Классификация твердых отходов черной металлургии, их характеристики.

Признаки классификации отходов производства. Основы переработки и использования пылей и шламов. Технология подготовки шламов доменных газоочисток. Обезвоживание шламов. Особенности технологии переработки доменных, сталеплавильных шламов. Обесцинкование.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 07.10.2008
Размер файла 50,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Металлургия. Отходы металлургии и их обработка .

КЛАССИФИКАЦИЯ ТВЕРДЫХ ОТХОДОВ ЧЕРНОЙ МЕТАЛЛУРГИИ, ИХ ХАРАКТЕРИСТИКИ

Классификация отходов производства возможна по различным признакам, среди которых основными можно считать следующие:

а)по отраслям промышленности - черная и цветная металлургия, рудо- и угледобывающая промышленность, нефтяная и газовая и т.д.;

б)по фазовому составу - твердые пыли, шламы, шлаки),жидкие(растворы, эмульсии, суспензии),газообразные (оксиды углерода, азота, соединение серы и др.);

в)по производственнным циклам при добыче сырья (вскрышные и овальные породы),при обогащении (хвосты, шламы, сливы), в пирометаллургии (шлаки, шламы, пыли, газы), в гидрометаллургии (растворы, осадки, газы).

На металлургическом комбинате с замкнутым циклом (чугун-сталь-прокат) твердые отходы могут быть двух видов - пыли и шлаки.

Довольно часто применяется мокрая газоочистка, тогда вместо пыли отходом является шлам. Наиболее ценными для черной металлургии являются железосодержащие отходы (пыль, шлам, окалина), в то время как шлаки в основном используются в других отраслях промышленности. При работе основных металлургических агрегатов образуется большее количество тонкодисперсной пыли, состоящей из оксидов различных элементов. Последняя улавливается газоочистными сооружениями и затем либо подается в шламонакопитель, либо направляется на последующую переработку (в основном как компонент аглошихты).

Шламы можно разделить на:

1)шламы агломерационных фабрик;

2)шламы доменного производства:

а)газоочисток доменных печей;

б)подбункерных помещений доменных печей;

3)шламы газоочисток мартеновских печей;

4)шламы газоочисток конвертеров;

5)шламы газоочисток электросталеплавильных печей.

По содержанию железа их подразделяют следующим образом:

а)богатые (55-67%)-пыль и шлам газоочисток мартеновских печей и

конвертеров;

б)относительно богатые (40-55%)-шламы и пыли аглодоменного производства;

в)бедные (30-40%)-шлам и пыль газоочисток электросталеплавильного производства.

Основными характеристиками шламов являются химический и гранулометрический состав, однако при подготовке шламов к утилизации необходимо знать параметры, как плотность, влажность, удельный выход и др. Следует отметить, что пыли (шламы) металлургических предприятий по химическому (и отчасти по гранулометрическому) составу отличаются друг от друга, поэтому эти характеристики представлены далее в усредненном виде.

Шламы пылеулавливающих устройств доменной печи образуются при очистке газов, выходящих из нее, обычно в скрубберах или трубах Вентури. Перед ними устанавливаются радиальные или тангенциальные сухие пылеуловители, в которых улавливается наиболее крупная, так называемая колошниковая, пыль, которая возвращается в аглопроизводство как компонент шихты. Химический состав шламов по основным компонентам, %: Feобщ 30-50; CaO 5.0-8.5; SiO2 6.0-12; Al2O3 1.2-3.0; MgO 1.5-2.0; P 0.015-0.05; Sобщ 0.2-0.9; Cобщ 2.5-30.0; Zn 0.05-5.3. Плотность их колеблется в пределах 2.7-3.8 г/см ,удельный выход в среднем составляет 2.75ё0.84%. Коэффициент использования этих шламов изменяется (для разных предприятий) довольно значительно - от 0.1 до 0.8. Это довольно тонкодисперсный материал: фракции >0.063 мм до 10-13%, 0.016-0.032 мм от 16 до 50% и < 0.008 мм от 10 до 18%.

В настоящее время эти шламы используются как добывка к агломерационной шихте. Сравнительно низкий уровень их использования объясняется относительно невысокой долей железа в них (Feобщ<50%), а также повышенным содержанием цинка (>1%), что требует предварительного обесцинкования шламов.

Шламы подбункерных помещений доменных печей образуется при гидравлической уборке просыпи с полов подбункерных помещений, их составной частью является также пыль аспирационных установок этих помещений. По химическому составу эти шламы подобны шламам аглофабрик - в них имеются почти все компоненты аглошихты, % : Feобщ 33-35; SiO2 7-11; Al2O3 1-3; CaO 8-28; MgO 1-3; MnO 0.1-1.5; P2O5 0.01-0.2; Sобщ 0.15-0.40; Cобщ < 15.0; Zn 0.0-0.02.

Шламы подбункерных помещений по гранулометрическому составу являются материалами средней крупности (частиц размером 0.1-0.063 мм 20-40%). Плотность шламов подбункерных помещений колеблется в пределах 3.5-4.5 г/см. Эти шламы обычно используются как добавка к агломерационной шихте.

ОСНОВЫ ПЕРЕРАБОТКИ И ИСПОЛЬЗОВАНИЯ ПЫЛЕЙ И ШЛАМОВ.

Технология подготовки шламов доменных газоочисток предусматривает обезвоживание осаждением в отстойниках, фильтрование в аппаратах различного типа и при необходимости термическую сушку.

Особенностью шламов доменных газоочисток является повышенное содержание в них цинка.

Вследствие этого при подготовке их к использованию в качестве компонента доменной шихты необходимо проводить обесцинкование. Последняя может проводиться как пиро-, так и гидрометаллургическими способами. При содержании в шламах цинка > 12 % они могут использоваться как сырье для его получения.

Шламы подбункерных помещений доменных печей, как указывалось ранее, похожи по химическому и гранулометрическому составам на шламы аглофабрик, поэтому в настоящее время единственным направлением утилизации этих шламов является использование их в качестве компонента аглошихты. Подготовка их в этом случае предусматривает обычные стадии обезвоживания; желательно, чтобы этот материал, смешиваемый с другими компонентами аглошихты, имел зернистую структуру. Это улучшает окомкование аглошихты и приводит к увеличению газопроницаемости ее слоя, что благотворно сказывается на производительности агломашины и качестве агломерата.

ОБЕЗВОЖИВАНИЕ ШЛАМОВ

Пыли металлургического производства обычно не требуют какой-либо предварительной подготовки перед утилизацией. Шламы, прежде чем их использовать (например в качестве компонента шихты), необходимо подвергнуть обезвоживанию (сгущению, фильтрованию, сушке).

Сгущение - процесс повышения концентрации твердой фазы в сгущаемом продукте (шлам, пульпа), протекающий под действием гравитационных и (или) центробежных сил. При сгущении шламов стремятся получить не только осадок достаточной плотности, но и возможно более чистый слив, что позволяет использовать последний в оборотном цикле и исключить потери твердого продукта. Поскольку количество воды в сгущаемом продукте составляет 30-60%, то использовать такой обводненный материал в качестве добавки к аглошихте или окомковывать его с целью получения окатышей практически невозможно. Поэтому сгущенный продукт необходимо профильтровать для того, чтобы содержание влаги в нем снизить до 8-10%. При фильтровании шламов происходит процесс разделения жидкого и твердого под действием разрежения или давления, сопровождающийся удалением влаги через пористую перегородку (обычно фильтровую ткань и частично осадок). На фильтрование обычно подают шламы, частицы которых имеют размер 1 мм, так как обезвоживать такие дисперсные системы другими методами нецелесообразно из-за малой скорости удаления влаги и, как следствие, значительной влажности получаемого осадка. Процесс фильтрования зависит от многих факторов, основные из которых следующие: содержание твердого в шламе, крупность твердой фазы, разность давлений по обе стороны фильтрующей перегородки и др.

ОСОБЕННОСТИ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ ДОМЕННЫХ И СТАЛЕПЛАВИЛЬНЫХ ШЛАМОВ

В настоящее время разработаны различные технологии комплексной переработки шламов (пылей); часть из них реализована в промышленном масштабе за рубежом. У нас такие технологии разрабатываются на уровне исследовательских работ и полупромышленных испытаний. Промышленного производства металлизованных окатышей из шламов (пыли) аглодоменного и сталеплавильного производств пока нет; эти материалы используются лишь как компоненты аглошихты.

Разработана технология использования шламов доменного, мартеновского, конвертерного и частично электросталеплавильного производств на Челябинском металлургическом комбинате (ЧМК).

Отделение подготовки к утилизации железосодержащих шламов работает последующей схеме: шламы из радиальных отстойников после сгущения до 600 г/л поступают в вакуум-фильтры, а после них (с влажностью 36%) в сушильные барабаны; затем шламы с влажностью 10% подаются на аглофабрику. Известно, однако, что использование шламов в качестве компонента аглошихты осложняется нестабильностью их химического и гранулометрического состава, что требует разработки технологии рекуперации этих материалов в каждом конкретном случае. Использование в аглошихте таких тонкодисперсных материалов, как шламы сталеплавильного производства, приводит к ухудшению газопроницаемости спекаемого слоя и вследствие этого к снижению производительности агломашины.

Кроме того, увеличивается вынос весьма мелких частиц (размером 10 мкм), которых в шламах содержится до 30-40%, что значительно снижает эффективность работы газоочистных установок. Использование шламов препятствует высокое содержание в них цинка (в конверторных шламах его < 1%, в остальных 0.4 - 0.6 %), причем при кругообороте цинка в печи агломерат - доменная печь - шламы доменных газоочисток его количество в последних возрастает.

Институтом "Уралмеханобр" совместно с Карагандинским металлургическим комбинатом разработана новая технология утилизации железосодержащих шламов в аглопроизводстве. По существующей схеме шламы аглофабрик 1 и 2, подбункерных помещений доменныхпечей 3 и 4, тракта шихтоподачи дробильно-сортировочной фабрики сгущают и обезвоживают (крупнозернистую фракцию на ленточных, тонкозернистую - на дисковых вакуум-фильтрах). Обезвоженные продукты объеденяют и подают в шихтовое отделение аглофабрики 2. По новой технологии шламы после двустадийного сгущения с содержанием твердого 40-50 % подают в распыленном виде в первичные смесители аглошихты вместо технической воды. В результате шлам достаточно равномерно распределяется в объеме аглошихты, а вся шихта увлажняется до необходимого уровня при значительном сокращении расхода технической воды.

На Орско-Халиловском металлургическом комбинате была разработана и опробована технология получения во вращающейся печи окускованного продукта из смеси доменного и мартеновского шламов. Длина барабана 18 м, угол наклона 2 (диаметр не приводится). Шлам влажностью 30-70 % подавали в печь с помощью специальной форсунки, процесс спекания регулировали изменением скорости вращения печи, интенсивности подачи шлама и тепловой нагрузки.

Способ переработки пылей и шламов следует выбирать для каждого металлургического завода в соответствии с характеристиками образующихся отходов. В таблице 1 показаны особенности и разновидности этих способов.

С точки зрения переработки пыли и шламов заслуживают особого внимания способы, в которых извлекают цинк, свинец, соединения щелочных металлов (классификация исходного материала в аппаратах типа гидроциклонов, получение хлорированных и металлизованных окатышей).

Эти способы широко применяются в Японии, где в конце 60-х - начале 70-х годов большое внимание было обращено на производство металлизованных окатышей с использованием в качестве восстановителя угля. Как уже указывалось, общим для этих процессов является использование для восстановительного обжига окатышей вращающейся (трубчатой) печи. Отличаются они в основном технологией подготовки исходных материалов.

В последние годы на таких установках вместе с вращающейся печью работает устройство типа аглоленты, на которой осуществляются сушка и предварительный нагрев окатышей теплом дыма, уходящего из трубчатой печи решетка - трубчатая печь.

Строительство таких установок довольно дорого, поэтому японской фирмой "Раса" был разработан альтернативный способ переработки пылей и шламов с большим содержанием цинка и других примесей - процесс РасаНГП. Исследования фирмы "Синниппон" показали, что цинк в доменных шламах сосредоточивается основном в наиболее тонкой фракции (около 20 мкм), железо сравнительно равномерно распределено во всех фракциях, а углерод - в наиболее крупных. На этой основе была разработана технология отделения наиболее тонкой фракции (содержащей соединения цинка ) с помощью гидроциклона. Сгущенный шлам направляется в вакуум-фильтры, затем в тарельчатый окомкователь для получения миниокатышей (1-5 мм), которые далее поступают на агломашину. Сливгидроциклонов с содержанием твердого 2% подают в отстойники, откуда через 3 ч шлам с концентрациейтвердых частиц 9% подается в фильтр-пресс, а осветленная вода возвращается в первичный отстойник.

При содержании цинка на входе в гидроциклон 3-5 % в шламе, подаваемом на окомкование (а в дальнейшем на агломерацию), содержится цинка всего 1 %, в то время как в сливе гидроциклонов количество его достигает 8-15 %. Поскольку в сгущенном продукте, а следовательно, и в миниокатышах содержится довольно много углерода, удельный расход кокса при агломерации удается снизить до 2 кг/т чугуна, а количество цинка, поступающего в доменную печь с агломератом, состовляет 0.2 кг/т чугуна. В процессе Раса-НГП используется специальный агрегат, с помощью которого с твердых частиц снимается (обдирается) поверхостный слой, содержащий соединения цинка. Капитальные и эксплуатационные затраты на строительство установки, работающей по этому процессу, в 10-15 раз ниже затрат в случае использования, например, способа СЛ-РН. Проектная производительность одной установки составляет 120 тыс. т в год (по исходному сырью).

ОБЕСЦИНКОВАНИЕ ЖЕЛЕЗОСОДЕРЖАЩИХ ПЫЛЕЙ

В пылях доменного (в меньшей степени конвертерного и электросталеплавильного) производства содержится довольно значительное количество цинка, свинца и солей щелочных металлов, вредно влияющих на процесс получения чугуна. Особенно нежелателен цинк, вызывающий образование настылей в доменной печи, разрушение ее футеровки, ухудшающий качество агломерата, изготовленного из сырья с большим содержанием цинка. При утилизации таких пылей присадкой их в агломерационную шихту происходит накопление цинка в получаемом агломерате. По существующим нормам содержание цинка в сырье, поступающем в доменную печь, не должно превышать 1.0 %, в то время как в пылях доменных газоочисток его содержание может доходить до 15.3 % на Кузнецком металлургическом комбинате ( по данным 1986 г.), 3.8 % на Череповецком, 1.94 % на Нижнетагильском, 1.5-2.77 % на Западно-Сибирском металлургическом комбинате (на заводах Украины не превышает 0.5 %).

Это свидетельствует о необходимости обесцинкования пылей (шламов), имеющих повышенное содержание цинка. Разработаны два типа процессов извлечения цинка из исходного материала (окисленные цинковые руды, цинковые шлаки и кеки, пыли, шламы) - пиро- и гидрометаллургический. Первый применяется в основном в черной металлургии, второй - в цветной. Основой пирометаллургического процесса извлеченияцинка (и свинца) является восстановительный обжиг сырья чаще всего во вращающихся (трубчатых) печах, восстановитель кокс, а в последние годы энергетический уголь. Можно утверждать, что все процессы получения металлизованных окатышей так или иначе связаны с отгонкой цинка из исходной шихты и последующим улавливанием его в виде оксида либо металлического цинка. Взаимодействие углерода с оксидом цинка протекает по реакциям

ZnO + C = Zn(пар) + CO;

ZnO + C = 2 Zn(пар) + CO2.

Первая реакция пртекает при температуре 950 С, вторая - при 1070 С и выше, причем возгонка цинка наиболее интенсивно идет при 980-1000 С. Установлена линейная зависимость между количеством получаемого цинка и степенью металлизации шихты. Вчастности, в конце трубчатой печи степень возгонки цинка возрастает до 96-98 %, свинца- до 99 %, а степень металлизации - до 94 %. При температуре выше 1100 С существенно ускоряется процесс возгонки всех цветных металлов, содержащихся в сырье. В возгонках восстановительного обжига пылей доменных газоочисток может находится значительное количество редкоземельных элементов (например, теллура и индия до 0.15 кг/т пыли). Предварительная подготовка пыли (кека) обычно заключается в их грануляции с получением окатышей диаметром 5-15 мм. В последние годы разрабатываются новые способы извлечения цинка и других цветных металлов из дисперсных отходов металлургического производства. В частности, был предложен процесс их обесцинкования путем электроплавки окатышей, полученных из пыли, в дуговой электропечи. Принципиально этот метод заключается в следующем. При получении окатышей в них "накатывался" углеродосодержащий материал (например, молотый кокс) с тем, чтобы при плавке их в дуговой печи образовывалась восстановительная атмосфера. Оксиды кремния, кальция, марганца, имеющиеся в окатышах, представляют собой по существу пустую породу; при плавке они образуют шлаковый расплав, который периодически выпускается из печи. Цветные металлы возгоняются и образующийся пылегазовый поток направляется в газоочистные сооружения через окислительную камеру. Цветные металлы превращаются в оксиды, которые затем и улавливаются. Уловленная пыль содержит до 50 % цинка. Кроме того, газовым потоком выносятся и такие металлы, как индий, таллий, кадмий. Возможно проведение процесса обесцинкования с использованием плазмы. В способе "Плазмадаст" (Швеция) восстановительным агрегатом является шахтная печь, в которую загружаются исходный материал (пыль) и коксовая мелочь. В нижней части ее располагаются плазматроны. В восстановительной атмосфере печи оксид цинка восстанавливается до чистого цинка, который, находясь в парообразном состоянии, вместе с отходящими газами поступает в конденсатор, где конденсируется до жидкого металла.

ОСОБЕННОСТИ ДОМЕННОГО ПРОЦЕССА И СОСТАВ ВЫБРОСОВ

Основным продуктом доменной плавки является чугун, а побочными - шлак и доменный (колошниковый) газ. В среднем при сгорании 1 т сухого кокса образуется 3400 м куб. доменного газа со средней теплотой сгорания 3.96 МДж/м куб. Пыль и газообразные выбросы из доменных печей образуются в результате сложных физических и химических процессов. Считают, что с доменным газом из печи выносятся пыль, внесенная с шихтой (образовавшиеся при дроблении шихтовых материалов, в основном кокса), и пыль, появившаяся при трении столба шихты в самой доменной печи. Масса пыли, вносимой доменными газами, составляет 20-100 кг/т чугуна. Средняя запыленность доменных газов равна 9-55 г/м куб., а при неполадках или мелкой шихте может достигать 200 г/м куб. Количество образующегося доменного газа составляет 3880 м куб./т влажного кокса, или 4000 м куб./т сухого кокса, или 2000-2500 м куб. на 1 т чугуна.

Удельные технологические выбросы с колошниковыми газами при выплавке передельного чугуна составляют, кг на 1 т чугуна: пыли-100; СО-640; О2 - 0.08-0.45.

Примерный состав колошникового газа:

Компоненты СО2 СО СН4 Н2 О2+N2 Объемная доля в, % при работе без повышения давления и комбинированного дутья 11.2 31.2 0.21 2.99 55.1

при работе с повышением давления и комбинированным дутьем 11.3 29.0 0.20 4.30 55.2 Температура доменного газа на выходе из печи составляет обычно 300-350 градусов Цельсия. Пылегазовыделения из печи обусловлены тем, что при подаче шихты на большой конус загрузочного устройства печи давление по обе стороны конуса необходимо выровнять, для чего неочищенный газ из межконусного пространства выводят в атмосферу.

Запыленность газа во время выхлопа составляет 250-700 г/м куб. Удельный выброс пыли достигает 4 кг на 1 т чугуна при основном режиме работы печи. кроме того, пылевыделение происходит при каждом ссыпании скипа в приемную воронку. Для печей вместимостью 930-2700 м куб. выбросы пыли и оксида углерода (2) составляют соответственно 0.17-0.60 и 5-19 т/сут. Химический состав пыли изменяется в широких пределах. Например, при выплавке передельного чугуна и работе с повышенным давлением на колошнике печи пыль содержит, %: SiO2- 14.6; MgO- 4.35; Al2O3- 4.35; CaO- 11.85; S- 0.74; MnO- 3.75, остальное - оксиды железа. Дисперсный состав пыли также зависит от многих факторов и может колебаться в широких пределах:

Размер частицы, мкм 200 200-100 100-60 60-20 20-10 10-1

Массовая доля, % 34.5 12.3 19.0 25 7.5 1.7

Радикальным решением, почти полностью исключающим выбросы пыли из межконусного пространства, является подача в межконусное пространство в момент открытия большого конуса газа под давлением, несколько превышающим давление в печи. При этих условиях запыленный газ из печи вообще не поступает в межконусное пространство, и выхлоп газа при выравнивании давления в засыпном устройстве остается чистым.

Недостатком этого способа предотвращения выбросов пыли и СО из межконусного пространства печи являются дополнительные энергозатрары, связанные со сжиганием газа, подаваемого в засыпное устройство печи. Кроме колошникового устройства доменной печи, источником загрязнения атмосферы доменного цеха являются рудный и литейный дворы.

На рудном дворе пыль выделяется при разгрузке вагонов, перегрузке руды, подаче руды на бункерную эстакаду и т. п. Удельное выделение пыли на рудном дворе ориентировочно принимают равным 50 кг на 1 т чугуна, а на бункерной эстакаде - 20 кг на 1 т чугуна. Концентрация пыли на рудном дворе и бункерной эстакаде колеблется от 17 до 1000 мг/м куб. В доменных цехах существует две системы подачи сырых материалов на колошник доменной печи: скиповая, применявшаяся в старых печах, и ковейерная, применяемая в новых печах, значительно снижающая пылевыделение.

Наибольшее количество пыли выделяется в подбункерном помещении, где происходит выгрузка сырых материалов в вагон-весы. Концентрация пыли в воздухе подбункерных помещений достигает 500 мг/м куб., в связи с чем на многих заводах кабину машиниста вагонвесов приходится герметизировать. В подбункерных помещениях, оборудованных конвейерами, аспирационной системой отсасывается около 2.5 кг пыли на каждую тонну чугуна. После очистки в атмосферу выбрасывается в среднем около 90 г пыли на 1 т чугуна.

На литейном дворе пыль и газы выделяются в основном от леток чугуна и шлака, желобов участков слива и ковшей. Удельные выходы вредных веществ на 1 т чугуна составляют: 400-700 г пыли, 0.7-1.15 кг СО, 120-170 г SO2. Максимальное количество пыли и газов выбрасывается во время выпуска чугуна и шлака.

Пыль и газы удаляются частично через фонари литейного двора (около 160 г пыли на 1 т чугуна), частично с помощью аспирационных систем с очисткой пыли перед выбросом в атмосферу преимущественно в групповых циклонах.

Средняя концентрация пыли в период выпуска составляет 150-1500 мг/м куб.; максимальная концентрация наблюдается над главным желобом и ковшом для чугуна. Средняя концентрация СО составляет, мг/м куб.: у чугунной летки - 22.1250; у шлаковой летки - 11.680; на уровне фурм - 15.884; у кольцевого воздухопровода - 11.5000.

Содержание СО на рабочих местах в период выпуска чугуна составляет 125-250 мг/м куб. Наибольшая концентрация наблюдается в момент выпуска чугуна и шлака у леток и поворотных желобов. При выпуске горячего шлака из домны сера реагирует с кислородом воздуха с образованием SO2. Этот газ выделяется от шлаковых леток, желобов и шлаководов; средняя концентрация SО2 на этих участках в период выпуска шлака достигает 30мг/м куб. Валовые выбросы пыли, оксида углерода (2) и оксида серы (4) на литейных дворах типовых доменных печей различного объема приведены в таблице 2. Выпущенные из печи продукты плавки направляются на дальнейшую переработку: чугун - на разливку в чушки на разливочной машине, шлак - на грануляцию, доменный газ - на очистку.

При разливке чугуна в помещении разливочных машин выделяется пыль и СО. Аспирация и очистка обычно не предусмотрены. Через аэрационные фонари выделяется в среднем 40 г пыли и 60 г СО на 1 т разлитого чугуна.

В последнее время все газовые выбросы литейного двора крупных печей стремятся объединять и направлять их на очистку в электрофильтры. Общее количество отсасываемого газа у крупных печей достигает 1 млн м куб./ч. Чтобы уменьшить его, все системы отсоса газа от источников пылегазовыделений снабжают дроссельными клапанами, позволяющими по мере надобности дистанционно включать необходимое в данный момент укрытие (зонт).

ОЧИСТКА ДОМЕННОГО ГАЗА

Доменный газ, содержащий до 35 % горючих компонентов и 50-60 г/м куб. пыли при работе печи с повышенным давлением на колошнике (и 15-20 г/м куб. - с нормальным давлением), должен быть очищен от пыли перед его отправкой потребителям - на коксовые батареи, на горелки доменных воздухонагревателей и др. - до достижения концентрации пыли не выше 10 мг/м куб. Для очистки газа до столь низких концентраций пыли на металлургических заводах применяют многоступенчатые комбинированные схемы (рис. 1)

Как правило, первоначально очистку доменного газа проводят в сухих пылеуловителях диаметром 5-8 м, в которых осаждаются частички пыли размером 50 мкм и более. В этих аппаратах улавливается 70-90 % пыли, содержащейся в доменном газе, благодаря воздействию сил гравитации и инерционных сил, возникающих при повороте газового потока на 180 градусов. Пыль из пылеуловителя удаляется при помощи винтового конвейера, смачиваемого водой. Остаточное содержание пыли в доменном газе после грубой очистки не превышает 3-10 г/м куб. Для второй ступени очистки газа используют системы мокрой очистки. Обычно доменный газ из системы грубой сухой очистки поступает на полутонкую очистку газа, в которой выделяются частички размером 20 мкм и более и газ очищается до остаточного содержания пыли на выходе 0.6-1.6 г/м куб. Полутонкую очистку осуществляют в аппаратах мокрого типа - форсуночных полых скрубберах и трубах Вентури. Газы в доменных скрубберах имеют скорость 1-2 м/с при удельном расходе воды, состовляющем 3-6 кг/м куб. газа. Проходящий через скруббер доменный газ охлаждается с 250-300 до 40-50 градусов Цельсия и полностью насыщается влагой. Степень очистки газа от пыли в скруббере не превышает 60-70 %.

После скруббера газ в большинстве случаев поступает в две- четыре низконапорные трубы Вентури, скорость газов в горловине которых равна 50-80 м/с при удельном расходе воды 0.2 кг/м куб. Здесь завершается полутонкая очистка газа. Тонкую очистку доменного газа, содержащего до 10 мг/м куб. пыли, осуществляют в аппаратах 1 класса. В связи с широким внедрением на заводах черной металлургии газорасширительных станций, использующих потенциальную энергию давления доменного газа для выработки электроэнергии в газовых утилизационных бескомпрессорных турбинах (ГУБТ), для тонкой очистки газа обычно применяют аппараты, работающие с малой потерей давления, например мокрый электрофильтр.

Таким образом, в зависимости от наличия или отсутствия ГУБТ, на отечественных заводах обычно применяют две схемы очистки доменного газа (рис 2):

1) доменная печь - сухой пылеуловитель - форсуночный полый скруббер - труба Вентури - каплеуловитель - дроссельная группа - каплеуловитель - чистый газ потребителю;

2) доменная печь - сухой пылеуловитель - форсуночный полый скруббер - труба Вентури - каплеуловитель - мокрый электрофильтр - чистый газ на получение электроэнергии в ГУБТ.

Выбор системы очистки доменного газа зависит от требуемой степени его чистоты и экономических показателей пылеочистки. При применении трубы Вентури расходуется около 600-800кг воды и 10.8-14.4 МДж электроэнергии на 1000 м куб. газа. За трубой Вентури устанавливают каплеуловитель - сепаратор, которым может быть мокрый циклон, скруббер или канальный сепаратор.

В электрофильтрах для промывки и охлаждения электродов расходуется 0.5-1.5 кг воды и 3.6-4.3 МДж электроэнергии на 1000 м куб. газа.

Затраты на устройства для очистки от пыли и газов всех основных источников загрязнения атмосферы доменного цеха, т.е. газов, отводимых при загрузке кокса в бункеры6 транспортировании и сортировке руды и кокса перед загрузкой в печь, отводе доменного газа и воды из очистных сооружений и отстойников, составляет примерно 15-20 % суммы всех капиталовложений цеха, включая и все соответствующие вспомогательные службы.

Объем капиталовложений зависит от мощности предприятия и его технической оснащенности. Некоторые устройства используют одновременно для нескольких пылегазоочистных агрегатов (газоходы, отстойники устройства для переработки шлама, вспомогательные агрегаты), благодаря чему объем капиталовложений снижается.

Эксплуатационные затраты на очистные сооружения доменного цеха зависят в основном от стоимости электроэнергии, водоснабжения и обслуживания.

Таблица 1

Таблица 1 СПОСОБЫ ПЕРЕРАБОТКИ ПЫЛЕЙ И ШЛАМОВ

-----------------------------------------------------------------------+

Способы ¦ Схема технологического ¦ Особенности и преимущества ¦

¦ процесса ¦ ¦

-----------+--------------------------+--------------------------------¦

Классифика-¦ Отделение частиц, содер- ¦Продукт после удаления 60-80% ¦

ция в ги- ¦ жащих свинец и цинк, - ¦цинка применяется как компо- ¦

дроциклоне ¦изготовление миниокатышей-¦нент аглошихты. В процессе ¦

¦ спекание на агломашине ¦агломерации используется ¦

¦ ¦углерод, содержащийся в пыли ¦

-----------+--------------------------+--------------------------------¦

Получение ¦ ¦ ¦

окатышей: ¦ ¦ ¦

¦ ¦ ¦

а) миниока-¦Обезвоживание- смешивание-¦Использование миниокатышей ¦

тышей ¦окомкование- спекание на ¦предотвращает снижение газо- ¦

¦агломашине ¦проницаемости шихты при про- ¦

¦ ¦изводстве агломерата ¦

¦ ¦ ¦

б) хлориро-¦Окислительный обжиг исход-¦Возможность использования пы- ¦

ванных ¦ного материала-смешивание-¦ли разного происхождения. Вы- ¦

неофлюсо-¦окомкование- обжиг ¦сокая степень очистки от цин- ¦

ванных ¦ ¦ка и других примесей ¦

¦ ¦ ¦

в) металли-¦Обезвоживание- смешивание-¦Высокая степень очистки от ¦

зованных ¦окомкование- востанови- ¦цинка, свинца, соединений ще- ¦

¦тельный обжиг-доменная(или¦лочных металлов. Снижение ¦

¦электросталеплавильная) ¦расхода кокса в доменной печи. ¦

¦печь ¦Создание бескоксовой метал- ¦

¦ ¦лургии ¦

¦ ¦ ¦

г) безобжи-¦Обезвоживание- смешивание ¦Низкие капитальныезатраты ¦

говых ¦со связующим- окомкование-¦из-за отсутствия обжигового ¦

¦сушка- доменная печь или ¦оборудования ¦

¦конвертер ¦ ¦

-----------------------------------------------------------------------+

Таблица 2 ВАЛОВЫЕ ВЫДЕЛЕНИЯ ПРИМЕСЕЙ НА ЛИТЕЙНОМ ДВОРЕ

--------------------------------------------------------------------+

¦ ¦ Количество примесей ¦

Объем ¦ Производи- ¦ кг/т чугуна ¦

печи,м куб. ¦ тельность пе- +------------------------------------¦

¦ чи, т/сут ¦ пыли ¦ СО ¦ SO2 ¦

--------------+----------------+------------+----------+------------¦

1033 ¦ 1720 ¦ 0.7 ¦ 1.1 ¦ 0.165 ¦

1513 ¦ 2520 ¦ 0.6 ¦ 0.95 ¦ 0.15 ¦

2000 ¦ 4350 ¦ 0.5 ¦ 0.85 ¦ 0.13 ¦

2700 ¦ 5500 ¦ 0.4 ¦ 0.70 ¦ 0.115 ¦

5000 ¦ 11500 ¦ 0.4 ¦ 0.70 ¦ 0.11 ¦

--------------------------------------------------------------------+

Реферат на тему: Металлургия титана

РЕФЕРАТ

Металлургия титана

преподаватель

студент Д.В.Котов

Титаносодержащие минералы.

Титан является одним из наиболее распространенных химических элементов как по содержанию его в земной коре, так и по наличию минералов этого металла в очень многих горных породах.

Известно более 80 минералов, которые по суммарному содержанию титана составляют довольно большую долю в земной коре. Важнейшие минералы титана в основном входят в состав пяти характерных групп - рутила, ильменита, перовскита, ниоботанталотитанатов и сфена, из которых наибольшее значение имеют группы рутила и ильменита. Титановые минералы - ильменит, рутил, сфен - встречаются в рассеянном состоянии почти во всех типах пород - магматических и их эффузивах, в породах метаморфического комплекса (гнейсы, амфиболиты, слюды), а также в осадочных породах, особенно в глинах, бокситах, песках и песчаниках.

Подавляющее число известных минералов титана образовалось в связи с магматогенными процессами, в результате которых формируются минералы этого металла в соединении с кислородом и железом и в меньшей степени -с кальцием и кремнием.

Месторождения и руды титана. Различные по величине и генетическому типу месторождения титана распространены во многих районах земного шара. Несмотря на большое разнообразие этих месторождений, промышленные запасы титана представлены главным образом ильменитом и рутилом - основными минералами, из которых в крупном промышленном масштабе производят титан, его пигментный диоксид и другие химические соединения.

Месторождения титана магматического вида, как правило, приурочены к массивам основных пород нормального и щелочного ряда докембрийского и реже нижнепалеозойского возраста. Указанные месторождения формируются на значительных глубинах, где при содержании в базальтовой магме хотя бы 1% диоксида титана в процессе медленной ее кристаллизации возможно образование участков, значительно обогащенным этим диоксидом и представляющих собой месторождения титановых руд. Богатые и крупные месторождения этого типа встречаются в глубоко эродированных поясах.

Месторождения титана экзогенного типа приурочены к массивам, подверженным глубокому химическому выветриванию древних метаморфогенных комплексов, содержащих устойчивые соединения титана. В процессе формирования таких месторождений первоначально создаются остаточные элювиально-делювиальные месторождения не обогащенных устойчивыми минералами титана породы, а затем при размыве горных этих выветривания формируются богатые россыпи титановых минералов. В структурно-геологическом отношении для поисков богатых и крупных месторождений титана благоприятными являются современные или древние образования прибрежных морских равнин. Метаморфогенные месторождения титана часто приурочены к титанорудным районам с наличием в них магматогенных и экзогенных месторождений.

Переработка рудного сырья.

Промышленные способы получения титана и его основных соединений базируются на использовании в качестве исходного сырья титановых концентратов, содержащих не менее 92-94 % TiO2 в рутиловых концентратах, 52-65 % TiO2 в ильменитовых концентратах из россыпей и 42-47 % TiO2 в ильменитовых концентратах из коренных месторождений.

В России ильменитовые концентраты используются главным образом в качестве сырья для выпуска диоксида титана и металла, а также выплавки ферросплавов и карбидов, а рутиловые - для производства обмазки сварочных электродов.

Около 50 % мирового производства титановых концентратов базируется на переработке руд россыпных месторождений и 50 % - на переработке руд коренных месторождений.

Обогащение руд всех россыпных и большей части руд коренных месторождений осуществляются с использованием в начале процесса наиболее простого и дешевого гравитационного способа. При обогащении сложных коренных руд иногда используют флотацию, что, в частности, относится к переработке руд месторождения титаномагнетиков Телнес в Норвегии. Процесс нефлотационного обогащения, как правило, осуществляется в две стадии. Первая стадия заключается в первичном гравитационном обогащении, при котором получается черновой коллективный концентрат.

Вторая стадия заключается в селекции (доводке) указанного коллективного концентрата методами магнитной и электрической сепарации с получением индивидуальных рутилового, ильменитового, циркониевого, монацитового, дистенсиллиманитового, ставролитового и других концентратов. В процессах первичного обогащения широкое применение получили усовершенствованные гидроциклоны, многоярусные конические и многосекционные винтовые сепараторы и в меньшей степени концентрационные столы и другое сепарационное оборудование.

Доводка черновых коллективных концентратов основана на использовании в различном сочетании электромагнитной и электростатической сепарации Наибольшей магнитной восприимчивостью среди входящих в состав коллективных концентратов минералов обладает ильменит и следующий за ним монацит, в то время как рутил и циркон немагнитны.

Селекция входящих в состав коллективных концентратов немагнитных минералов основана на использовании различной их электрической проводимости, по мере убывания которой указанные минералы располагаются в следующий ряд: магнетит-ильменит-рутил-хромит-лейскосен-гранат-монацит-турмалин-циркон-кварц. Таким образом, если в коллективном концентрате преобладают рутил, Циркон и алюмосиликаты, то процесс доводки начинается обычно с передела электростатической сепарации. Если же в коллективном концентрате преобладает ильменит, то технологический процесс доводки начинается с передела магнитной сепарации. При доводке черновых коллективных концентратов широко применяется винтовые сепараторы, пластинчатые и роликовые магнитные сепараторы мокрого и сухого действия с высокой напряженностью магнитного поля, магнитные сепараторы с перекрещивающимися лентами, а также пневматические и мокрые концентрационные столы и другое оборудование.

В последнее время для повышения извлечения минералов из исходного сырья все чаще используется так называемый процесс оттирки, заключающийся в обработке коллективного концентрата растворами щелочи или слабой плавиковой кислоты при интенсивном перемешивании.

При этом с поверхности минералов, в частности рутила и циркона, удаляются железистые и глинистые пленки, затрудняющие селекцию материалов.

Выплавка титановых шлаков.

Эту восстановительную плавку проводят в трехэлектродных круглых электропечах мощностью 3,5-20 МВА, по устройству сходных с применяемым для плавки никеля, электротермии цинка или сталеплавильными. Температура передела 1650-1750 градусов. Среда должна быть умеренно-восстановительной, угольная футеровка непригодна. Подину выкладывают притертым магнезитовым кирпичом, стены защищают гарниссажем из тугоплавкого шлака, накопленным по особому режиму. Чугун выпускают через летку, поднятую над подом на 400 мм, а шлак-через шлаковую летку, иногда - вместе с чугуном.

Шихту готовят из концентрата (-3 мм) и антрацита или газового угля (-0,5 мм), в которых золы не должно быть больше соответственно 10 и 4 %. После перемешивания со связующим - сульфит-целлюлозным щелоком в обогреваемом смесителе шихту брикетируют на валковых прессах. Брикеты теплопроводнее порошка и снижают вынос пыли, но изготовление их обходится дорого, поэтому иногда они составляют только часть загрузки, дополняемую порошком или окатышами.

Задача плавки - получить богатый титановый шлак и чугун, переход железа в который ограничивают: FeO единственное вещество, позволяющее получить умеренно вязкий шлак, при недостатке его потребовался бы излишний перегрев. Чтобы избежать разбавления шлака и лишних расходов, флюсы применяют редко. В отличие от цветной и черной металлургии здесь над чугуном получается сплав титанатов, а не силикатов. Титанаты железа более легкоплавки, чем окислы титана, особенно ильменит (1400 градусов) и Fe2TiO4 (1395 градусов), они в основном и снижают вязкость шлака.

Восстановление FeO и TiO до металла можно записать в общем виде уравнением (228), из которого легко получить:

pCo2/pCo=a[Fe]/a[Ti]*a(TiO)/a(FeO)=exp(dZFeO-dZTiO)/RT

Распределение железа и титана между чугуном и шлаком - функция разности сродства этих металлов к кислороду и зависит от парциального давления окиси углерода в порах шихты, определяемого расходом восстановителя и температурой.

В действительности равновесие не достигается из-за быстрого восстановления железа, накопления чугуна в начале передела и недостатка времени для последующего выравнивания состава фаз.

Плавку ведут периодически или либо непрерывно, в первом случае в шлаках удается оставить всего 5% окиси железа, а во втором 8-15%; непрерывный передел производительнее и полнее автоматизирован.

Для увеличения проплава и снижения расхода энергии шихту предварительно подогревают в трубчатых печах, сжигая мазут или газ. При этом на 1т шлака суммарно затрачивают 1750 кВт.ч.

Производство четыреххлористого титана.

Под термином «хлорирование» подразумевают обычно процесс, в котором хлор в том или ином виде взаимодействует с окислами элементов или другими их соединениями, образуя хлориды или оксихлориды, выделяемые в форме индивидуальных химических веществ или их смесей. Преимущество процесса хлорирования перед другими металлургическими процессами заключается в том, что получаемые при этом хлориды элементов имеют температуру плавления и кипения значительно ниже температур плавления и кипения окислов или других соединений соответствующих элементов. Это важное свойство хлоридов позволяет выделить те или иные полезные компоненты сырья при более низких температурах и с использованием более простых технологических приемов. Резкое различие физических свойств хлоридов - температуры плавления, кипения, сублимации - позволяет разделить отдельные элементы или группы элементов обычной термической разгонкой с последующей фракционной конденсацией. В производстве титана, циркония, ниобия применение хлорирования окисных соединений этих элементов является основным способом получения этих элементов.

В результате хлорирования происходит либо окисление металла хлором, либо замещение кислорода оксидов хлором. В общем виде схема этого процесса может быть выражена такими уравнениями:

Me + Cl2= MeCl2;

[MexOy] + y(Cl2) = x(MeCl2y/x) + (y/2) (O2).

Следует подчеркнуть одну существенную особенность процесса хлорирования- огромную скорость химических реакций и высокую степень хлорирования всех компонентов. Это значительной степени облегчает задачу управления процессом и сводит ее фактически к регулированию физических параметров:

газодинамики процесса, размеров поверхностей контактируемых фаз, количества подводимого и отводимого тепла.

При этом на практике стараются химические факторы стабилизировать за счет постоянства температурного режима и химического состава исходного сырья.

В сложившейся многолетней отечественной и зарубежной промышленной практике температурный режим процесса хлорирования поддерживают в интервале температур 973-1100 К для хлораторов с солевой ванной и 1100-1500 К для шахтных хлораторов.

Эти интервалы считаются общепринятыми, и для их поддержания в конструкцию хлораторов вводятся дополнительные энергоподводящие или энергоотводящие элементы или же они корректируются соответствующими технологическими приемами.

Вопрос об оптимальной температуре так же как и вопрос об максимальной (адиабатной) температуре процессов хлорирования, имеет важное теоретическое и практическое значение.

Принципиальная схема производства.

Процесс производства четыреххлористого титана состоит из пяти основных переделов: подготовки сырья, хлорирования, конденсации продуктов хлорирования, очистки четыреххлористого титана и переработки отходов.

Подготовка сырья заключается в приготовлении брикетов из титансодержащего материала и кокса, пригодных для хлорирования. Этот передел включает операции дробления, размола, смешения, брикетирования и прокалки брикетов.

Хлорирование осуществляется в различных аппаратах: а) со статическим или неподвижным слоем шихты (шахтные электропечи, шахтные хлораторы); б) с жидкой ванной из расплавленных хлоридов щелочных или щелочноземельных металлов (солевой хлоратор); в) с псевдокипящим слоем шихты.

Для хлорирования титансодержащих материалов (титансодержащие шлаки, искусственный и естественный рутил, некондиционные отходы титановых сплавов) применяют как 100% компрессированный хлор, так и разбавленный воздухом анодный хлоргаз, получаемый в процессе электролиза магния и натрия. В процессе хлорирования оксиды титансодержащих минералов взаимодействуют с хлором и углеродом и переводятся в хлориды. Процесс хлорирования проводят при 900-1500 К. Назначение конденсации - отделить четыреххлористый титан от хлоридов, примесных элементов и получить технический четыреххлористый титан.

Очистка технического четыреххлористого титана. Здесь происходит уже окончательная очистка четыреххлористого титана от растворенных в нем примесей.

Переработка отходов. Чем богаче материал по содержанию в нем титана, тем проще его перерабатывать путем хлорирования. Однако с повышением чистоты исходного сырья стоимость его возрастает. Поэтому для промышленного производства четыреххлористого титана применение титансодержащих материалов высокой чистоты (например титана) экономически не всегда выгодно.

Подготовка сырья.

Титановые шлаки, получающиеся в результате руднотермической

восстановительной плавки железо-титановых концентратов, дробят в щековой и конусной дробилках. После измельчения шлаки размалывают в шаровых мельницах. Размолотый шлак должен содержать фракций +0.1 мм не более 10% (по массе) и металлического железа менее 4%. После удаления с помощью магнитной сепарации металлического железа размолотый шлак поступает на хлорирование (при использовании солевых хлораторов или аппаратов кипящего слоя) или в отделение подготовки шихты (брикетирование, агломерация, окомкование) при использовании шахтных хлораторов с подвижным слоем.

Аппараты для хлорирования. Хлорирование в шахтных электропечах и шахтных хлораторах с подвижным слоем.

Шахтная электропечь. На первом этапе развития титановой промышленности в качестве основного промышленного аппарата использовались шахтные электропечи (ШЭП) для производства магния. В титановом производстве их конструкция подвергалась значительным изменениям. Шахтная электоропечь состоит из двух зон - верхней и нижней. В верхнюю зону через свод печи загружают шихту; в нижнюю зону, оборудованную электродами, загружают угольную насадку и подают хлор.

Шахтные электропечи незаменимы при использовании титаносодержащего сырья с компонентами, хлориды которых низколетучи (например, перовскиты, титаномагнетиты и др.). Шахтная электропечь сыграла важную роль в создании и развитии отечественной титановой промышленности. Хлоратор с подвижным слоем. В связи с появлением титаносодержащих шлаков с низким содержанием в них CaO и MgO шахтные электропечи вытеснены более совершенным аппаратом - хлоратором с подвижным слоем. Основное отличие его от ШЭП - отсутствие электрообогрева, сложной насадочной зоны и наличие в нижней его части герметичного разгрузочного устройства для непрерывного удаления непрохлорированного остатка.

Последнее обстоятельство позволяет коренным образом улучшить газодинамические параметры и резко интенсифицировать процесс, так как температурный режим в хлораторе и аппаратах конденсационной системы легко регулируется количеством подаваемого хлора, загрузкой брикетов и выгрузкой непрохлорированного остатка. Это в значительной степени упрощает процесс и облегчает его автоматизацию.

Уровень шихты в хлораторе поддерживают в интервале 1.2-3.5 м. Для хлорирования применяют брикеты или гранулы. Многочисленные способы приготовления гранулированной шихты можно разделить на два принципиально отличающихся метода: 1) углеродистый восстановитель и связующее дозируются с двух-трехкратным избытком, вследствие чего после прокалки образуются брикеты или гранулы с углеродистым каркасом; 2) компоненты шихты дозируются в строго стехиометрическом соотношенни и подготавливаются таким образом, что в процессе хлорирования они полностью сгорали.

Хлорирование гранул с сохраняющейся формой углеродистого брикета в фильтрующем (подвижном слое). Наиболее полно этот процесс описан Мак-Ферландом и Феттерролом и запатентован рядом авторов. Суть его заключается в том, что в шихту для хлорирования вводят двух-трехкратное количество углеродистого восстановителя и углесодержащего связующего по

отношению к стехиометрически необходимому для связывания кислорода оксидов титананосодержащего сырья и хлоровоздушной смеси в расчете на образование оксида углерода CO.

Хлорирование в хлораторах с расплавом и аппаратах с кипящим слоем. С переходом на сырье, содержащее значительное количество примесей, образующих низколетучие хлориды (лопариты, перовскиты, шлаки с высоким содержанием кальция), производительность указанных аппаратов резко падает. Поэтому и шахтные хлораторы наиболее эффективно можно использовать для хлорирования так называемых сухих титансодержащих материалов. Для хлорирования высококальциевого сырья, а так же других материалов, содержащих повышенные количества щелочноземельных элементов, выгоднее использовать хлоратор, в котором хлорирование осуществляется в жидкой ванне из расплавленных хлоридов щелочных и щелочноземельных металлов. Основные преимущества хлоратора с жидкой ванной перед другими аппаратами заключается в том, что конструкция его позволяет непрерывно выводить вместе с частью расплава не прохлорированный остаток и таким образом осуществлять практически непрерывный процесс. Кроме того, упрощается подготовка шихты: отпадает надобность в предварительном брикетировании материалов, так как в хлоратор можно загружать порошкообразную шихту.

Технология и аппаратура хлорирования титансодержащих материалов в расплаве щелочных и щелочноземельных хлоридов разработана М.К. Байбековым, Э.П. Медведчиковым и другими под руководством С.П. Солякова.

В нижней части хлоратора имеются фурмы и газораспределительное устройство для подачи хлора; в боковые стенки вмонтированы угольные или графитовые электроды, внутри которых проходят стальные водоохлаждаемые штанги. В верхней крышке хлоратора имеются отверстия для разливки расплава, загрузки шихты и патрубки для отвода парогазовой смеси. Расплав сливают через летки. Хлораторы могут быть одно- и многокамерными.

В качестве жидкой ванны используют хлориды щелочноземельных и щелочных металлов. Процесс хлорирования ведут в интервале 1000-1173К. Температура процесса определяется физико-химическими свойствами расплава - летучестью хлоридов, вязкостью, плавкостью. Шихту, состоящую из размолотого титансодержащего материала и кокса, загружают в расплав. В некоторых конструкциях компоненты шихты загружают шнековым питателем раздельно. Перед поступлением в хлоратор шихту сушат в сушилках до полного удаления влаги и летучих.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.