Судебная баллистика

Понятие судебной баллистики и судебно-баллистической экспертизы, объекты, задачи, методические основы. Понятие, классификация, устройство, назначение основных частей, индивидуальность, методика криминалистического исследования огнестрельного оружия.

Рубрика Государство и право
Вид книга
Язык русский
Дата добавления 26.12.2010
Размер файла 3,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ОПРЕДЕЛЕНИЕ ДИСТАНЦИИ И НАПРАВЛЕНИЯ ВЫСТРЕЛА

Определение дистанции и направления выстрела позволяет установить такой важный момент в обстоятельствах происшествия, как место производства выстрела (местоположение стрелявшего).

Первым этапом в определении дистанции выстрела является выяснение типа выстрела: близкий или дальний.

БЛИЗКИЙ ВЫСТРЕЛ

Факт близкого выстрела устанавливается по наличию на преграде следов воздействия дополнительных факторов выстрела. При этом необходимо принимать во внимание, что по сравнению со всеми другими факторами близкого выстрела несгоревшие пороховые зерна и их остатки могут оказывать воздействие на преграду на наибольшем расстоянии от оружия. Это расстояние определяет верхнюю границу близкого выстрела. Для большинства видов огнестрельного оружия, рассчитанного под патроны с бездымным порохом, верхняя граница не превышает 1,5--2 м, а для охотничьих ружей при использовании дымного пороха может достигать 3 м.

Дальнейшее уточнение дистанции близкого выстрела основано на зависимости наличия, характера, степени выраженности следов действия дополнительных факторов выстрела от расстояния между дульным срезом и преградой.

Условно всю дистанцию действия дополнительных факторов выстрела можно разделить на три зоны, протяженность которых зависит от вида оружия и применяемых патронов (рис. 8.8).

Рис. 8.8. Три зоны действия дополнительных факторов выстрела: 1 -- зона действия всех дополнительных факторов выстрела; 2 -- зона механического действия зерен пороха, отложения копоти и частиц металла; 3 -- зона отложения пороховых зерен

Протяженность первой зоны определяется расстоянием, на котором еще сохраняется механическое действие газов, и может составлять 3--5 см. В пределах этой зоны проявляется действие практически всех дополнительных факторов выстрела. К выстрелам с таким расстоянием до преграды относятся выстрел в упор и выстрел с очень близкого расстояния. Следует отметить, что при выстреле в упор из оружия без дульных насадок основная доля копоти выстрела увлекается пороховыми газами в повреждение, поэтому площадь зоны окопчения может быть незначительной.

Увеличение расстояния между дульным срезом оружия и преградой в пределах первой зоны даже на доли сантиметра заметно влияет на морфологию повреждения.

Вторая зона характеризуется механическим действием зерен пороха в сочетании с отложением копоти и металлических частиц. Протяженность второй зоны -- от 3--5 до 25--30 см.

В третьей зоне обнаруживаются только отложившиеся пороховые зерна или следы их удара.

В каждой зоне выраженность следов дополнительных факторов уменьшается от начала зоны к концу, а площадь их возможного обнаружения на преграде растет.

Для ориентировочного суждения о расстоянии близкого выстрела необходимо пользоваться таблицами, составленными на основе экспериментов для отдельных видов оружия. Эти таблицы содержат сведения о предельных дистанциях действия факторов близкого выстрела для различных типов и моделей оружия в зависимости от материала преграды. Так, например, предельная дистанция, на которой может наблюдаться опаление хлопчатобумажной ткани при стрельбе, из пистолета ПМ составляет 5 см, а при выстреле из охотничьего ружья 12 калибра -- 30 см.

Более точное определение дистанции выстрела для конкретного экземпляра оружия возможно экспериментальным путем с учетом всех условий выстрела на месте происшествия:

-- состояние оружия;

-- тип патрона;

-- физико-химические свойства преграды;

-- метеоусловия и пр.

Для определения направления близкого выстрела необходимо установить, во-первых, сторону преграды, с которой был произведен выстрел; во-вторых, угол, под которым снаряд вошел в преграду.

Для близкого выстрела сторона, с которой был произведен выстрел в преграду, определяется по наличию на этой стороне преграды следов дополнительных факторов выстрела (копоти, частиц пороха и др.). Однако нужно иметь в виду, что при многослойных преградах копоть может откладываться и на оборотной стороне преграды. Поэтому в данном случае при установлении стороны, с которой был произведен выстрел, нужно учитывать интенсивность окопчения, которая, естественно, будет больше с лицевой стороны.

Угол, под которым снаряд вошел в преграду при близком выстреле, может быть установлен по форме зоны окопчения, форме зоны отложения несгоревших частиц пороха, по форме пулевой пробоины и пояска обтирания, а также направлению пулевого канала.

При выстреле из оружия без каких-либо дульных насадок газовая взвесь, истекающая из канала ствола, имеет в пространстве форму конуса с вершиной, обращенной к дульному срезу. Если выстрел производился под прямым углом к преграде, то формы зоны окопчения и зоны отложения частиц пороха представляют собой круги с пулевой пробоиной или участком «минус ткань» в центре. Диаметры зон зависят от дистанции выстрела: при увеличении дистанции диаметры увеличиваются. При выстреле под углом меньше 90 градусов указанные зоны имеют форму неправильного овала, при этом пулевая пробоина расположена в той части овала, которая ближе к месту производства выстрела. При наличии на оружии дульных насадок для ответа на вопрос об угле выстрела эксперту необходимы справочные данные о форме зон окопчения и отложения частиц пороха для различных конструкций дульных насадок в зависимости от угла выстрела.

При выстреле под углом пулевая пробоина и поясок обтирания имеют форму эллипса. Для приблизительного определения угла выстрела в плоскую преграду по форме пулевого отверстия или форме пояска обтирания можно пользоваться следующей формулой (рис. 8.9):

,

где d -- длина малой оси, D -- длина большой оси эллипса.

Следует отметить, что этой же формулой можно воспользоваться и для приблизительной оценки угла выстрела по размерам зоны окопчения.

Рис. 8.9. Определение угла - а, под которым пуля вошла в преграду, по форме пулевой пробоины: 1 -- преграда; 2 -- пулевая пробоина; D -- большая ось; d -- малая ось, равная диаметру пули

ДАЛЬНИЙ ВЫСТРЕЛ

Определение дистанции и направления дальнего выстрела, то есть выстрела за пределами действия дополнительных факторов, сложная экспертная задача.

Сторона преграды, с которой был произведен дальний выстрел, в зависимости от ее материала может быть определена по наличию пояска обтирания, направлению волокон в пулевой пробоине, соотношению диаметров пулевых пробоин на сторонах преграды, положению частиц материала, выбитых из преграды, и пр. Например, пулевая пробоина в стекле имеет вид воронки, расширяющейся к выходному отверстию, выходное отверстие в дереве характеризуется отщипами и отколами.

Угол, под которым снаряд вошел в преграду при дальнем выстреле, может быть определен по форме входного отверстия, форме пояска обтирания или непосредственно по направлению пулевого канала. Кроме этого, на выстрел под углом к преграде может указывать неодинаковая длина трещин вокруг пулевой пробоины в таких преградах, как стекло, кафель, кость (в направлении полета пули трещины имеют большую протяженность).

Для определения места дальнего выстрела существует несколько способов, выбор которых зависит от вида пулевого повреждения, условий выстрела, характера местности, где случилось происшествие, и пр.

НЕПОСРЕДСТВЕННОЕ ВИЗИРОВАНИЕ

Этот способ позволяет установить наиболее вероятное место расположения стрелявшего при условии прямой (или близкой к прямой) траектории полета пули, нанесшей повреждение. При этом надо учитывать, что место выстрела может быть не обязательно у конечной точки визирования, но и у любой другой точки на этой прямой в пределах роста человека или высоты предмета, на котором мог размещаться стрелок. Существует несколько методов непосредственного визирования:

Рис. 8.10. Визирование с помощью трубки, вставленной в пулевые повреждения: 1 -- трубка; 2 -- линия визирования

-- с помощью трубки, вставленной в повреждение (рис. 8.10);

-- с помощью зондов (при протяженном пулевом канале) или с помощью натяжения нити между повреждениями, расположенными на значительном расстоянии;

-- с помощью геодезических инструментов (теодолит, нивелир);

-- с помощью луча лазера.

ПО НАПРАВЛЕНИЮ ПОЛЕТА ПУЛИ И УГЛУ ЕЕ ПАДЕНИЯ

Этот способ применяется, если поражение цели произошло пулей, летящей по навесной траектории, на что указывает направление линии визирования, проходящей снизу-вверх и выше предметов местности, с которых мог быть сделан выстрел.

Для ориентировочного определения места положения стрелявшего координаты поврежденного объекта переносят на карту местности, затем из этой точки проводят азимут траектории. Азимут траектории устанавливается на месте происшествия с помощью компаса, как угол между меридианом, проходящим через повреждение, и вертикальной плоскостью, в которой лежит траектория пули.

Для выяснения дальности полета пули решается задача внешней баллистики по расчету дистанции выстрела по известной начальной скорости пули и углу падения или пользуются уже рассчитанными таблицами. При этом угол падения пули определяется по направлению пулевого канала к горизонту, а начальная скорость пули -- по таблицам характеристик оружия, модель которого устанавливается из анализа следов на пуле. Для установления участка местности, с которой был произведен выстрел, рассчитанная дальность в соответствующем масштабе откладывается на карте в направлении, задаваемом азимутом траектории.

ПО ГЛУБИНЕ И НАПРАВЛЕНИЮ СЛЕПОГО ПУЛЕВОГО КАНАЛА

Применение этого способа ограничено случаем, когда материал преграды однороден, сохраняет глубину и направление пулевого канала. Кроме того, форма пулевого канала должна указывать на то, что пуля не меняла ориентацию, не была существенно деформирована и не кувыркалась.

Глубина проникновения пули в преграду при прочих равных условиях (модель применяемого оружия, конструкция и начальная скорость пули, свойства материала и пр.) зависит от дистанции выстрела. Поэтому по известной глубине пулевого канала с помощью приведенных в справочной литературе графиков, построенных на основе экспериментальных данных, можно ориентировочно судить о дистанции выстрела. Так, при стрельбе из ПМ в гипсолитовую плиту канал глубиной 55мм образуется с расстояния 10м, а глубиной 45мм -- с расстояния 50м. В древесине глубина канала для той же модели оружия и расстояний составляет соответственно 80мм и 60мм.

ОПРЕДЕЛЕНИЕ ПО СЛЕДАМ НА ПРЕГРАДЕ ПОСЛЕДОВАТЕЛЬНОСТИ И КОЛИЧЕСТВА ВЫСТРЕЛОВ

Вопрос о последовательности выстрелов -- один из самых сложных и обычно решается в вероятностной форме. На последовательность выстрелов могут указывать:

-- характер радиальных трещин вблизи пулевых пробоин в таких объектах, как стекло, кафель, кость и т.п. Радиальные трещины от последующих выстрелов заканчиваются на аналогичных трещинах предыдущих выстрелов. Последний из последовательности выстрелов по стеклу может быть также установлен по наличию мелких порошкообразных частиц стекла вокруг пулевой пробоины;

-- интенсивность отложения пояска обтирания. Например, при стрельбе из вычищенного оружия интенсивность окраски пояска обтирания при первом выстреле намного меньше, чем при последующих выстрелах. Это объясняется тем, что пули второго и последующих выстрелов проходят по уже оконченному стволу и собирают на свою поверхность больше продуктов выстрела, которые затем откладываются на преграде;

-- наличие следов ружейной смазки. Отложение ружейной смазки вокруг пулевого повреждения выявляется практически только при первом после чистки оружия выстреле;

-- характер следов полей нарезов на пуле. Если ствол имеет достаточно толстый слой смазки, то из-за эффекта «масляного клина» на первой выстреленной пуле следы полей нарезов будут менее интенсивны, чем на второй и последующих пулях;

-- очередность отстрела гильз. В этом случае очередность выстрелов устанавливается по расположению гильз на месте происшествия с последующим определением взаимного соответствия стреляных гильз и выстреленных пуль;

-- расположение гильз в барабане револьвера при условии, что положение барабана не изменялось;

-- характер расположения пробоин при стрельбе очередями из автоматов и пистолетов-пулеметов. Так, например, при стрельбе из АКМ пробоины от первых пуль расположены ближе друг к другу и обычно пробоины от последующих выстрелов располагаются правее и выше, чем от предыдущих.

Количество выстрелов из оружия может быть установлено:

-- по числу пулевых пробоин;

-- по числу обнаруженных на месте происшествия гильз и пуль после их последовательного сопоставления.

Для гладкоствольного охотничьего оружия количество выстрелов может быть определено подсчетом дробовых повреждений, входящих в осыпь, с последующим сравнением этого количества со справочными данными по охотничьим патронам.

Кроме того, на число выстрелов может указывать степень окопчения деталей и частей оружия, таких как поршень затворной рамы, ствольная коробка и пр.

СЛЕДЫ НА ПРЕГРАДЕ ПРИ ВЫСТРЕЛЕ ИЗ ГЛАДКОСТВОЛЬНОГО ОРУЖИЯ. ОПРЕДЕЛЕНИЕ ДИСТАНЦИИ И НАПРАВЛЕНИЯ ВЫСТРЕЛА ПО ДРОБОВОЙ ОСЫПИ

Применяемые в гладкоствольном оружии патроны, при снаряжении которых используются различного вида пыжи и прокладки, а в качестве снаряда дробь, обусловливают некоторые особенности в следах близкого и дальнего выстрела. Эти особенности связаны с выбросом из канала ствола во время выстрела пыжей и своеобразным действием на преграду дробового полиснаряда.

В зависимости от степени рассеивания при полете дробового снаряда он может оказывать на преграду три вида механического воздействия: сплошное, или компактное, относительно сплошное и воздействие дробовой сыпи.

Сплошное действие дроби наблюдается при выстрелах с дистанции до 0,5--1 м, когда дробовой снаряд еще не успел рассыпаться в полете и действует как единый. При этом повреждения на преграде представляют собой одно отверстие круглой или овальной формы, диаметр которого зависит от калибра ружья, дистанции, и может достигать 4см.

Относительно сплошное действие дроби проявляется при выстрелах с дистанции от 0,5--1 до 2--5 м, когда в полете начинает проявляться процесс рассеивания дробового снаряда. При этом повреждение на преграде представляет собой относительно большое центральное отверстие, образованное кучно летящими дробинами и пыжом, и находящиеся вокруг него мелкие отверстия от отдельных дробин.

Воздействие дробовой сыпи проявляется при выстрелах с расстояния более 5 м. В этом случае на преграде не образуется большого центрального отверстия, а возникают только множественные мелкие повреждения, занимающие в зависимости от дистанции ту или иную площадь. Такое повреждение носит название дробовой осыпи.

Приведенные данные о дистанциях различного действия дробового снаряда справедливы для выстрелов из охотничьих ружей нормально снаряженными патронами. При выстрелах из обрезов или в случае прорыва газов в дробовой заряд, а также при использовании самодельной дроби -- «сечки» сплошное действие снаряда наблюдается только на расстоянии до 20 см.

Вылетевшие пыжи как еще один фактор выстрела могут оказывать на преграду механическое воздействие, приводящее к дополнительным сквозным повреждениям материала преграды или внедрению в нее пыжей. Кроме того, они могут оставлять на преграде переносимую ими копоть и отдельные зерна пороха.

Предельная дистанция полета для войлочных пыжей составляет до 50 м, для картонных пыжей-прокладок -- до 15 м, самодельных пыжей из скомканной бумаги - до 10 м.

При сплошном действии дроби пыжи обычно влетают в повреждение, при относительно сплошном действии -- могут способствовать образованию центрального отверстия. Вместе с тем пыжи при полете могут отклоняться в сторону и оставлять на преграде свои собственные следы.

При установлении направления и дистанции близкого выстрела из гладкоствольного оружия используются те же закономерности в образовании следов действия дополнительных факторов выстрела, что и при стрельбе из нарезного оружия. Однако при установлении факта близкого выстрела из охотничьего ружья необходимо иметь в виду, что наличие на преграде единичных зерен пороха не может выступать доказательством близкого выстрела, так как возможен их перенос пыжами на расстояние до 15 м. В то же время дополнительным признаком близкого выстрела из охотничьего ружья может служить сплошное действие дроби.

В основу определения дистанции дальнего выстрела из охотничьего ружья положена зависимость, существующая между дистанцией выстрела и размерами дробовой осыпи на преграде: чем больше дистанция при прочих равных условиях, тем больше размеры осыпи. В зависимости от исходной информации дистанция выстрела может быть определена экспериментальной стрельбой или по справочным таблицам и графикам.

Эксперимент применяется в ситуации, когда на исследование поступает оружие, относительно которого и задан вопрос о дистанции выстрела. В этом случае, проводя серию экспериментальных выстрелов из оружия, получают набор дробовых осыпей для нескольких фиксированных расстояний L. Затем для каждого расстояния определяют диаметр максимальной осыпи Dmax и диаметр минимальной осыпи Dmin. Построив графики зависимостей Dmax(L) и Dmin(L), по известному диаметру осыпи дроби с места происшествия Dii определяют максимально Lmax и минимально Lmin возможные дистанции выстрела (рис. 8.11). При проведении эксперимента следует иметь в виду, что размеры дробовой осыпи зависят не только от дистанции, но и от большого числа других факторов, которые связаны с конструкцией оружия, снаряжением патронов и метеоусловиями выстрела. Например, диаметр дробовой осыпи увеличивается при:

-- уменьшении длины ствола оружия;

-- уменьшении величины дульного сужения ствола (для средней и мелкой дроби);

-- использовании перфорированных и жестких пыжей;

-- неплотном снаряжении патрона;

-- использовании дымного пороха;

-- использовании мелкой дроби;

-- встречном ветре.

Рис. 8.11. Схема определения дистанции выстрела по дробовой осыпи: Dmax(L) и Dmin(L) -- зависимости размеров максимальной и минимальной осыпи дроби от расстояния выстрела; Dii -- диаметр осыпи дроби с места происшествия; Lmax и Lmin -- наибольшая и наименьшая дистанции выстрела

Поэтому для уменьшения ошибки в определении дистанции условия экспериментальной стрельбы должны соответствовать условиям криминального выстрела, устанавливаемым из обстоятельств дела.

В тех случаях, когда оружие не представлено, но его модель и калибр установлены в процессе исследования повреждения и дроби, дистанцию выстрела ориентировочно определяют по таблицам и графикам, содержащим зависимости диаметра полной осыпи дроби от расстояния выстрела для различных размеров дроби и типов пороха.

Если исследуемая осыпь является неполной, то есть образована только частью (не менее 1/3) дробового снаряда, для определения дистанции необходимо предварительно вычислить диаметр полной осыпи. В приближении равномерного распределения дробин в осыпи диаметр полной осыпи можно оценить из условия равенства плотности распределения дробин в полной и неполной осыпи:

где n -- число дробин в неполной осыпи; S -- площадь неполной осыпи; N -- табличное значение количества дробин в стандартно заряженном патроне соответствующего калибра; D - искомый диаметр полной осыпи дроби.

Определить направление выстрела, а в некоторых случаях и оценить местоположение стрелявшего, можно при наличии достаточно глубоких дробовых каналов на преграде. Для этого в несколько каналов в различных частях осыпи дроби помещаются относительно длинные зонды соответствующего диаметра. Точка, в которой пересекутся продолжения зондов, приблизительно укажет место выстрела.

СПОСОБЫ ВЫЯВЛЕНИЯ СЛЕДОВ ВЫСТРЕЛА НА ПРЕГРАДЕ

При исследовании повреждений, в первую очередь, необходимо убедиться, что оно действительно является огнестрельным. В принципе вопрос об огнестрельном происхождении повреждения решается по совокупности морфологических признаков, характерных для повреждающего действия различных факторов выстрела: наличию «минус ткани», снаряда в канале, пояска обтирания и следов близкого выстрела.

Для обнаружения следов близкого выстрела и пояска обтирания применяются различные методы.

ОСМОТР В ИНФРАКРАСНЫХ ЛУЧАХ (ИК)

Осмотр и фотографирование в ИК-лучах позволяет выявить следы действия дополнительных факторов выстрела, например, на темной ткани, ткани, залитой кровью или загрязненной, и пр. Это связано с тем, что ИК-излучение проникает через слой засохшей крови и многие красители, отражается от кожи и текстильных тканей, но в то же время поглощается различными металлами и углеродом.

Осмотр в отраженных ИК-лучах проводится с помощью электронно-оптических преобразователей при освещении объекта лампами накаливания через соответствующие фильтры. Копоть, зерна пороха, металлические частицы, поясок обтирания поглощают ИК-лучи и выглядят темно-серыми на светлом фоне окружающей ткани. Для фотографирования в ИК-лучах используются специальные негативные материалы, сенсибилизированные к ИК-зоне спектра.

ОСМОТР В УЛЬТРАФИОЛЕТОВЫХ ЛУЧАХ (УФ)

Облучение объекта УФ-лучами способно вызывать его люминесценцию, длина волны которой зависит от свойств материала. Источниками УФ-излучения могут служить, например, ртутно-кварцевые лампы.

Минеральные масла, которые входят в ружейную смазку, под действием ультрафиолетовых лучей светятся ярким голубовато-белым цветом, а частицы осалки -- желтовато-оранжевым.

Зерна бездымного пороха, в том числе и полусгоревшие, также способны люминесцировать в УФ-лучах. Степень и характер их люминесценции зависит от марки бездымного пороха. Дымный порох не люминесцирует в УФ-лучах.

Копоть выстрела в УФ-лучах выглядит бархатисто-черной, а опаленные участки текстильных тканей -- буровато-оранжевыми на общем темном фоне.

КОНТАКТНО-ДИФФУЗНЫЙ МЕТОД

Одним из основных признаков огнестрельного повреждения является отложение в области входного отверстия металлов, являющихся частью копоти выстрела. В копоти выстрела могут встречаться: ртуть, сурьма, олово как продукты разложения капсюльного состава; медь, цинк, никель, свинец, появляющиеся в результате истирания поверхности пули и вымывания пороховыми газами материала ее дна; железо как материал стенок канала ствола.

Для их обнаружения благодаря своей простоте и доступности в основном используется контактно-диффузный метод. Этот метод позволяет не только установить природу металлов, но и их топографическое распределение.

Суть контактно-диффузного метода в следующем. Часть металлов с поверхности объекта переносится на адсорбент, где и обнаруживается с помощью реактивов-проявителей, дающих в результате взаимодействия с металлами характерную окраску. В качестве адсорбента, как правило, используется желатиновый слой заранее отфиксированной фотобумаги. В адсорбент частицы металла переходят в результате диффузии. Для этого он пропитывается реактивом, способным растворить искомый металл, и плотно прижимается к объекту. Так, для обнаружения свинца отфиксированную фотобумагу можно вымачивать в растворе уксусной кислоты, являющейся для него растворителем, а в качестве реактива-проявителя использовать раствор сульфида натрия. Реактивы, используемые для выявления основных металлов выстрела контактно-диффузным методом, приведены в таблице.

МЕТОД ПРОЯВЛЕНИЯ

Для визуализации копоти выстрела на темных тканях может быть использован так называемый метод проявления. Этот способ состоит в том, что при помощи растворов хлорной извести, гидросульфата, азотной кислоты или перекиси водорода удаляется окраска ткани. После этого на обесцвеченном участке вблизи пулевого повреждения можно наблюдать окопчение.

ФИЗИЧЕСКИЕ МЕТОДЫ

Из физических методов для определения элементного состава веществ в зоне огнестрельного повреждения применяется эмиссионный спектральный анализ. Этот метод обладает высокой чувствительностью и позволяет устанавливать не только качественный состав копоти, но и процентное содержание входящих в нее элементов. Эмиссионный спектральный анализ основан на регистрации спектров испускания возбужденными атомами вещества строго определенного набора длин волн.

МЕТОДЫ ИССЛЕДОВАНИЯ ПОРОХА И ПРОДУКТОВ ЕГО ГОРЕНИЯ

Принадлежность частиц к пороху того или иного типа устанавливается по их форме, окраске, растворимости в воде и продуктам сгорания.

По форме зерна бездымного пороха имеют вид относительно правильных квадратных, прямоугольных и круглых пластинок, полых или сплошных цилиндров, а также могут иметь сферическую форму. Цвет зерен бездымного пороха -- зеленый, желто-коричневый, бурый. Цвет зерен графитированного пороха -- черный с металлическим блеском.

Зерна бездымного пороха в воде не растворяются, при их сгорании образуются окиси углерода, азота (нитраты и нитриты).

Зерна дымного пороха имеют неправильную угловатую форму. Они бывают блестящего или матового черного цвета, темного и светло-коричневого цвета. В воде зерна дымного пороха распадаются вследствие растворимости селитры, входящей в состав дымного пороха. Дымный порох при сгорании образует углекислый калий, сернистый калий, нитраты, сульфаты и сульфиды, углерод в виде сажи и графита.

Для установления принадлежности обнаруженной частицы к пороху ее проверяют на вспышку, поднося к ней раскаленную иглу, а затем к продуктам горения добавляют раствор дифениламина в концентрированной серной кислоте. При взаимодействии с нитратами, имеющимися в продуктах горения как дымного, так и бездымного пороха, происходит окрашивание раствора в синий цвет. По совокупности результатов термической и химической проб судят о принадлежности частиц к пороху.

Надо учитывать, что голубоватое окрашивание раствора дифениламина получается и при реакции с рядом других соединений, например, с окислами железа. Это может привести к ошибке при установлении природы налета в канале ствола, при решении задачи о производстве выстрела из оружия после последней чистки канала ствола.

Тот факт, что в продуктах сгорания бездымного пороха всегда образуются нитриты (NO2) и не содержатся соединения с серой и калием, характерные для продуктов сгорания дымного пороха, используется для установления типа применявшегося при выстреле пороха по продуктам, остающимся в канале ствола и на преграде.

Таблица реактивов для выявления металлов в следах выстрела

МЕТОДИКА ЭКСПЕРТНОГО ИССЛЕДОВАНИЯ ПО УСТАНОВЛЕНИЮ ДИСТАНЦИИ И НАПРАВЛЕНИЯ БЛИЗКОГО ВЫСТРЕЛА

При таком экспертном исследовании в зависимости от исходной информации возможны три ситуации:

-- имеется объект с повреждением и оружие, при выстреле из которого оно было нанесено;

-- имеется объект с повреждением и известна модель использованного оружия;

-- имеется только объект с повреждением.

Первая ситуация. На стадии раздельного исследования на объекте ищутся повреждения, похожие на огнестрельные. Для них проводятся исследования морфологических признаков (форма, размер, характер краев, наличие или отсутствие «минус ткани»). Если эти признаки указывают на огнестрельный характер повреждения, то в дальнейшем оно служит ориентиром для обнаружения на прилегающих участках копоти, частиц пороха, смазки.

Участок объекта вокруг отверстия исследуется на предмет присутствия окопчения, опаления, частиц пороха и следов смазки. Следует учитывать, что различные загрязнения, кровь или темный цвет объекта маскируют следы дополнительных факторов выстрела.

Для выявления следов дополнительных факторов выстрела используют необходимые методы. После выявления следов дополнительных факторов выстрела проводятся все необходимые измерения зоны окопчения, зоны отложения частиц пороха, устанавливается их топография, интенсивность окопчения, плотность отложения зерен пороха.

На основании выявленного комплекса признаков устанавливается:

-- огнестрельный характер повреждения;

-- входная и выходная стороны огнестрельного повреждения;

-- тип выстрела (в упор, близкий, дальний);

-- ориентировочное направление выстрела;

-- соответствие калибра использованного оружия и его групповой принадлежности с представленным.

Проводится масштабная фотосъемка объекта со стороны входного повреждения с указанием пулевого повреждения на объекте либо на фотографии.

На этапе предварительного сравнения проводится сопоставление выявленного комплекса признаков со справочными данными о характере отображения следов выстрела на различных дистанциях при выстреле из оружия данной модели. Результаты такого предварительного сравнения во многих случаях позволяют эксперту сузить интервал дистанций, с которых будет производиться экспериментальная стрельба.

Получение экспериментальных образцов. При экспериментальной стрельбе необходимо:

-- использовать экспериментальные мишени с физико-химическими свойствами, максимально приближенными к исследуемому объекту;

-- использовать патроны, аналогичные используемым на месте происшествия;

-- учитывать метеорологические факторы в момент криминального выстрела.

При сравнительном анализе комплекса признаков, установленных при изучении исследуемого объекта и экспериментальных мишеней, решающее значение имеют такие показатели, как размер пятна окопчения, количество частиц пороха на единицу площади и др. На основании проведенного сравнения составляется вывод о дистанции и направлении выстрела, при этом значения дистанции и угла даются в наиболее узких интервалах.

Вторая ситуация отличается тем, что при получении образцов для сравнительного исследования используется оружие соответствующей модели (желательно несколько экземпляров) или сравнение проводят с табличными данными о следах близкого выстрела для этой модели оружия. В качестве границ интервала выбирают предельные дистанции обнаружения соответствующих следов близкого выстрела. Например, известно, что выстрел производился из ПМ и на преграде из следов близкого выстрела обнаружены только внедрившиеся зерна пороха. В этом случае за нижнюю границу интервала возможных дистанций принимается предельное расстояние, на котором возможно отложение копоти при стрельбе из ПМ, а за верхнюю - предельное расстояние, на котором возможно внедрение зерен пороха в преграду, аналогичную исследуемой.

В третьей ситуации определить дистанцию выстрела можно весьма приблизительно. Это связано с тем, что по следам выстрела, как правило, устанавливается достаточно широкий круг моделей оружия, из которых мог быть произведен выстрел. Для каждой из них, пользуясь справочными данными, находится нижняя и верхняя граница интервала возможных дистанций выстрела. В выводах указывается наиболее вероятный интервал, в качестве границ которого выбирается наименьшая нижняя граница и наибольшая верхняя.

Рассмотренная методика основана на сравнении следов выстрела с экспериментальными или справочными данными. Однако такой подход, в общем случае, не позволяет добиться желаемой точности в определении дистанции выстрела. Поэтому разработка новых методов в установлении обстоятельств выстрела является актуальной задачей теории и практики экспертных исследований.

ПОНЯТИЕ БОЕПРИПАСОВ

Понятие «боеприпасы» в военно-технической, спортивно-охотничьей и других областях человеческой деятельности охватывает весьма разнообразный и широкий круг объектов.

В то же время для решения задач судебно-баллистической экспертизы, связанных с исследованием боеприпасов и их частей, необходимо опираться на определение, отвечающее целям уголовного судопроизводства и позволяющее отличить боеприпасы от схожих объектов.

В Комментариях к ранее действовавшему Уголовному кодексу, а именно, к статье 218 УК РСФСР разъясняется: «Под боевыми припасами понимаются патроны, артиллерийские снаряды, бомбы, гранаты, боевые ракеты и тому подобные устройства, начиненные порохом или иным взрывчатым веществом, предназначенные для стрельбы из огнестрельного оружия или для производства взрыва».

В законе РФ «Об оружии» от 20 мая 1993 г. боеприпасы определены следующим образом: «Боеприпасы -- это устройства или предметы, конструктивно предназначенные для выстрела из оружия соответствующего вида».

Очевидно, что множества объектов, подпадающие под определение «боеприпасы», в том и другом случае существенно различны. Так, согласно определению в законе «Об оружии» ручные гранаты боеприпасами не являются, а пули к пневматическому оружию -- являются.

В законе РФ «Об оружии», вступившем в силу с 1 июля 1997 г., дано следующее определение боеприпасов: «Боеприпасы -- предметы вооружения и метаемое снаряжение, -- предназначенные для поражения цели и содержащие разрывной, метательный, пиротехнический или вышибной заряды либо их сочетание».

В этом определении понятие боеприпасов вводится через термины «предметы вооружения и метаемое снаряжение», смысл которых в законе не раскрывается.

Неоднозначность определения боеприпасов в различных нормативных документах и отсутствие в них признаков, позволяющих правильно квалифицировать объект исследования, побудили криминалистов к разработке понятия «боеприпасы», соответствующего решаемым криминалистикой задачам.

С криминалистической точки зрения боеприпасы, -- это многокомпонентные по своей конструкции предметы, одноразового действия, предназначенные для поражения цели с использованием взрывчатых веществ в результате выстрела из огнестрельного оружия или взрыва.

В этом определении указываются основные конструктивные признаки боеприпасов, обусловленные их целевым назначением, а именно:

-- использование взрывчатого вещества;

-- многокомпонентность;

-- одноразовость.

Исходя из данного определения, в криминалистике к боеприпасам не относят:

-- патроны, не предназначенные для поражения цели (холостые, учебные, сигнальные, шумовые, строительные);

-- отдельные элементы патронов, представленные изолированно (гильза, капсюль, пуля, порох, пыж);

-- учебные гранаты, пиротехнические средства, взрывные пакеты и прочие взрывные устройства, не предназначенные для поражения цели.

Специфика реализации целевого назначения предполагает две группы боеприпасов:

-- боеприпасы к огнестрельному оружию (боевые патроны и артиллерийские выстрелы);

-- взрывные устройства.

Взрывные устройства и артиллерийские выстрелы в рамках данной темы рассматриваться не будут.

Таким образом, не всякий патрон относится к боеприпасам, в свою очередь, не каждый боеприпас является патроном, то есть боеприпасы и патроны образуют два пересекающихся множества предметов.

КЛАССИФИКАЦИЯ ПАТРОНОВ К РУЧНОМУ ОГНЕСТРЕЛЬНОМУ ОРУЖИЮ

Как таковые патроны появились значительно позже, чем первые образцы ручного огнестрельного оружия. Первоначально порох и пуля вводились в канал ствола раздельно, а воспламенение заряда производилось извне. Поиски способов предварительной подготовки зарядов для ускорения заряжания ружей привели к появлению в XVII веке первых патронов, представляющих собой бумажный пакетик с пулей и определенным, заранее отмеренным количеством пороха. При заряжании пакет надрывался, порох высыпался в канал ствола и на затравочную доску. Пуля с бумажным пакетом вводилась в канал ствола и досылалась до порохового заряда шомполом. Бумага, прибитая шомполом, играла роль пыжа.

Рис. 3.1. Патрон конструкции Дрейзе: 1 -- инициирующий состав; 2 -- порох

В 1829 году появился патрон конструкции Дрейзе (рис. 3.1), в котором снаряд, пороховой и инициирующий заряды были соединены воедино посредством бумажного пакета (прообраз гильзы). Такой патрон получил название унитарного (от латинского слова unit -- единица).

Таким образом, по конструкции патроны можно разделить на:

-- унитарные патроны, в которых посредством гильзы соединены воедино пуля, заряд пороха и капсюль-воспламенитель. Данный патрон, пользуясь трасологической терминологией, является комплектным целым;

-- неунитарные патроны, части которых не объединены в одно целое, а помещаются в канал ствола порознь;

-- безгильзовые патроны, которые начинают использоваться в современных образцах ручного огнестрельного оружия.

В настоящее время подавляющее большинство патронов являются унитарными, поэтому в дальнейшем, говоря о патронах, будем иметь в виду именно их, если не оговорено специально. Кроме как по конструкции, патроны можно классифицировать по следующим основаниям.

По размещению инициирующего (воспламенительного) состава выделяют:

-- патроны центрального боя, у которых инициирующий состав находится в специальном корпусе -- капсюле, размещенном в центре дна гильзы;

-- патроны кольцевого воспламенения с инициирующим составом, запрессованным во фланец гильзы (рис. 3.2а);

-- патроны бокового воспламенения (шпилечные) с инициирующим составом внутри порохового заряда в корпусе гильзы (рис. 3.2б).

Рис. 3.2. Патрон кольцевого воспламенения (а) и патрон бокового воспламенения (б): 1 -- гильза; 2 -- инициирующий состав; 3 -- порох; 4 -- снаряд; 5 - шпилька

По целевому назначению патроны к ручному огнестрельному оружию бывают:

-- боевые (армейские, полицейские);

-- гражданские (охотничьи, спортивные, газовые);

-- имитационные (холостые, шумовые, учебные и пр.);

-- проверочные (для проверки стволов, запирающего устройства, баллистических свойств оружия).

По калибру патроны делятся на:

-- малокалиберные (менее 6,5 мм);

-- среднекалиберные (от 6,5 мм до 9 мм);

-- крупнокалиберные (более 9 мм).

По типу используемого оружия патроны условно разделяют на:

-- винтовочные;

-- промежуточные;

-- пистолетные;

-- револьверные.

По способу изготовления:

-- промышленные;

-- самодельные.

По отношению к используемому оружию:

-- штатные;

-- патроны-заменители;

-- нештатные.

Штатные -- это патроны, которые предназначены для данной модели оружия как с точки зрения размеров, так и правильности работы автоматики и долговечности службы узлов оружия. К патронам-заменителям относятся патроны, которые, соответствуя оружию по размерным характеристикам, могут и не обеспечивать правильной работы его автоматики и долговечности узлов оружия (иной заряд или марка пороха, иное давление форсирования и др.).

Нештатные патроны не соответствуют оружию даже по размерным характеристикам. При этом надо учитывать, что в ряде случаев выстрел из оружия возможен и при использовании нештатного патрона с калибром большим, чем калибр ствола оружия (патроном ПМ из ТТ).

УСТРОЙСТВО УНИТАРНЫХ ПАТРОНОВ И ИХ ОСНОВНЫХ ЧАСТЕЙ

Многокомпонентность боеприпасов к огнестрельному оружию предполагает наличие в патронах следующих основных частей: гильзы, капсюля-воспламенителя, снаряда, метательного заряда.

Гильза служит для соединения всех элементов патрона в единое целое. По форме гильзы бывают:

-- цилиндрические;

-- бутылочные.

Цилиндрические гильзы применяются в патронах с относительно небольшим давлением пороховых газов, бутылочные -- со значительным давлением.

В гильзах различают следующие основные элементы (рис. 3.3, 3.4):

срез -- торец со стороны открытого конца гильзы;

дульце -- передняя часть гильзы, переходящая в скат или корпус и предназначенная для крепления гильзы с пулей;

скат -- переходная конусная часть гильзы между дульцем и корпусом;

корпус -- коническая или цилиндрическая часть гильзы от донной части до ската или среза;

каннелюра -- кольцевая накатка на корпусе гильзы, образующая кольцевой выступ на внутренней поверхности гильзы, который служит упором для пули;

дно -- задняя поперечная стенка гильзы;

донная часть -- часть гильзы, включающая проточку, фланец, дно, перегородку, запальные отверстия, капсюльное гнездо и наковальню;

проточка -- кольцевая канавка в донной части гильзы, образующая фланец;

фланец -- поясок в донной части гильзы, предназначенный для извлечения гильзы или патрона из патронника. Фланец может быть как выступающим (полностью или частично), так и невыступающим. Гильзы с невыступающим фланцем иногда называют бесфланцевыми. В литературе все еще встречается устаревший термин «закраина», который обозначает выступающий фланец;

перегородка -- стенка в донной части гильзы, отделяющая капсюльное гнездо от внутренней полости;

капсюльное гнездо -- углубление с наружной стороны донной части гильзы, в котором крепится капсюль-воспламенитель;

наковальня -- выступ в центре капсюльного гнезда гильзы, на котором разбивается инициирующий состав капсюля-воспламенителя;

запальное отверстие -- отверстие в перегородке гильзы для передачи форса огня к метательному заряду.

Рис. 3.3. Основные элементы бутылочной (а) и цилиндрической (б, в) гильз: 1 -- срез гильзы; 2 -- корпус; 3 -- дульце; 4 -- скат; 5 -- каннелюра; 6 -- дно; 7 -- проточка; 8 -- фланец

В зависимости от конструкции у гильзы могут отсутствовать какие-либо элементы. Так, каннелюра встречается только у гильз цилиндрической формы, например, к патронам 7,65 мм и 9 мм Браунинга, патронам .45 калибра к пистолету Кольта; наковальня отсутствует у гильз под капсюль закрытого типа.

Материалом для изготовления гильз служит латунь, алюминий, сталь, пластмасса, бумага. В настоящее время для изготовления гильз используется в основном латунь и сталь, покрытая томпаком (сплав меди -- 90% и цинка -- 10%).

Гильзы патронов к охотничьим гладкоствольным ружьям имеют цилиндрическую форму. Материалом для их изготовления служат: латунь, бумага, пластмасса. В неметаллической гильзе деталь, образующая корпус гильзы, называется трубкой, а металлическая деталь, образующая ее донную часть, -- основанием гильзы.

Капсюль-воспламенитель предназначен для воспламенения пороха вследствие взрывчатого разложения содержащегося в капсюле инициирующего состава, чувствительного к механическому воздействию. Капсюль-воспламенитель как элемент патрона применяется только в патронах центрального боя.

В зависимости от особенностей конструкции капсюли бывают:

-- открытого типа (рис. 3.4а), для которых наковальня делается в капсюльном гнезде гильзы («Бердан» или «Центробой»). Эти капсюли состоят только из колпачка и закрывающей инициирующий состав свинцовой прокладки;

- закрытого типа (рис. 3.4б), состоящие из гильзочки, колпачка, свинцовой прокладки и имеющие внутреннюю наковальню («Жевело», «Боксер»).

Рис. 3.4. Устройство донной части гильзы и капсюля-воспламенителя: а -- открытый капсюль; б -- закрытый капсюль (1 -- инициирующий состав, 2 -- свинцовая фольга, 3 -- колпачок, 4 -- гильзочка, 5 - капсюльное гнездо, 6 -- наковальня, 7 -- затравочные отверстия)

Существует группа внутренних капсюлей-воспламенителей для патронов центрального боя. Их преимущество -- полная герметичность, так как такой капсюль помещается внутри гильзы, в которой отсутствует капсюльное гнездо, и дно выглядит совершенно гладким (рис. 3.5).

Рис. 3.5. Донная часть гильзы с внутренним капсюлем

По химическому составу и соответственно по характеру его воздействия на канал ствола инициирующее вещество бывает:

- оржавляющим -- на основе гремучей ртути -- Hg(CNO)2 с добавками солей сурьмы и бария в качестве стабилизаторов;

- неоржавляющим -- на основе смеси азида свинца -- Pb(N3)2 и тринитрорезоцината свинца.

Снарядами в патронах могут быть пули, дробь или картечь. Пули применяются в патронах к нарезному, гладкоствольному оружию, а дробь и картечь используются в основном для снаряжения охотничьих патронов.

Пули нарезного оружия по функциональному назначению делятся на обычные, предназначенные для поражения живой цели, и специальные. Специальные пули могут быть бронебойными, трассирующими, зажигательными, бронебойно-зажигательными и т.д. Конструкции специальных пуль весьма разнообразны и их рассмотрение выходит за рамки данной книги.

У пуль к нарезному оружию различаются следующие внешние конструктивные части: головная или оживало (от франц. ogive -- обтекатель, стрелка), ведущая, хвостовая и дно (рис. 3.6).

Рис. 3.6. Элементы внешнего строения пули: 1 -- головная часть; 2 -- ведущая часть; 3 -- хвостовая часть; 4 -- дно

По форме головная часть (рис. 3.7) бывает остроконечной (промежуточный патрон обр.1943 г.), закругленной (патрон пистолета ТТ), полусферической (патрон ПМ), плоской (патрон Нагана) и т.д.

Рис. 3.7. Некоторые формы головной части пуль: 1 -- остроконечная; 2 -- закругленная; 3 -- полусферическая; 4 -- плоская

Ведущая часть пули по форме близка к цилиндру и является основной следовоспринимающей частью при прохождении пулей канала ствола.

Хвостовую часть в форме конусовидного сужения имеют пули винтовочных и промежуточных патронов. У пуль спортивно-охотничьих патронов калибра 5,6 мм хвостовая часть близка к цилиндру и служит для крепления пули с гильзой. У пуль к пистолетным патронам обычно не разделяют ведущую и хвостовую части.

Дно пули может иметь различную форму. Так, пули 7,62 мм пистолетных патронов обр.1930 г. имеют как плоское, так и выпуклое дно (высота выпуклости не превышает высоты забортовки оболочки); пули к ПМ -- плоское или вогнутое.

По конструкции обычные пули подразделяются на безоболочечные (сплошные), оболочечные и полуоболочечные.

Сплошные пули изготавливаются из свинца (спортивный патрон для револьверов Нагана, спортивно-охотничьий патрон калибра 5,6 мм), томпака, металлокерамического сплава (патроны «Парабеллум» в годы Второй мировой войны).

Оболочечные пули состоят либо из двух частей (оболочки и свинцового сердечника), либо из трех частей (оболочки, свинцовой рубашки и стального сердечника), так называемые суррогатированные пули. Свинцовая рубашка служит для придания пули необходимой пластичности и упругости (рис. 3.8).

Рис. 3.8. Конструкции оболочечных пуль: 1 -- оболочка; 2 -- свинцовый сердечник; 3 -- металлический сердечник; 4 -- свинцовая рубашка.

Наилучшим материалом для оболочки является мельхиор или латунь, однако, в целях удешевления в настоящее время используются стальные оболочки, покрытые (плакированные) томпаком (пули отечественных современных патронов). Оболочки пуль патронов иностранного производства калибра 6,35 мм и 7,65 мм, как правило, изготавливают из латуни или мельхиора, защищая их от коррозии никелированием.

Полуоболочечные пули изготавливаются в основном для охотничьего нарезного оружия. Головная часть такой пули не имеет оболочки, что вызывает сильную деформацию или фрагментацию пули при встрече с преградой.

По поражающему действию пули делятся на неэкспансивные и экспансивные (от анг. expansion -- расширение). У неэкспансивных пуль конструкцией не предусматривается деформация или разрушение при встрече с целью. Конструкция экспансивных пуль, наоборот, предполагает их разрушение или деформацию в целях увеличения останавливающего действия (рис. 3.9). Экспансивные пули широко применяются в патронах к охотничьему и полицейскому оружию, но запрещены к применению в армии.

Рис. 3.9. Некоторые конструкции экспансивных пуль: 1 -- с продольными надрезами оболочки; 2 - с кольцевой канавкой на оболочке; 3 - с кольцевой накаткой и фигурными надрезами оболочки; 4 -- с пустотой в головной части; 5 -- с утоньшением оболочки в головной части; 6 -- с пустотой в головной части, медным наконечником и поперечной складкой оболочки

Экспансивные пули условно можно разделить на деформирующиеся, полуразрушающиеся и разрушающиеся.

У деформирующихся экспансивных пуль предусмотрено увеличение диаметра поперечного сечения до 5 раз при встрече с преградой. По конструкции такие пули обычно бывают безоболочечными и полуоболочечными. В их головной части могут быть сделаны продольные или кольцевые надрезы, а также углубление (экспрессивная пустота).

Полуразрушающиеся и разрушающиеся пули, как правило, обладают малым весом и имеют утонченные оболочки. Головная часть таких пуль может иметь воронкообразное углубление, а оболочка -- поперечные складки. Разрушению пули при встрече с преградой способствует высокая скорость легких пуль, однако, пробивная способность их незначительна. У полуразрушающихся пуль разрушается с образованием осколков только головная часть, а ведущая и хвостовая сохраняются. Полностью разрушающиеся пули иногда называют еще разрывными. Так, например, американская разрушающаяся полицейская 9 мм пуля «Глейзер» имеет плоскую головную часть и пустоту, закрытую пластиковым колпачком. Такая пуля при попадании в мягкие ткани полностью распадается на осколки, образуя область поражения глубиной 120 мм и диаметром до 80 мм.

Крепление пули с гильзой может осуществляться следующими способами:

-- сплошной обжим, который достигается тугой посадкой пули в гильзу (патрон ПМ);

-- обжим дульца (промежуточный патрон обр.1943 г.);

-- одинарный или двойной кольцевой обжим (Винчестер .45);

-- сегментный обжим (винтовочный патрон производства Англии, Финляндии);

-- двухточечное или трехточечное кернение (патроны к ПСМ, ТТ, Наган);

-- закатка кромки дульца (целевой патрон «Экстра»).

Пули к гладкоствольным охотничьим ружьям делятся на следующие основные типы (рис. 3.10):

-- круглые (шаровые), которые могут быть гладкими или с центрирующими поясками и выступами («Спутник»);

-- стрелочные пули с тяжелой головной частью и более легким хвостовиком-стабилизатором, предотвращающим их кувырканье в полете («Вятка», пуля Ильина);

-- турбинные пули, имеющие наклонные ребра на наружной поверхности или внутри продольного сквозного канала. В полете встречный поток воздуха, взаимодействуя с ребрами, придает пуле вращательное движение, что обеспечивает ее устойчивость (пуля Майера 1-го образца);

-- стрелочно-турбинные пули, сочетающие в себе особенности стрелочных и турбинных пуль (пули Якана, Бреннеке);

-- пули для охотничьего оружия со сверловкой типа «парадокс». Эти пули отличаются от описанных выше тем, что обязательно имеют два ведущих пояска, которые, врезаясь в нарезы, придают пуле вращательное движение.

Рис. 3.10. Основные типы охотничьих пуль к гладкоствольному оружию: 1 -- круглая гладкая подкалиберная; 2 -- круглая калиберная с центрирующими поясками; 3 - стрелочная (пуля Бреннеке); 4 -- стрелочная (пуля Вицлебена), 5 -- турбинная (пуля Майера); 6 -- стрелочно-турбинная (с войлочным, стабилизатором)

Кроме пуль, охотничьи патроны могут снаряжаться также дробью и картечью.

Дробь -- это полиснаряд, каждая часть которого (дробинка) имеет линейные размеры не более 5 мм.

По форме дробь бывает: шаровая, плоская (листообразная), кубическая, каплевидная, неопределенной формы (сечка).

Материалом для изготовления дроби обычно является свинец: дробь мягкая -- из свинца с примесью сурьмы 2--1,5% и твердая -- из свинца с примесью сурьмы 1,5--3%.

Отечественная промышленность выпускает шаровую дробь 16 размеров: от № 11 до № 0000. Один номер дроби от другого отличается на 0,25 мм по диаметру. Самая мелкая дробь (№ 11) имеет диаметр 1,5 мм, самая крупная (№ 0000) -- 5 мм.

Картечь -- это тоже полиснаряд, каждая часть которого имеет размеры более 5 мм и не должна превышать половины диаметра канала ствола используемого оружия. Картечь выпускается только мягкая, 17 различных размеров. Наименьший диаметр -- 5,25 мм, наибольший -- 10 мм.

При снаряжении охотничьих патронов к гладкоствольным ружьям используются также пыжи и прокладки (рис. 3.11). Пыжи служат для отделения порохового заряда от снаряда и предотвращения прорыва пороховых газов в снаряд. Прокладка на порох препятствует проникновению пороховых газов через пыжи, а прокладка на дробь служит для предотвращения высыпания ее из патрона. Материалами для пыжей и прокладок могут служить войлок, древесно-волокнистая масса, кожа, фетр, полиэтилен, картон, подручный материал.


Подобные документы

  • Правовое регулирование оборота оружия в Российской Федерации. Сущность, объекты и значение баллистических исследований. Механизм образования следов выстрела и особенности осмотра огнестрельного оружия. Методика судебно-баллистической экспертизы.

    дипломная работа [67,8 K], добавлен 28.08.2010

  • Критерии относимости объекта к огнестрельному оружию и его классификация. Особенности назначения его криминалистического исследования. Формы практического применения судебной баллистики. Виды следов применения огнестрельного оружия на различных преградах.

    курсовая работа [39,7 K], добавлен 18.10.2014

  • Понятие, виды и криминалистическая характеристика огнестрельного оружия. Особенности экспертного исследования огнестрельного оружия и боеприпасов. Этапы проведения судебно-баллистической экспертизы. Оформление заключения эксперта о ее производстве.

    курсовая работа [3,6 M], добавлен 14.07.2012

  • Понятие судебной баллистики как вида следственного осмотра оружия и следов выстрелов, ее значение в следственной практике. Классификация огнестрельного оружия и боеприпасов. Общие сведения о явлении выстрела. Следы применения огнестрельного оружия.

    курсовая работа [50,8 K], добавлен 23.11.2015

  • Роль огнестрельного оружия в судебной баллистике. Классификация огнестрельного оружия по различным признакам. Критерии правомерности оборота оружия. Криминалистическое исследование следов использования огнестрельного оружия при совершении преступления.

    контрольная работа [34,5 K], добавлен 02.04.2015

  • Понятие, научные основы и задачи криминалистической баллистики. Научные основы криминалистического исследования материалов, веществ и изделий, несущих в себе следы выстрела. Определение вида и модели огнестрельного оружия по следам на гильзах и пулях.

    дипломная работа [1,4 M], добавлен 25.10.2015

  • Научные основы и виды криминалистической идентификации. Судебная баллистика, ее задачи и значение. Установление вида, модели нарезного оружия по стреляной пуле и гильзе. Проблемы и вопросы, возникающие при идентификации нарезного огнестрельного оружия.

    курсовая работа [2,2 M], добавлен 04.12.2015

  • Обзор развития судебной экспертологии. Основы трасологической экспертизы, состояние судебно-баллистической методики, исследование идентификационных признаков почерка. Развитие технико-криминалистического анализа документов, судебно-портретной методики.

    контрольная работа [12,6 K], добавлен 16.06.2009

  • Сущность криминалистической баллистики. Виды огнестрельного оружия и специфика следов его применения. Обнаружение огнестрельного оружия, следов его выстрела. Фиксация, изъятие огнестрельного оружия, следов его применения и их криминалистический анализ.

    курсовая работа [40,3 K], добавлен 28.02.2010

  • Научные основы теории идентификации. Криминалистическая фотография и видеосъемка при расследовании преступлений. Понятие судебной баллистики. Виды оружия и взрывчатых веществ. Способы подделки документов. Тактика проведения следственного эксперимента.

    шпаргалка [496,6 K], добавлен 11.01.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.