке через источник протекает ток (рис. 3.4). Этот ток, взаимодействуя с полем постоянного магнита, создает момент по своей природе аналогичный асинхронному моменту, развиваемому пусковой обмоткой. Однако этот момент является не движущим, а тормозящим.
Частота тока в пусковой обмотке пропорциональна скольжению (f2 = f1s), поэтому максимум асинхронного момента лежит в области малых скольжений. Частота тока в обмотке статора от поля постоянных магнитов пропорциональна скорости ротора [n2 = n1(1-s)], поэтому максимум тормозного момента лежит в области малых значений n ,т.е. больших скольжений.
Тормозной момент образует провал в пусковой характеристике двигателя, тем самым создает опасность застревания его на малой скорости вращения (рис. 3.5). Понятно, что с этой точки зрения надо бы иметь небольшой поток постоянного магнита, т.е. небольшую ЭДС Е0, хотя винтересах работы в синхронном режиме должно быть наоборот. Оптимальное отношение Е0/U для двигателей мощностью 10 -120 Вт при f = 50 Гц,p = 2лежит в пределах 0,5 - 0,8.
Уравнение ЭДС и момент двигателя в синхронном режиме. Из общего курса электрических машин известно несколько форм уравнения напряжения синхронного двигателя с явновыраженными возбужденными полюсами, например такая:
Синхронные двигатели с постоянными магнитами на роторе с радиальным (а) и аксиальным (б) расположением магнитов. 1 - постоянный магнит; 2 - сердечник из электротехнической стали; 3 - стержни пусковой обмотки; 4 - короткозамыкающие кольца, где: 0 - ЭДС, индуцированная в статоре полем ротора; d , q - ток статора по осям d и q; xd, xq - синхронные индуктивные сопротивления статора по продольной и поперечной осям; r1 - активное сопротивление статора.
Уравнению соответствует векторная диаграмма нарис. Из диаграммы можно вывести выражения токов Idи Iq
Вращающий момент двигателя является суммой двух моментов: электромагнитного М1, обусловленного взаимодействием полей статора и ротора и реактивного момента М2 , обусловленного неодинаковой проводимостью по продольной и поперечной осям.
Не учет активного сопротивления статора в микромашинах приводит к значительным количественным ошибкам. Вместе с тем его учет сильно усложняет математический анализ процессов, происходящих в машине /см. [1], формула(4.24)/.
Рассматривая выражение (3.2'), приходим к выводу, что вращающий момент синхронного микродвигателя с учетом r1 , так же как и без учета r1, является суммой двух синусоид, только смещенных влево на углы бЭ и бdq и вниз на величину тормозного момента МТ…
Размещено на Allbest.ru
Подобные документы
Принцип действия, основные характеристики и элементы конструкции синхронного вертикального двигателя, область применения. Расчет электромагнитного ядра явнополюсного синхронного двигателя, его оптимизация по минимуму приведенной стоимости и резервов.
курсовая работа [4,7 M], добавлен 16.04.2011Конструкция трехфазного синхронного реактивного двигателя, исследование его рабочих свойств. Опыт холостого хода и непосредственной нагрузки двигателя. Анализ рабочих характеристик двигателя при номинальных значениях частоты и напряжения питания.
лабораторная работа [962,8 K], добавлен 28.11.2011Применение синхронных двигателей в устройствах автоматики и техники. Изготовление ротора, турбогенератора. Предназначение двигателей для привода мощных вентиляторов, мельниц, насосов и других устройств. Конструктивное исполнение статора синхронной машины.
презентация [2,0 M], добавлен 01.09.2015Недопустимость многократного асинхронного пуска синхронного двигателя, что приводит к значительному падению напряжения в питающей системе, к возникновению значительных динамических усилий в лобовых частях обмотки статора и тепловому старению изоляции.
контрольная работа [164,3 K], добавлен 09.04.2009Принцип действия синхронного генератора. Типы синхронных машин и их устройство. Управление тиристорным преобразователем. Характеристика холостого хода и короткого замыкания. Включение генераторов на параллельную работу. Способ точной синхронизации.
презентация [884,6 K], добавлен 05.11.2013Конструктивное выполнение машин постоянного тока, их основные узлы, принцип действия. Характеристики ДТП, специфика их пуска. Особенности использования принципа параллельного возбуждения. Описание двигателей смешанного возбуждения и сфера их применения.
реферат [1,2 M], добавлен 31.03.2014Устройство и условное изображение синхронной трехфазной машины. Расположение полюсов магнитного поля статора и ротора. Зависимость электромагнитного момента синхронной машины от угла. схема включения синхронного двигателя при динамическом торможении.
реферат [347,0 K], добавлен 10.06.2010Технологическая схема установки телескопического кормораздаточного транспортера в коровнике, основные элементы и их взаимодействие, принцип действия и назначение. Выбор частоты вращения двигателя и технологических данных редуктора, подбор двигателя.
курсовая работа [211,2 K], добавлен 08.11.2009Общие сведения о двигателе внутреннего сгорания, его устройство и особенности работы, преимущества и недостатки. Рабочий процесс двигателя, способы воспламенения топлива. Поиск направлений совершенствования конструкции двигателя внутреннего сгорания.
реферат [2,8 M], добавлен 21.06.2012Понятие и основные функции асинхронной электрической машины, ее составные части и характеристика. Принцип действия и назначение асинхронного двигателя. Факторы, влияющие на эффективность и производительность работы асинхронного двигателя, учет потерь.
контрольная работа [12,0 K], добавлен 12.12.2009