Значение взрывотехнической экспертизы в расследовании преступлений

Объекты взрывотехнической экспертизы. Типичные ситуации, возникающие на местах происшествий. Изъятие, хранение и направление на экспертизу вещественных доказательств, изъятых с места взрыва. Проведение криминалистических экспертиз в полевых условиях.

Рубрика Государство и право
Вид дипломная работа
Язык русский
Дата добавления 10.11.2010
Размер файла 97,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Часто на месте взрыва можно также обнаружить и деформированную алюминиевую втулку замедлителя залпа, имеющую форму цилиндра диаметром 11 мм и длиной 37-38 мм.

«При взрыве гранаты Ф-1 образуется до 1000 осколков массой от 0,1 до 1,0 г произвольной формы, причем осколки массой больше 0,8 г составляют около 4 %. Радиус разлета осколков составляет 200 м, однако большую часть осколков можно обнаружить в радиусе 50-60 м» [21, с.27]. Осколки гранаты Ф-1 отличаются высокой степенью дробления, и их габаритные размеры не превышают нескольких миллиметров.

При взрыве гранаты РГД-5 образуется до 3000 соколков массой от 0,05 до 0,3 г произвольной формы, причем осколки массой более 0,3 г составляют 4 %. Радиус разлета осколков составляет 20-25 м. «Осколки гранаты РГД-5 отличаются более низкой степенью дробления, и их габаритные размеры в отдельных случаях могут достигать 15-30 мм. Толщина осколков, как правило, более 1 мм» [21, с.29].

«При взрыве гранаты РГ-42 образуется до 100 осколков массой от 0,1 г до 0,5 г произвольной формы, причем большинство их образуется массой 0,4 -- 0,5 г. Так как внутри гранаты имеется стальная лента с заданной степенью дробления, то большая часть осколков имеет длину и ширину 8-9 мм, толщину -- 0,7-0,9 мм. Радиус разлета осколков составляет 25 м» [22].

При взрыве любого боеприпаса образуются осколки различной формы, причем радиус их разлета зависит от массы заряда взрывчатого вещества в боеприпасе, (если для гранат радиус разлета осколков не превышает 200 м, то для снарядов и мин он может достигать 1500 м). Большую часть осколков можно обнаружить, если методично осмотреть территорию, прилегающую к центру взрыва, правильно задавшись радиусом зоны осмотра.

Сигнально-имитационные средства, как правило, имеют картонный корпус (взрывпакеты, имитационные патроны), который может быть снабжен металлическим цоколем (сигнальные патроны, звуковые патроны). «Если заряд, используемый для снаряжения подобных средств, представляет собой пиротехнический состав, то корпус может вообще не разрушиться. В остальных случаях образуются осколки оболочки с радиусом разлета 10-5- мм» [23].

«Самодельные взрывные устройства (СВУ) включают в свою конструкцию следующие обязательные элементы:

- корпус (оболочку);

- средство взрывания» [24].

Кроме того, в конструкции СВУ могут входить различные средства инициирующего импульса, часовые механизмы и т.п.

На месте взрыва СВУ всегда можно обнаружить осколки корпуса, для изготовления которого используются чаще всего детали и предметы промышленного изготовления (бутылки, обрезки труб, баллоны сифонов, огнетушителей, корпуса учебных гранат и т.п.).

Если в качества способа взрывания применялся огневой способ, то на месте взрыва могут быть остатки огнепроводного (“бикфордова”) шнура, какого-либо фитиля, сгоревшие спички и т.п. Если в качестве способа взрывания применялся электрический способ, то на месте взрыва могут быть найдены электровоспламенители, представляющие собой электролампочки напряжением до 12 в с разбитой колбой и припаянными проводами. Кроме того, в районе места взрыва могут быть обнаружены различные провода, бытовые элементы электропитания, тумблеры, включатели. Относительно часто замыкающие электроцепь устройства выполняются при помощи гибких металлических пластин, пружин, бытовых прищепок и т.п.

В качестве средства маскировки могут использоваться сумки, чемоданы, кейсы, портфели, а также бытовые электроприборы, при включении которых в сеть замыкается электроцепь СВУ.

Изымаемые вещественные доказательства должны быть сгруппированы по принадлежности к одной детали и промаркированы. Упаковка должна быть герметичной: стеклянная банка с полиэтиленовой крышкой, хорошо закупоренный пакет из полимерного материала и т.п. Вещественные доказательства, на которых имеются следы копоти, пакуются отдельно. Вещественные доказательства со следами частиц порошкообразного кристаллического вещества или частиц, похожих на порошинки, упаковываются в отдельную тару с особой тщательностью и хранятся, как и предметы с окопчениями, в холодильнике.

На разрешение взрывотехнической экспертизы целесообразно ставить следующие вопросы:

- относится ли предмет, представленный на исследование, к боеприпасам, если да, то к каким именно?

- является ли вещество, представленное на исследование, взрывчатым, если да, то каким именно?

- какова область применения взрывчатого вещества, представленного на исследование?

- имеются ли на представленных на исследование предметах следы взрывчатого вещества, если да, то какого именно?

- принадлежат ли осколки, представленные на исследование, взрывному устройству промышленного изготовления, если да, то какому именно?

- является ли устройство, представленное на исследование, взрывным, если да, то каким именно?

- каковы конструкция и способ изготовления взрывного устройства, представленного на исследование, а также его основных элементов?

- каков способ подрыва взрывного устройства и последовательность его осуществления?

какова природа взрыва и техническая причина его возбуждения?

2.3 Проведение криминалистических экспертиз в полевых условиях

До сих пор мы вели речь о применении средств “полевой” криминалистики следователем (оперативным работником) и специалистом. Однако этим, как нам представляется, понятие “полевой” криминалистики не исчерпывается. В его содержание входит и вопрос о принципиальной возможности проведения в “полевых” условиях, например, на месте происшествия, криминалистических экспертиз и выяснение круга задач, доступных в этих случаях, для экспертного решения.

Приоритет в постановке вопроса о проведении криминалистических экспертиз на месте происшествия принадлежит Б. М. Комаринцу. До него некоторые авторы отмечали необходимость в определенных случаях участия эксперта в осмотре места происшествия, но рассматривали такое участие как экспертный осмотр, то есть начальную стадию экспертного исследования, завершающегося затем в лабораторных условиях. Так, В. А. Дулов в этой связи писал: «В ряде случаев, экспертизу надо назначать еще тогда, когда обстановка места происшествия не нарушена... В подобных случаях следователь должен назначать экспертизу сразу, чтобы обеспечить участие эксперта в осмотре места происшествия. Здесь следователь поставит на разрешение эксперта только те вопросы, которые у него сразу возникают при ознакомлении с обстоятельствами происшествия на месте. В дальнейшем, по мере накопления материалов, он сможет поставить на разрешение эксперта дополнительные вопросы. Этим самым следователь обеспечит возможность непосредственного восприятия места происшествия экспертом и будет способствовать получению более объективного заключения» [25]. Примерно аналогичным образом представляют участие эксперта в осмотре места происшествия Н. В. Терзиев и Р.Д. Рахунов [26, 28].

Б.М. Комаринец выдвинул идею проведения на месте происшествия всего экспертного исследования, включая составление заключения. По его мнению, «криминалистическая экспертиза должна производиться на месте происшествия в следующих случаях:

1. Когда для разрешения вопросов, стоящих перед ней, важно исследовать не только отдельные вещественные доказательства, но и обстановку места происшествия.

2. Если для ее успеха нужно исследовать взаимосвязь между следами на различных предметах, имеющихся на месте происшествия.

3. Когда вещественные доказательства со следами преступления или преступника не могут быть доставлены с места происшествия в

криминалистическую лабораторию из-за громоздкости или вследствие опасности искажения или порчи следов при транспортировке» [27, с.21-22]

Говоря об экспертизе на месте происшествия, Б. М. Камаринец имел в виду такое исследование, которое проводится в самой начальной стадии следствия, практически чуть ли не параллельно с осмотром места происшествия. Он не отрицал возможности экспертизы на месте происшествия, проводимой через несколько дней или даже недель после следственного осмотра, но подчеркивал, «что она в такой же мере может оказаться затрудненной или возможно безрезультатной, как и запоздалый или повторный следственный осмотр происшествия» [27, с.23].

Сравнивая процесс экспертизы на месте происшествия с процессом лабораторной экспертизы, Б. М. Комаринец отметил особенности первого, обуславливающие его повышенную сложность. Эти особенности заключаются в следующем:

«1. Исследованию подлежит не один какой-либо предмет, а вся материальная обстановка места происшествия, включающая большое количество следов и самых различных предметов. А почему-то считается, что отдельные вещественные доказательства, которые можно послать на экспертизу в криминалистическую лабораторию, -- это объекты криминалистической экспертизы, а место происшествия -- весь комплекс предметов и следов на нем -- может быть успешно исследовано следователем без привлечения эксперта.

2. Условия исследования необычные, нередко неблагоприятные -- под дождем, при плохом освещении в непривычной обстановке.

3. Исследование выполняется непрерывно в сжатые сроки пребывания эксперта на месте происшествия

4. Эксперт обычно не имеет возможности получить консультацию других специалистов и привлечь для производства экспертизы справочные материалы.

5. Эксперт ограничен техническими средствами для производства необходимых исследований» [27, с.24].

Признавая принципиальную возможность проведения на месте происшествия криминалистической экспертизы любого вида, Б. М. Комаринец отдавал предпочтение судебно-баллистической и трасологической экспертизам, для которых данные, полученные на месте происшествия, имеют наибольшее значение.

Насколько нам известно, концепция Б. М. Комаринца в проведении криминалистической экспертизы в “полевых” условиях возражений в литературе не вызвала, но и не получила дальнейшего развития. Основная его идея -- о возможности, а иногда и о необходимости именно экспертного исследования всей обстановки места происшествия для решения задач, относящихся к предмету конкретных видов криминалистической экспертизы, -- не привлекла внимание ученых. Роль криминалиста по-прежнему ограничивали исполнением при осмотре места происшествия функций специалиста, хотя и трактовали иногда эти функции достаточно широко. Так, Г. Г. Зуйков писал: «Осмотр места происшествия, как известно, проводит следователь, а специалист-криминалист обязан оказать ему помощь, используя свои специальные познания и навыки... В отличие от производства экспертизы, когда эксперт устанавливает лишь какое-либо отдельное обстоятельство, относящееся к способу совершения преступления, и исследует материалы, представленные ему следователем, в данном случае специалист-криминалист изучает всю обстановку места происшествия, все следы, предметы, вещества, имеющиеся на нем, для того, чтобы выявить факты, относящиеся к любой из сторон или ко всем составным частям и элементам способа совершения преступления» [29]. В тех же случаях, когда говорилось об экспертном исследовании места происшествия, его не связывали по времени с осмотром места происшествия [30].

В концепции Б. М. Комаринца наше внимание привлекают два положения общего характера: принципиальная возможность и целесообразность проведения криминалистической экспертизы в “полевых” условиях и признание места происшествия в целом (а не отдельных следов и предметов) объектом криминалистической экспертизы. Мы полагаем основными аргументами Б. М. Комаринца в пользу проведения в ряде случаев криминалистических экспертиз на месте происшествия на самом начальном этапе расследования, иногда практически параллельно с осмотром места происшествия, в котором криминалист будет принимать участие именно как эксперт, а не как специалист, что найдет свое обоснование в процессуальном акте назначения экспертизы и будет полностью соответствовать закону, представляющему именно эксперту такое право (ст. 83 УПК). Трудности при проведении экспертизы на месте происшествия, о которых писал Б. М. Комаринец в 1964 году, в настоящее время легче могут быть преодолены, поскольку передвижные криминалистические лаборатории, оснащенные современными средствами связи и необходимым исследовательским оборудованием, наличие “носимых” хранилищ справочной информации, которая может потребоваться эксперту для дачи заключения, развитие системы экспресс-методов исследования -- все это создает необходимые условия для проведения экспертизы в “полевых” условиях. В сущности, мы имеем дело с ситуацией, при которой даже лабораторные исследования становятся “полевыми”, ибо сама лаборатория находится в “поле”. Нечего говорить, насколько существенным при этом оказывается выигрыш во времени, возможность в полном смысле слова оперативно использовать результаты экспертизы, реально включить ее в комплекс средств и методов раскрытия преступления по горячим следам.

Возможность проведения лабораторных исследований в “полевых” условиях не обесценивается и в тех случаях, когда осмотр места происшествия проводится до возбуждения уголовного дела. Естественно, что тогда проводится не экспертиза, а предварительное исследование объектов, представляющих оперативный интерес, результаты такого исследования носят характер ориентирующей информации, что не препятствует их активному использованию при раскрытии преступления.

Вопрос о признании места происшествия объектом криминалистической экспертизы решается, как нам видится, не так однозначно.

Практика производства ряда некриминалистических экспертиз, таких, например, как пожарно-техническая, технологическая, автотехническая, экспертиза по делам о нарушении правил техники безопасности и других, убедительно свидетельствует, что место происшествия может быть, а зачастую должно быть объектом экспертного исследования.

3 ОБНАРУЖЕНИЕ И ОБЕЗВРЕЖИВАНИЕ ВЗРЫВНЫХ УСТРОЙСТВ

3.1 Последовательность поиска и обезвреживания взрывных устройств

При обнаружении предмета, который может включать взрывное устройство, в первую очередь необходимо удалить всех людей на безопасное расстояние или в укрытие. Демаскирующими признаками взрывоопасных предметов могут быть, например, “забытый” и явно никому из окружающих не принадлежащий предмет (сумка, кейс, чемодан и т.п.). Этот предмет, как правило, находится в каком-либо месте длительное время. Такие случаи наблюдались в местах большого скопления людей (вокзалы, станции метрополитена и т.д.). Подозрительными являются автомобили, оставленные вблизи каких-либо важных объектов (банки, посольства, дома крупных политических деятелей, руководителей конкурирующих фирм и т.п.). Такие автомобили могут быть начинены зарядами взрывчатых веществ большой массы (сотни килограмм, а иногда и несколько тонн). Взрыв, как показывает опыт, обычно производится по радио, для чего во взрывное устройство устанавливается радиовзрыватель.

Иногда взрывные устройства монтируются на теле диверсанта-смертника (“камикадзе”), который приводит его в действие в непосредственной близости от жертвы. «Наличие такого взрывного устройства могут обнаружить лишь опытные охранники по особенностям одежды и поведения диверсанта. Для доставки взрывного устройства к цели могут использоваться специально обученные животные (собаки, дельфины и т.д.)» [31].

Обезвреживание взрывного устройства или локализация взрыва должна производиться подготовленными минерами-подрывниками или другими обученными специалистами после удаления населения из опасной зоны и выставления оцепления -- охраны, не допускающей случайного или преднамеренного входа в опасную зону.

«Если только предполагается наличие во взрывном устройстве радиовзрывателя, необходимо с помощью специальных механизмов создать радиопомехи в широком диапазоне частот. А затем, приблизившись к предмету (объекту), осторожно укрепить на каких-либо выступающих частях его веревку, имеющую на конце крючки, карабины и т.п. Из укрытия (из-за колонны, из колодца) натянуть веревку (линь, проводник) и сдвинуть предмет с места» [32]. Все эти действия должен проводить один человек во избежание неоправданных жертв, в том числе в результате разлета осколков.

При таком воздействии на взрывное устройство срабатывают натяжные, обрывные, разгрузочные, вибрационные и прочие элементы, приводящие взрыватели в действие.

Если взрыва не произошло, то степень опасности значительно уменьшается: радиовзрыватель подавлен поставленными радиопомехами, провокация срабатывания натяжных, обрывных и других элементов взрывателей не дала результата, что свидетельствует об их отсутствии или неработоспособности по каким-либо причинам.

Кроме того, во взрывном устройстве могут находиться еще взрыватели, срабатывающие от изменения магнитного поля Земли, акустического сигнала в определенном диапазоне частот, характерного запаха человека или другого животного, а также все типы взрывателей замедленного действия.

Во взрывном устройстве, как было показано выше, должен быть заряд взрывчатого вещества, «запах которого может обнаружить специально обученная собака минно-розыскной службы (МРС) или специалист, использующий достаточно сложную аппаратуру, а именно газоанализатор» [33].

Поэтому дальнейшие действия по обезвреживанию взрывного устройства должны начинаться с посылки собаки МРС к месту расположения подозрительного предмета. Обычно собака обучена таким образом, что при обнаружении взрывчатого вещества (заряда взрывчатого вещества), она садится рядом с предметом.

Если обнаружен заряд взрывчатого вещества и, следовательно, взрывное устройство, то руководитель работ принимает решение на его обезвреживание или уничтожение. Уничтожение возможно в случае, если опасность разрушений или повреждений взрывом минимальна, а потери людей полностью исключаются.

Порядок уничтожения взрывного устройства, способы локализации взрыва и меры безопасности описаны ниже.

Для обезвреживания взрывного устройства применяются различные средства и способы.

Одной из последних отечественных разработок является комплекс блокировки взрывных устройств, в дальнейшем называемый блокиратором. Он устанавливается на защищаемом транспортном средстве и предназначен для защиты жизни водителя и пассажиров.

«Блокиратор взрывных устройств перекрывает гарантируемый диапазон радиочастот, тем самым, блокируя дистанционное управление известных и теоретически перспективных разработок систем взрывных устройств.

Комплекс полностью автоматизирован. Это позволяет блокиратору автоматически начинать свою работу и временно задерживать отключение в интересах обеспечения безопасности выходящих из транспортного средства пассажиров и водителя, а также включать затем автосигнализацию. Время блокировки отключения комплекса пропорционально расстоянию безопасности (радиус более 50м) от автомобиля.

Принцип действия комплекса основан на подавлении работы приемников подрыва (РВУ) специальными широкополосными сигналами помех, посылаемыми передатчиком. Диапазон работы обеспечивает подавление всех известных и перспективных частот дистанционного управления взрывом» [34].

Для уменьшения неравномерности спектра сигналов помех применена оригинальная широкополосная шлейфовая антенна, предназначенная для излучения с металлических поверхностей.

Комплекс малогабаритен. Его эксплуатация возможна как в стационарном, так и в мобильном режиме при наличии любых возможностей электропитания (под заказ). В мобильном режиме возможна стыковка комплекса с большинством систем охранной сигнализации отечественного и зарубежного производства (под заказ).

Для отдельных видов радиоуправляемых взрывных устройств, имеющих низкую имитостойкость, не исключен самоподрыв во время его установки террористами при работающем комплексе блокировки.

Однако в зоне зашумления перестают работать радиоэлектронные приборы бытового назначения (вещательные приемники, телевизоры, радиостанции в режиме приема, пейджеры и т.п.).

3.2 Возможные способы обнаружения взрывных устройств и поисковая аппаратура

Демаскирующие признаки взрывного устройства обусловлены главным образом следующими факторами:

наличием взрывчатого вещества в конструкции взрывного устройства;

наличием антенны с радиоприемным устройством у радиоуправляемого взрывного устройства;

наличием часового механизма или электронного таймера (временного взрывателя);

наличием проводной линии управления;

наличием локально расположенной массы металла;

неоднородностью вмещающей среды (нарушение поверхности грунта, дорожного покрытия, стены здания, нарушение цвета растительности или снежного покрова и т.д.);

наличием теплового контраста между местом установки и окружающим фоном;

характерной формой взрывного устройства.

Взрывное устройство содержит, как правило, от нескольких десятков граммов до нескольких килограммов взрывчатого вещества. «Поэтому взрывное устройство, в принципе, можно обнаружить путем регистрации газообразных испарений продуктов медленного разложения или испарения взрывчатого вещества. Регистрация может осуществляться с помощью химического, масс-спектрометрического и других способов. Концентрация паров ВВ достигает 10-7-10-8 г/л у поверхности грунта над местом установки противотанковой мины (при положительной температуре), находящейся на глубине 5 см. Вблизи ВУ без маскирующего слоя концентрации паров ВВ может быть на несколько порядков выше. Известный портативный детектор взрывчатых веществ ЕД-70 (США), предназначенный для контроля багажа пассажиров, осуществляет газовый анализ всасываемого воздуха с помощью детектора электронного захвата. В качестве источника электронов используется никель-63. Масса выносного датчика -- 2,5 кг, всего прибора -- 30 кг. Чувствительность детектора к парам ВВ составляет около 10-7 г/л при продолжительности экспозиции 2 с, в принципе достаточной для обнаружения большинства взрывных устройств» [35, с.41]. Однако, несмотря на наличие избирательной силиконовой мембраны у выносного датчика порой имеет место ложное срабатывание от паров некоторых веществ (уксусной и муравьиной кислот, сигаретного дыма и т.д.). Кроме того, практически невозможно использовать этот прибор, если несколько раньше произошел взрыв вблизи заряда взрывчатого вещества (т.е. на месте аварии, террористического акта и т.д.). Это объясняется значительной концентрацией паров взрывчатых веществ в окружающем пространстве (“фоновой засветкой”). «Более современный аналог такого прибора ССХ-3000 (США) имеет несколько лучшие характеристики: чувствительность на 1-2 порядка выше, общая масса 13,5 кг. Размеры 0,5 м ??0.37 м ??0,16 м. Питание от сети V=220 В (50-60 Гц) или батареи 12 В. Малогабаритные аналоги подобных приборов -- S-201 (Канада), RD-2 (Великобритания), ССХ-1000 (США) (с массой до 2-3 кг) имеют худшие поисковые характеристики и по сути являются “квазиконтактными”. Ими можно пользоваться в относительно “стерильных” и стабильных условиях (при быстром осмотре корреспонденции, в помещении багажных ячеек и т.п.)» [36].

Химический способ обнаружения взрывчатого вещества реализуется в аэрозольных тестах. Например, отечественный комплект аэрозолей “Exprаy” (ОСТ-731) позволяет обнаружить практически все виды взрывчатого вещества (тротил, тетрил, динамит, нитроглицерин, нитроцеллюлозу, оксид пикрина). Наличие того или иного цвета, который проявляется на тестовой бумаге, позволяет доказать, что в проверяемом объекте (кейсе, коробке, письме) находится взрывчатое вещество. Проведение полного теста занимает не более минуты.

Следует отметить, что в настоящее время лучшим детектором взрывчатого вещества является собачий нос. Специально обученные собаки минно-розыскной службы способны избирательно обнаруживать весьма малые количества взрывчатого вещества. При этом заряд взрывчатого вещества может быть в грунте, багаже пассажиров, кейсе, автомобиле и т.д. К сожалению, эффективность поиска зависит от психофизиологического состояния собаки. «Собаки должны постоянно тренироваться. Пропуски в работе или тренировке более 1-2 месяцев недопустимы. При высокой температуре (+25°...30°С) собаки способны работать не более 30-40 минут, а затем требуется отдых в тени как минимум в течение 1-2 часов. Желательно, чтобы при поиске ВВ собаку не отвлекали посторонние люди, шум техники и т.д.» [37]. Каждая собака, специально отобранная для выполнения той или иной цели, проходит строго определенную подготовку в питомниках собаководства. Так розыскные собаки проходят подготовку и используются для розыска по запаховым следам лиц, совершивших преступление, для производства выборки человека и вещи. Специально обученные собаки, обнаруживают перевозимые в тайниках наркотики, оружие, взрывчатку, используются при производстве одорологических экспертиз.

Обнаружение радиоуправляемых ВУ может осуществляться путем использования метода нелинейной радиолокации. Существующие отечественные переносные приборы нелинейной локации “Октава”, “Обь”, “Онега”, а также зарубежные приборы предназначены для обнаружения устройств, содержащих полупроводниковые элементы (транзисторы, диоды, микросхемы и т.п.) в своей конструкции. Электронная схема объекта поиска (ВУ) может находиться как во включенном, так и в выключенном состоянии. С помощью этих приборов возможно также обнаружение ВУ, содержащих электронные таймеры (временные взрыватели). Объекты поиска могут располагаться в полупроводящей среде (грунте, воде, растительности), а также в стенах зданий, столах, внутри автомобилей и других местах. Поиск затруднен только в непосредственой близости от ЭВМ, факсов, некоторых современных телефонов и других устройств, содержащих полупроводниковые радиодетали в своей конструкции. Приборы нелинейной локации состоят из антенного устройства (на телескопической штанге) и приемно-передающего блока. Для расширения тактических возможностей прибора в приемном и передающем устройствах предусмотрена регулировка как чувствительности, так и мощности. Контроль работоспособности прибора осуществляется с помощью нелинейного имитатора.

Приборы нелинейной локации работают, как правило, в дециметровом диапазоне радиоволн. «Их характерные размеры составляют 0,2-0,4 м, масса -- до 4-8 кг. Дальность обнаружения ВУ с радиоэлектронными устройствами -- до 1,5-2 м. Время работы от автономных источников питания -- до 4-6 часов» [38].

Впрочем, необходимо отметить, что в отдельных случаях возможен подрыв простейших неэкранированных самодельных радиоуправляемых ВУ при поднесении к ним вплотную антенного устройства прибора нелинейной локации. За рубежом выпускаются специальные переносные “уничтожители бомб” (Bomb Ranger), подрывающие радиоуправляемые взрывчатых веществ путем быстрого перебора возможных команд управления на расстоянии до 1 км. Установленный заранее в охраняемый автомобиль он вызовет подрыв взрывного устройства и спасет жизнь владельца автомобиля.

Взрывные устройства с часовым замыкателем (взрывателем) могут обнаруживаться путем использования портативных контактных микрофонов (фонендоскопов). Эти приборы позволяют снимать акустическую информацию через стены, потолки и другие ограждающие конструкции вокруг ВУ. Для снижения уровня внешних шумов датчик необходимо закреплять на герметике в тех места ограждающей конструкции, где они тоньше всего и не очень плотны.

Проводные линии управления взрывного устройства можно обнаруживать в полевых условиях путем применения переносных электромагнитных кабелеискателей (R-210, P-480 -- США и т.п.). «Они включают в себя передающий и приемный блоки, закрепляемые на концах несущей штанги 1-1,4 м. Рабочие частоты -- 40-100 кГц. Глубина обнаружения находящихся в грунте кабельных линий управления -- до 1 м. Расчет -- 1 человек, скорость ведения поиска -- до 2-3 км/ч. Масса приборов -- до 4-6 кг» [39].

Металлические элементы конструкции ВУ могут обнаруживаться с применением переносных и стационарных (“ворота”) металлоискателей. В них используется два метода обнаружения -- индукционный или магнитометрический. Первый обеспечивает обнаружение как цветных, так и черных металлов. Второй -- только черных (сталь и ее сплавы), но он более чувствительный, чем первый метод.

Например, отечественные индукционные портативные детекторы металлов АКА-7202 (масса 0,4 кг) и “СТЕРХ-92АР” (масса 1,5 кг) обеспечивают обнаружение пистолета на расстоянии от 0,4-0,6 м, автомата -- до 1-1,2 м. Более чувствительный прибор “СТЕРХ-92АР” обеспечивает, кроме того, селекцию предметов на черные и цветные металлы. Дальность обнаружения металлических предметов в грунте и пресной воде практически такая же, как и в воздухе. Отечественный металлоискатель арочного типа (“ворота”), марка ОСТ-751, служит для обнаружения металлических предметов при проходе через дверной проем, арочную перегородку и т.д. Возможна настройка чувствительности непосредственно на конкретный предмет (гранату, пистолет, холодное оружие и др.). Ширина арочного проема -- 90-120 см. Прибор предназначен для использования в банках, офисах, таможенных службах и других организациях для пресечения несанкционированного проноса оружия, аппаратуры, взрывных устройств, драгоценных металлов.

Весьма удобны и надежны в эксплуатации феррозондовые металлоискатели фирмы ФЕРСТЕР (Германия), использующие магнитометрический метод обнаружения. Из наиболее миниатюрных зарубежных индукционных металлоискателей следует отметить прибор LBD 105 (США), предназначенный для быстрого осмотра людей, багажа, офисной мебели и т.п. в целях обнаружения ВУ, стрелкового и холодного оружия.

Неоднородности вмещающей среды в месте установки ВУ можно регистрировать с помощью спектрозональных и поляризационных портативных оптических приборов. Подобные переносные приборы используются в строительстве для дистанционного контроля качества различных конструкций (железобетонных и металлических балок, опор и т.д.).

В ночное время эффективно применение малогабаритной тепловоионной аппаратуры, обладающей разрешающей способностью в десятые доли градуса Цельсия.

Взрывные устройства, установленные в грунте, могут быть обнаружены также с использованием щупов. Наконечники щупов необходимо изготавливать из твердых неметаллических материалов (ситалла и т.п.), что исключит подрыв при использовании противощупных электрических замыкателей.

Характерные признаки формы взрывных устройств и оружия, находящихся в багаже, можно выявлять, используя стационарную рентгеновскую аппаратуру, работающую на “проход”. Она используется на таможнях, в банках, вокзалах и других местах.

Необходимо отметить, что ни один из рассмотренных методов обнаружения не может в полной мере обеспечить надежность обнаружения ВУ. Целесообразно комплексно использовать методы и поисковую аппаратуру. Наибольшая безопасность обеспечивается при этом за счет применения телеуправляемой роботизированной техники.

4 ОРГАНИЗАЦИЯ И ПРОВЕДЕНИЕ ОСМОТРА МЕСТА ВЗРЫВА

4.1 Основные признаки отображения взрыва в следах

Осмотр места взрыва требует проведения определенных организационных мероприятий и имеет характерные особенности в обнаружении, фиксации и изъятии вещественных доказательств, что отличает его от осмотра любого другого места происшествия.

Главным образом это связано с тем, что разнообразие взрывных устройств и их элементов, используемых в противоправных целях, требует привлечения к осмотру специалистов взрывного дела. При этом одной из главных задач является обеспечение безопасной работы участников осмотра места взрыва. Полнота проведения осмотра, информативность фиксируемых следов взрыва и изымаемых объектов находится в прямой зависимости от знаний участниками осмотра основных признаков отображения взрыва в следах и особенностей их обнаружения. Порядок и качество работы во многом определяются проведением в процессе осмотра предварительного оперативного исследования, направленного в первую очередь на установление центра и природы взрыва.

Место взрыва как объект криминалистического исследования представляет собой совокупность следов взрывного воздействия, отображенных в конкретной окружающей обстановке. Их отображение и фиксация невозможны без выделения основных признаков проявления взрыва в целом и взрыва взрывного устройства определенной конструкции в частности. Признаки воздействия на объекты окружающей обстановки включают в себя следы, характерные для бризантного, фугасного, термического, а также осколочного действия отдельных элементов взорванного взрывного устройства и вторичного осколочного действия, вызванного метанием окружающих объектов или их частей. Анализ указанных следов позволяет на стадии осмотра выявить центр и определить природу взрыва, а также сделать предположения о виде и массе взорванного взрывного устройства.

Бризантное (дробящее) действие проявляется на объектах, находящихся в непосредственном контакте с зарядом конденсированного взрывчатого вещества. «Бризантное действие определяется взаимодействием детонационной волны, продукт детонации и ударной волны» [40]. Основными его признаками на месте происшествия являются локальные деформации, зоны пластического течения металла, разрушения в виде вмятин, воронок, сколов на высокопрочных элементах из металлов, железобетона, кирпича и т. п., а также локальные области полных разрушений на малопрочных объектах из дерева, стекла, полимерных материалов и им подобных. Бризантное действие на тело человека проявляется в виде тяжких телесных повреждений (от разрывов кожного покрова, жировой и мышечной тканей до полной дезинтеграции тела). Например, «взрыв электродетонатора промышленного изготовления типа ЭД-8, содержащего около 2 г бризантного взрывчатого вещества, приводит к травматической ампутации 1-2 фаланг пальцев руки, контактирующих с взрывным устройством, а при взрыве тротиловой шашки массой 75 г происходит травматическая ампутация кисти руки, державшей заряд» [41, с.84].

Подробные сведения о характере повреждений тел пострадавших, содержащиеся в заключениях судебно-медицинского эксперта, могут в дальнейшем быть использованы экспертами-взрывотехниками для оценки массы взорванного заряда, так как механизм повреждения тела человека при взрывных воздействиях имеет определенные закономерности.

Размеры областей с признаками бризантного действия соизмеримы с размерами взорванного устройства (заряда ВВ). Такое действие, как правило, является отличительной особенностью взрыва детонирующих ВВ (типа тротила, гексогена, ТЭНа, тетрила, аммонита и др.). Следует отметить, что даже при небольшом удалении ВУ от предметов материальной обстановки (0,1-0,3 м) следов бризантного действия на них не будет.

Фугасное воздействие проявляется в гораздо большем пространстве от центра взрыва и обусловливается способностью ударной волны (на небольших расстояниях -- также и расширяющихся сжатых газов) производить необратимые по сравнению с исходным состоянием изменения окружающей обстановки, отдельных ее объектов. К следам фугасного действия взрыва относятся воронка в грунте и других материалах, поражение людей, перемещение предметов окружающей обстановки, разрушение, повреждение и формоизменение отдельных элементов в области действия взрыва. «Степень проявления фугасного воздействия на окружающие объекты зависит также от их конструктивных особенностей, вида материла, геометрических размеров, расстояния от центра взрыва, расположения относительно направления распространения фронта ударной волны и характеризует величину механической работы взрыва» [42].

Термическое действие на окружающие объекты осуществляется быстро расширяющимися сильно нагретыми продуктами (температура порядка 2500°С) химического превращения взрывчатого вещества. Его отличительным признаком на месте происшествия является наличие следов окопчения и оплавлений, которые в некоторых случаях могут быть уничтожены возникшим после взрыва пожаром. Возникновение пожара в подавляющем большинстве случаев характерно для взрыва газовых, паро- и пылевоздушных реагирующих смесей, отличающихся неоднородностью по химическому составу, что приводит к догаранию части непрореагировавшего горючего после взрыва и тем самым обеспечивает загорание отдельных объектов материальной обстановки.

Взрыв заряда конденсированного бризантного ВВ при кратковременном воздействии нагретых продуктов детонации способен вызвать горение лишь легко воспламеняющихся горючих материалов и веществ, находящихся на расстоянии, не превышающем 25-30 размеров ВУ. Возможность возникновения загорания в результате взрыва существенно зависит от температуры и влажности окружающей среды. Экспериментальные взрывы тротиловых зарядов на полигоне в засушливое жаркое лето однозначно приводили к многоочаговому загоранию окружающей растительности. Однако в экспертной практике известны случаи использования самодельных устройств, обладающих повышенным зажигательным действием при взрыве, составными элементами которых являлись нефтепродукты или пиротехнические составы, способные догарать после взрыва, вызывая тем самым воспламенение предметов из древесины, пластмассы и т.п.

«При использовании механического способа подрыва, как правило, реализуется одна из следующих схем самодельного предохранительно-исполнительного механизма:

средство взрывания срабатывает от давления колеса в начальный момент движения автомобиля;

средство взрывания приводится в действие в начальный момент движения автомобиля чекой (или замыкателем), проволочная (веревочная) тяга которой закреплена свободным концом за неподвижный объект (дерево, бордюрный камень, решетка дорожного ограждения и т.д.);

средство взрывания срабатывает за счет чеки, выдергиваемой тягой, наматывающейся в начальный момент движения автомобиля на его вращающиеся детали (например, на крестовину коленчатого вала).

Имел место случай подрыва автомобиля ВАЗ-2121, заминированного штатной ручкой осколочной гранаты Ф-1, скоба взрывателя которой удерживалась витком пружины передней подвески» [43].

При использовании электрического способа взрывания замыкатель взрывного устройства может быть подключен практически к любому элементу низковольтной части электрической схемы автомобиля (к замку зажигания, к катушке зажигания, к двигателю стеклоочистителей и т.д.). Использование иных источников электропитания обычно связано с применением замыкателя, срабатывающего подобно автосторожу автомобиля.

Взрывы автомобилей в движении, как правило, связаны с использованием во ВУ в качестве замыкателей вторичных элементов электросхемы автомобиля (например, контура включения сигнала поворота, стоп-сигнала, фар, прикуривателя). В последнее время подобные взрывы все чаще осуществляются с применением дистанционного управления средством взрывания по радиоканалу. Не следует исключать также возможность использования ВУ с механизмом замедления. Редким примером термического механизма замедления является использование ВУ, снаряженных чувствительными к нагреву ВВ и устанавливаемых на нагретых до высоких температур деталях двигателя автомобиля. В случае взрыва автомобиля, находившегося в движении, границы зоны осмотра должны определяться с учетом всей траектории движения от момента взрыва автомобиля до его полной остановки.

4.2 Технические средства, используемые при осмотре места взрыва

При осмотре места взрыва используются как традиционные технические средства (фото-, кино- и видеокамеры, измерительные инструменты, лупы и т.п.), применяемые в криминалистике при осмотре любого места происшествия, так и специальные, позволяющие обнаружить пары взрывчатых веществ, ориентировать на определенные марки ВВ, собирать фрагменты (осколки) взрывных устройств, осуществлять рентгеновский контроль устройств, подозреваемых на принадлежность к ВУ или их частям, с целью предварительного изучения их конструкции.

Важнейшим условием применения технических средств на месте происшествия является то, «что объекты при их изъятии и предварительном исследовании должны оставаться практически в неизмененном виде либо производимые изменения, которые обычно отражаются в протоколе осмотра вещественных доказательств, должны быть очень незначительными, чтобы не влиять на достоверность дальнейшего экспертного исследования» [44].

Место происшествия, его участки и детали, а также положение вещественных доказательств перед изъятием, их внешний вид фиксируются известными методами судебной фотографии, видеотехники, составлением масштабных планов и схем с применением простейших измерительных инструментов (рулеток, линеек, визирных планок, в отдельных случаях -- теодолитов и т.п.), а в случаях катастрофических взрывов -- методами аэрофотосъемки.

Предварительная оценка массы взорванного взрывчатого вещества на месте происшествия невозможна без проведения вычислений по простейшим методикам, а в сложных случаях -- без применения уточненных инженерных расчетов. Использование простейшей вычислительной техники (микрокалькулятор, логарифмическая линейка и т.п.) повышают эффективность проведения указанных оценочных расчетов. «Определение центра взрыва по характерным трассам и пробоинам осколков взрывного устройства в предметах окружающей обстановки с помощью известного метода визирования, применяемого в судебной баллистике, требует специально подготовленных средств визирования полета отдельных элементов (проволока, веревка, отвесы и т.п.)» [45]. Для этой же цели может использоваться лазерный прицел к стрелковому оружию.

Предварительные исследования, проводимые в процессе осмотра места взрыва, практически всегда связаны с необходимостью оперативного определения примененного взрывчатого вещества. Для такого экспресс-определения целесообразно применять метод тонкослойной хроматографии, заложенный в основу выездного комплекта средств по определению взрывчатых веществ в их остатках. Применение этого комплекса средств позволяет определить вид взрывчатого вещества как органической, так и неорганической природы.

Портативный газовый хроматограф “Эхо-М” является техническим средством по экспрессному определению паров взрывчатых веществ. «При транспортировке прибор размещается в чемодане, он укомплектован поликопиллярной колонкой, двумя устройствами ввода пробы (шприцевые и с помощью концентратов). Возможности хроматографа позволяют проводить анализ проб не только на месте происшествия в автономном режиме (полевые условия), но и в лаборатории с использованием ЭВМ. Применение прилагаемого программного обеспечения позволяет создать базу данных по хроматографическому анализу взрывчатых веществ с автоматической идентификацией хроматографических пиков в анализируемых пробах. Высокая чувствительность детектора электронного захвата (ДЭЗ) позволяет решать широкий круг задач по поиску следовых количеств большинства применяемых взрывчатых веществ»[46]. Однако недостаточная селективность прибора определяет его использование, прежде всего, для отбора наиболее информативных объектов-носителей следов взрывчатого вещества с целью их дальнейшего экспертного исследования.

При сборе вещественных доказательств на месте взрыва обычно ориентируются на определение конструктивных особенностей взрывного устройства или его частей. Для обнаружения мелких объектов применяются различные увеличительные стекла, лупы, в том числе с подсветкой. Металлические осколки и фрагменты обнаруживаются с помощью различного типа металлоискателей, магнитов, магнитных подъемников и магнитных кистей. При обнаружении мелких металлических осколков в тонких слоях грунта, строительного мусора хорошо себя зарекомендовал малогабаритный металлоискатель “Корунд”. Для выявления осколков в труднодоступных местах можно использовать металлические щупы, портативную рентгеновскую технику. Извлечение осколков и фрагментов взрывных устройств из объектов вещной обстановки часто требует использования при осмотре места происшествия столярно-слесарных инструментов, которые необходимо иметь в выездных комплектах экспертов.

Портативная рентгеновская техника (в частности, импульсные установки типа “Инспектор” или “Особняк-4”) бывает необходима на месте происшествия еще и для исследования внутреннего устройства предметов, вызывающих подозрение на их принадлежность к взрывному устройству. Кроме того, рентгеновский аппарат “Особняк-4” в совокупности со стационарно рентгенотелевизионной установкой контроля (типа “Видикон”) позволяет в лабораторных условиях проводить широкий спектр неразрушающих видов исследований с последующей компьютерной обработкой изображений.

Легковоспламеняющиеся жидкости, пары которых в смеси с воздухом взрывоопасны, а также присутствие горючих газов (метан, пропан, ацетилен и т. п.) иногда удается выявить соответственно с помощью флуоресценции предметов УФ-излучении и с помощью газоанализаторов, имеющихся на передвижных санэпидемстанциях и на предприятиях газового хозяйства. Если подобные вещества имеются на различных носителях, то для сохранности этих веществ должны использоваться герметические емкости.

4.3 Предварительное исследование следов взрыва

Осмотр места происшествия включает в себя проведение предварительного исследования обнаруживаемых объектов и следов взрыва с целью получения оперативно-розыскной информации и формирования обоснованных следственных и экспертных версий. Исследование объектов (остатков ВУ и др.) проводится неразрушающими методами, обеспечивающими сохранность объектов и неповрежденность следов на них (возможных отпечатков пальцев, следов крови, частиц какого-либо вещества и др.) для дальнейшего экспертного исследования. Результаты предварительных исследований оформляются в виде справки специалиста.

К основным задачам предварительного исследования относятся: «определение природы взрыва, его центра, тротилового эквивалента; установление вида взорванного вещества и геометрических размеров взрывного устройства (заряда взрывчатых веществ); определение вида средства инициирования и способа взрывания; установление способа изготовления и принципа функционирования взрывного устройства; выявление следов инструмента и оборудования, использованных для изготовления взрывного устройства, а также информации о лице, изготовившем взрывное устройство или производившем взрыв» [47]. Предварительное исследование на месте происшествия проводится по мере обнаружения тех или иных следов взрыва, при этом указать строгую последовательность его проведения невозможно, так как материальная обстановка и степень ее изменения при каждом взрыве различны и имеют свои особенности. Однако характер вопросов, решаемых в рамках предварительного исследования, является общим для всех мест взрывов, что позволяет выделить основные его составляющие и указать на способы и методы получения той или иной предварительной информации, необходимой как для организации оперативно-розыскных мероприятий, так и для более целенаправленного последующего осмотра места происшествия.

Анализ экспертной практики позволил выделить две принципиальные схемы конструкций взрывного устройства независимо от способа их изготовления, которые в большинстве случаев используются в противоправных целях. «К первой группе устройств относятся взрывные устройства с зарядом взрывного устройства на основе пиротехнического состава или пороха (дымного, бездымного) со средством воспламенения. Способ изготовления таких взрывных устройств в большинстве случаев самодельный. Вторая схема определяет наличие во взрывном устройстве средств детонирования и заряда бризантного взрывчатого вещества, причем указанные элементы взрывного устройства чаще всего промышленного изготовления. Для взрыва последних характерно присутствие на месте происшествия более мелких металлических осколков или разрушение практически в пыль оболочки из стекла, пластмассы, бумаги и т.п. Пополнение криминальных структур профессиональными подрывниками привело к возрастанию числа преступлений, совершаемых с использованием взрывных устройств, представляющих собой безоболоченные заряды взрывчатых веществ. Взрывы подобных взрывных устройств осуществляются в режиме либо аналогов подрывных зарядов, либо мин-ловушек, либо объектных мин, то есть мин замедленного действия. Криминалистическое исследование взрывов ВУ указанного класса существенно затруднено крайне малой информативность следов, возникающих при их взрыве. В случае применения взрывного устройства с безоболочным зарядом остатками часто являются лишь непрореагировавшие микроколичества взрывчатых веществ, при этом взрывы прессованных зарядов мощных бризантных взрывчатых веществ (гексагена, октогена, тротила, скального аммонита и т.п.) предъявляют повышенные требования к качеству изъятия их следов. Огнепроводный шнур типа ОША, намотанный на шашку тротила, дробится до микроволокон, а капсюль-детонатор типа КД-8А можно обнаружить в виде оплавленных частиц алюминия размером порядка 1 мм и менее» [48].

В таблицах 1, 2 указаны наиболее часто встречающиеся в экспертной практике элементы разных конструктивных схем взрывного устройства. Присутствие на месте взрыва остатков или следов действия одного из указанных элементов устройства предполагает наличие остатков других составляющих, соответствующих одной из двух схем взрывного устройства. Однако следует иметь в виду, что в случае применения высокочувствительных ВВ как бризантного, так и метательного действия детонатор и воспламенитель могут отсутствовать.

Присутствие обязательных элементов в устройстве требует специального их размещения (компоновки) в определенных размерах, которыми являются размеры либо оболочки, ограничивающей заряд взрывчатого вещества, либо маскирующей оболочки, функции которой, как правило, выполняют отдельные предметы бытового назначения.

Устройствами без элементов маскировки в большинстве случаев являются взрывные устройства типа ручной гранаты или взрывпакета с огневым или механическим способом взрывания. Они наиболее просты в обращении, компактны, и их конструкция предполагает расположение внутри оболочки определенного по массе заряда взрывчатого вещества и размещение непосредственно контактирующего с взрывчатым веществом средства взрывания, закрепляемого на оболочке взрывного устройства. При этом оценочная (по действию взрыва) масса взорванного взрывчатого вещества должна соответствовать массе заряда, который можно разместить во внутреннем объеме оболочки. Случаи, когда указанные массы сильно отличаются друг от друга, характерны для взрыва устройств с неполным заполнением внутреннего объема оболочки веществом, а также для взрыва нескольких оболочек, снаряженных взрывчатых веществ.

Характерными конструктивными особенностями взрывных устройств, имеющих внешнюю маскирующую оболочку, являются малый объем, занимаемый зарядом ВВ, по сравнению с внутренним объемом маскирующей оболочки; использование сложного взрывателя, состоящего из большого количества элементов, часто контактного действия с электрическим способом взрывания. Взрыв приводит к разрушению маскирующей оболочки, отдельных элементов взрывателя, однако вследствие того, что лишь некоторые из них контактировали с взрывчатыми веществами, образуются довольно крупные части, позволяющие восстановить их первоначальный вид и размеры.


Подобные документы

  • Особенности экспертизы крови. Характеристика вещественных доказательств. Определение видовой принадлежности крови. Изъятие вещественных доказательств и направление их на экспертизу. Основания для постановления о назначении судебно-медицинской экспертизы.

    контрольная работа [33,4 K], добавлен 12.08.2009

  • Уголовно-процессуальные аспекты судебно-медицинской экспертизы вещественных доказательств преступления против половой неприкосновенности личности. Роль судебных экспертиз в расследовании убийств; порядок проведения и оценка заключения эксперта судом.

    дипломная работа [76,4 K], добавлен 16.05.2017

  • Значение и классификация судебных экспертиз. Процессуальный порядок назначения, производства и оформления судебной экспертизы. Характеристика судебной экспертизы как самостоятельного процессуального действия. Значение экспертизы при расследовании.

    курсовая работа [32,7 K], добавлен 24.10.2010

  • Анализ понятия экспертизы. Основные виды криминалистических экспертиз, их предметы и объекты, решаемые задачи, цели, условия назначения и проведения. Порядок реализации полученных результатов в уголовном процессе. Сущность судебно-ботанической экспертизы.

    контрольная работа [33,2 K], добавлен 13.01.2011

  • Понятие взрывчатых веществ, их классификация и характеристики. Природа взрывов и их материальное проявление. Анализ и методы обнаружения следов применения взрывных устройств и осмотр места происшествия. Сущность проведения взрывотехнической экспертизы.

    дипломная работа [74,2 K], добавлен 10.12.2013

  • Судебно-медицинские знания в выяснении преступлений. Основание и процессуальный порядок назначения судебно-медицинской экспертизы. Объекты судебно-медицинской экспертизы. Судебно-медицинская экспертиза живых лиц, трупов, вещественных доказательств.

    курсовая работа [45,3 K], добавлен 28.01.2008

  • Понятие вещественных доказательств и процессуальный порядок их оформления. Порядок хранения и уничтожения вещественных доказательств. Порядок передачи на ответственное хранение изъятых из незаконного оборота крупногабаритных инструментов и оборудования.

    курсовая работа [31,0 K], добавлен 24.09.2013

  • История развития дактилоскопии в России. Папиллярные узоры пальцев рук как объекты криминалистического исследования. Понятие дактилоскопической экспертизы следов рук, ее предмет, задачи и объекты. Пять основных стадий дактилоскопической экспертизы.

    курсовая работа [43,0 K], добавлен 08.05.2011

  • Роль специальных познаний в раскрытии преступлений. Классификация криминалистических экспертиз и порядок их назначения. Дактилоскопические экспертизы. Заключение эксперта: виды выводов, оценка следователем и судом. Процесс экспертного исследования.

    реферат [28,1 K], добавлен 06.03.2009

  • Специальные знания в расследовании насильственных преступлений. Особенности назначения криминалистических экспертиз при расследовании убийств. Судебно-медицинская экспертная деятельность. Особенности исследования расчлененных и скелетированных трупов.

    реферат [37,1 K], добавлен 23.09.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.