География науки мира
Общая характеристика науки как отрасли человеческой деятельности. Экономико-географическая характеристика отдельных наиболее известных научных центров мира. Характеристика территориальных форм организации науки. Характеристика российских наукоградов.
Рубрика | География и экономическая география |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 25.01.2012 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Государственное образовательное учреждение
Высшего профессионального обучения
Волгоградский Государственный Социально-Педагогический Университет
Естественно- Географический Факультет
ДИПЛОМНАЯ РАБОТА
На тему: «География науки мира»
Выполнила: Залукашева А.К
Студентка гр. Г-612
Проверила: Деточенко Л.В.
Волгоград 2012
Содержание
Введение
1. Наука - производительная сила современного общества.
1.1 Общая характеристика науки как отрасли человеческой деятельности.
1.2 История развития науки в человеческой цивилизации.
1.3 Наука как движущая сила НТР.
2. Территориальные формы организации науки, их эволюция.
2.1 Исторические особенности эволюции территориальных форм организации науки в мире.
2.2 Характеристика территориальных форм организации науки.
2.2.1 Наиболее известные университеты мира и их география.
2.2.2 Инкубаторы и технологические парки.
2.2.3 Технополисы. Регионы, науки и технологии.
3. Экономико-географическая характеристика отдельных наиболее известных научных центров мира.
4. География науки России.
4.1. Постсоветское научное пространство.
4.2. Российские наукограды.
Список литературы.
Введение
Актуальность исследования. В современном мире научное знание является неотъемлемым фактором успешной человеческой деятельности. Научный потенциал во многом определяет темпы развития общества. Перспективы экономики государств связываются с особой ролью теоретического знания, научно-техническим прогрессом, расцветом информационных технологий, трансформацией исследовательских центров в ведущие институты общества. Наука превращается в значимый фактор современной геокультурной, геоэкономической и геополитической динамики, а ее развитие во многом корреспондирует с устойчивым функционированием территориальных социально-экономических систем различных таксономических уровней и типов.
Решающее значение науки в современном обществе определяет актуальность ее всестороннего изучения. Особенно важна научная разработка различных аспектов развития российской науки. Глубокие социально-экономические преобразования, необходимость перехода России на инновационный путь развития и повышения конкурентоспособности ее экономики в контексте глобализации и регионализации многократно актуализируют проблематику современной отечественной науки, в том числе и вопросы ее территориальной организации, закономерно выдвигают изучение пространственных особенностей функционирования российской науки в число приоритетных направлений экономико-географических исследований.
Степень разработанности проблемы. Анализ монографической и периодической литературы по проблематике диссертации позволяет говорить о наличии исходной информационной базы, наработанной науковедами, историками, социологами, экономистами, экономико-географами. Вопросам размещения научного потенциала бывшего СССР значительное внимание уделено в трудах Е.А. Беляева, А.Е. Варшавского, В.И. Дуженкова, Ю.С. Колесникова, Л.Э. Миндели, Н.С. Пышковой, Б.Г. Салтыкова и др. Региональные особенности развития российской науки в 1990-х гг. рассмотрены в работах Г.А. Китовой, Б.В. Кузнецова, М.Д. Розина, М.В. Степанова и др.
Изучением науки с позиций предмета экономической географии занимались Н.В. Алисов, Ю.Н. Гладкий, А.Г. Дружинин, Ю.Ю. Ковалев, В.А. Колосов, В.П. Максаковский, М.Е. Половицкая и др. В результате были выявлены основные закономерности территориальной организации науки, факторы размещения научной деятельности, тенденции формирования территориальной структуры науки, пространственные связи различных стадий научных исследований.
Приоритетное значение для формирования адекватных представлений о территориальной организации науки, в частности её экономико-географической составляющей, имеют общеметодологические и науковедческие исследования H.H. Баранского, С.Б. Лаврова, Ю.Г. Саушкина и др., а также теоретико-модельные представления о территориальной организации общества, развиваемые в трудах А.И. Алексеева, Л.Б. Вардомского, Н.В. Зубаревич, О.П. Литовки, Н.С. Мироненко, Ю.В. Поросёнкова, А.И. Трейвиша, A.M. Трофимова, Б.С. Хорева, А.И. Чистобаева, М.Д. Шарыгина и др.
Отмечая многообразие подходов к раскрытию различных аспектов очерчиваемой в диссертации тематики, следует, одновременно, отметить отсутствие экономико-географических исследований феномена российской науки в новых, предопределяемых рыночной модернизацией и геополитической трансформацией территориальных социально-экономических условиях её развития. Кроме того, до настоящего времени не сформированы четкие представления о структуре географии науки и ее месте в системе экономической, социальной и политической географии. Ощущается также дефицит адекватного видения особенностей территориальной организации самого экономико-географического научного знания, трансформации сложившейся пространственной системы центров экономико-географических исследований в постсоветском геокультурном и геэкономическом контексте, в условиях новой регионализации России, её дальнейшей интеграции в глобальные процессы. Данные "пробелы" в сочетании с актуальностью диссертационной проблематики обусловили выбор темы исследования, формулировку его цели и основных задач.
Цель и задачи исследования. Целью диссертационной работы является исследование пространственных особенностей, факторов и закономерностей развития и функционирования российской науки. Исходя из поставленной цели, в диссертации решались следующие задачи:
- обобщение и уточнение теоретико-методологических подходов к исследованию науки как геокультурного феномена;
- выявление взаимозависимости геодинамики отечественной науки и развития геоэтнокультурной системы России;
- анализ геопространства современной российской науки;
- изучение территориальной организации науки на Юге России, уточнение научной специализации его регионов;
- выявление пространственных особенностей развития и функционирования системы современного экономико-географического знания, идентификация ведущих центров научных исследований в сфере экономической, социальной и политической географии.
Объектом исследования выступает территориальная организация российской науки как особая геокультурная реальность.
Предмет исследования - пространственные особенности и закономерности функционирования российской науки в условиях рыночной модернизации, глобализации и регионализации.
Методологической и теоретической основой диссертационного исследования явились положения и выводы, сформулированные и обоснованные в трудах по науковедению, а также экономической, социальной и политической географии. Основополагающее значение имели разрабатываемые в её рамках геокультурные концепции, включая представления о территориальной организации культуры.
В процессе диссертационного исследования применялись статистический, картографический, сравнительный, исторический методы, а также метод системного анализа.
Информационную базу исследования составляют материалы, опубликованные в научной литературе и периодической печати, статистические данные Госкомстата Российской Федерации, информация Центра исследований и статистики науки и Всероссийского научно-технического информационного центра. Положения и выводы диссертации основываются также на результатах проведенного анализа географии авторов публикаций в ведущих отечественных научных географических журналах и биографических сведений о выдающихся ученых.
Концепция диссертационной работы базируется на системе теоретических положений, согласно которым, выступая одним из приоритетных проявлений геокультурной и геоэкономической реальности, отечественная наука развивается под многоаспектным воздействием географических факторов и характеризуется особой, корреспондирующей с динамикой территориальной социально-экономической системы России в целом, пространственной организацией, что предопределяет необходимость её системного исследования с опорой на инструментарий экономической, социальной и политической географии.
Научная новизна диссертационного исследования заключается в следующем:
- уточнено представление об объектно-предметной специфике географии науки, её структуре и местоположении в системе экономической, социальной и политической географии; обоснована целесообразность исследования территориальной организации науки с опорой на методологию геокультурного анализа;
- установлена взаимозависимость геодинамики русской культуры и пространственных особенностей становления российской науки; уточнено и дополнено представление о доминантных тенденциях (территориальная дифференциация, поляризация, регионализация и др.) трансформации территориальной организации науки в современных геополитических, геоэкономических и геокультурных условиях, идентифицирована её центро-периферийная структура как на общегосударственном, так и на региональном (Юг России) уровне;
- предложены и апробированы на примере экономико-географической подсистемы научного знания инструментально-методические подходы пространственного анализа отдельных исследовательских дисциплин; выявлены особенности территориальной организации российской экономической, социальной и политической географии в постсоветский период, установлена иерархия и ареалы влияния основных центров экономико-географических исследований.
Практическая значимость исследования. Методология и методический инструментарий изучения отечественной науки с позиций геокультурного подхода применимы для исследований географии науки других стран, регионов и мира в целом. Полученные результаты и сформулированные выводы могут быть учтены при разработке стратегии развития российской науки и оптимизации ее территориальной структуры, в том числе на региональном уровне. Выявленные пространственные особенности функционирования современной отечественной экономической, социальной и политической географии призваны способствовать организации эффективного межрегионального научного сотрудничества экономико-географов. Кроме того, материалы исследования могут быть использованы в учебном процессе при подготовке специалистов в области экономической географии и регионоведения.
1. Наука - производительная сила современного общества
1.1 Общая характеристика науки как отрасли человеческой деятельности
Наука оказывает свое влияние на мировоззрение в первую очередь через научную картину мира, в которой в концентрированном виде выражены общие принципы мироустройства. Поэтому знакомство с ними составляет важнейшую задачу как современного образования, так и формирования научного мировоззрения личности.
Наука как производительная сила общества. Открывая объективные законы природы, наука создает реальные возможности для их практического использования обществом. Однако вплоть до середины XIX века применение достижений науки носило спорадический характер: использовались отдельные научные изобретения и открытия, совершенствовались технологические процессы в некоторых отраслях промышленности. С возникновением таких технических дисциплин, как технология металлов, сопротивление материалов, теория механизмов и машин, электротехника и других, использование достижений как фундаментальных, так и прикладных науки приобрело более целенаправленный характер. Наука, особенно прикладная, стала теснее связываться с производством, лучше и оперативнее реагировать на его запросы. Однако только во второй половине XX века ее достижения стали планомерно и систематически применяться в технологии и организации производства. О науке как непосредственной производительной силе впервые заговорили в период научно-технической революции XX века, когда новейшие достижения науки стали использоваться для замены ручного труда машинным, механизации и автоматизации трудоемких процессов в технологии производства, применения компьютеров и другой информационной техники в разных отраслях народного хозяйства. Продвижению новейших достижений науки в производство во многом способствовало создание специальных объединений по научным исследованиям и конструкторским разработкам (НИОКР), перед которыми была поставлена задача по доведению научных проектов для их непосредственного использования в производстве. Установление такого промежуточного звена между теоретическими и прикладными науками и их воплощением в конкретных конструкторских разработках содействовало сближению науки с производством и превращению ее в реальную производительную силу.
Наука как социальный фактор развития общества. Вслед за превращением науки в непосредственную производительную силу она постепенно начинает играть все большую роль как социальная сила развития общества. Эту задачу осуществляют прежде всего социально-экономические и культурно-гуманитарные науки, которые играют регулирующие роль в различных сферах социальной деятельности. В настоящее время, когда возрастают угрозы глобальных кризисов в экологии, энергетике, недостатках сырья и продовольствия, значение социальных наук в жизни общества еще больше возрастает. Их усилия в настоящее время должны быть направлены на рациональную организацию общественной жизни, основными компонентами которой являются ее демократизация, повышение жизненного уровня населения, утверждение и укрепление гражданского общества и свободы личности.
1.2 История развития науки в человеческой цивилизации
Наука не открывается каждому без усилий. Подавляющее число людей не имеет о науке никакого понятия. Она доступна лишь немногим.
К. Ясперс
Основной структурой познания в наиболее развитых отраслях естествознания является анализ предмета исследования, выражение абстрактных элементарных объектов и последующий логический синтез из них единого целого в виде теоретической модели.
Два обстоятельства затрудняют понимание обществом современного естествознания. Во-первых, применение сложнейшего математического аппарата, который надо предварительно изучить. Во-вторых, невозможность создать наглядную модель современных научных представлений: искривленное пространство; частицу, одновременно являющуюся частицей и волной, и т. д. Выход из ситуации прост -- не надо и пытаться это сделать. Естествознание XX в. заставляет нас отказаться не только от непосредственной наглядности, но и от наглядности как таковой. Отказ от наглядности научных представлений является неизбежной платой за переход к исследованию более глубоких уровней реальности, не соответствующих эволюционно выработанным механизмам человеческого восприятия.
Фундаментальной особенностью структуры научной деятельности является разделенность науки на относительно обособленные друг от друга дисциплины. Это имеет свою положительную сторону, поскольку дает возможность детально изучить отдельные фрагменты реальности, но при этом упускаются из виду связи между ними, а в природе все между собой взаимосвязано и взаимообусловлено. Разобщенность наук особенно мешает сейчас, когда выявилась необходимость комплексных интегративных исследований окружающей среды. Природа едина. Единой должна быть и наука, которая изучает все явления природы.
Еще одна фундаментальная черта науки -- стремление абстрагироваться от человека, стать максимально обезличенной. Эта в свое время положительная особенность науки делает ее ныне неадекватной реальности и ответственной за экологические трудности, поскольку человек является самым мощным фактором изменения действительности.
В дополнение к отмеченному выше: преобладанию анализа в науке, ее обезличенности, абстрагирующего характера, чрезмерной специализации, дисгармоничности в развитии ее отдельных частей, выходы за рамки наглядности и в ту область, где все решается не объективными законами, а случайностью и свободной волей -- можно добавить упрек в том, что наука и техника способствуют социальному угнетению, в связи с этим раздаются призывы об отделении науки от государства.
К парадоксам развития науки относится то, что наука, с одной стороны, сообщает объективную информацию о мире и в то же время уничтожает ее (при различных экспериментах) или что-либо уничтожается на основе научной информации (вида жизни, невоспроизводимые ресурсы).
Но главное, наука теряет надежду сделать людей счастливыми и дать им истину.
Наука не только изучает развитие мира, но и сама является процессом, фактором и результатом эволюции, при этом она должна находиться в гармонии с эволюцией мира. Должен образоваться контур обратной связи между наукой и другими сторонами жизни, который регулировал бы развитие науки. Увеличение разнообразия науки должно сопровождаться интеграцией и ростом упорядоченности, а это и называется становлением науки на уровень целостной интегративно-разнообразной гармоничной системы.
В современном мировоззрении сформировались две ориентации на отношение к науке и научно-технической революции. Первая ориентация, которая получила название сциентизма (от лат. scientia-- наука). Именно в наше время, когда роль науки поистине огромна, появился сциентизм, связанный с представлением о науке, особенно естествознании, как высшей, если неабсолютной ценности. Эта научная идеология заявила, что лишь наука способна решить все проблемы, стоящие перед человечеством, включая и бессмертие. В рамках сциентизма наука рассматривается как единственная в будущем сфера духовной культуры, которая поглотит ее нерациональные области.
В противоположность этому направлению также громко заявил о себе во второй половине XX в. антисциентизм, который обрекает науку либо на вымирание, либо на вечное противопоставление природе. Антисциентизм исходит из положения о принципиальной ограниченности возможностей науки в решении коренных человеческих проблем, а в своих проявлениях оценивает науку как враждебную человеку силу, отказывая ей в положительном влиянии на культуру. Она утверждает, что хотя наука и повышает благосостояние населения, но она же увеличивает опасность гибели человечества и Земли от ядерного оружия и загрязнения природной среды.
Естествознание является продуктом цивилизации и условием ее развития. С помощью науки человек развивает материальное производство, совершенствует общественные отношения, образовывает и воспитывает новые поколения людей, лечит свое тело. Прогресс естествознания и техники значительно изменяет образ жизни и благосостояние человека, совершенствует условия быта людей.
Естествознание -- один из важнейших двигателей общественного прогресса. Как важнейший фактор материального производства, естествознание выступает мощной революционизирующей силой. Великие научные открытия (и тесно связанные с ними технические изобретения) всегда оказывали колоссальное (и подчас совершенно неожиданное) воздействие на судьбы человеческой истории. Такими открытиями были, например, открытия в XVII в. законов механики, позволившие создать всю машинную технологию цивилизации; открытие в XIX в. электромагнитного поля и создание электротехники, радиотехники, а затем и радиоэлектроники; создание в XX в. теории атомного ядра, а вслед за ней -- открытие средств высвобождения ядерной энергии; раскрытие в середине XX в. молекулярной биологией природы наследственности (структуры ДНК) и открывшиеся вслед возможности генной инженерии по управлению наследственностью и др. Большая часть современной материальной цивилизации невозможна без участия в ее создании научных теорий, научно-конструкторских разработок, предсказанных наукой технологий и др.
В современном мире наука вызывает у людей не только восхищение, но и опасения. Часто можно услышать, что наука приносит человеку не только блага, но и величайшие несчастья. Загрязнения атмосферы, катастрофы на атомных станциях, повышение радиоактивного фона в результате испытаний ядерного оружия, озоновая дыра над планетой, резкое сокращение видов растений и животных -- все эти и другие экологические проблемы люди склонны объяснять самим фактом существования науки. Но дело не в науке, а в том, в чьих руках она находится, какие социальные интересы за ней стоят, какие общественные и государственные структуры направляют ее развитие.
Наука -- это сложный социальный институт, и он теснейшим образом связан с развитием всего общества. Сложность, противоречивость современной ситуации в том, что наука, безусловно, причастна к порождению глобальных и прежде всего экологических проблем цивилизации (не сама по себе, а как зависимая от других структур часть общества); и в то же время без науки, без дальнейшего ее развития решение всех этих проблем в принципе невозможно. И это значит, что роль науки в истории человечества постоянно возрастает. И поэтому всякое умаление роли науки, естествознания в настоящее время чрезвычайно опасно, оно обезоруживает человечество перед нарастанием глобальных проблем современности. А такое умаление, к сожалению, имеет подчас место, оно представлено определенными умонастроениями, тенденциями в системе духовной культуры.
1.3 Наука как движущая сила НТР
Научно-техническая революция означает скачок в развитие производительных сил общества, переход их в качественно новое состояние на основе коренных сдвигов в системе научных знаний.
Когда говорят о научно-технической революции, в первую очередь подразумевают именно процесс интеграции науки и производства. Однако было бы неправильно все сводить только лишь к первой составляющей современной НТР.
Во-вторых, понятие "научно-техническая революция" включает в себя революцию в подготовке кадров и во всей системе образования. Новая технология требует нового работника -- более культурного и образованного, гибко приспосабливающегося к техническим нововведениям, высоко дисциплинированного, имеющего к тому же навыки коллективного труда, что является характерной чертой новых технических систем.
В-третьих, важнейшей составляющей НТР является подлинная революция в организации производства и труда, в системе управления. Новой технике и технологии соответствует и новая организация производства и труда.
Современная научно-техническая революция (НТР) была подготовлена колоссальным развитием наук о природе и включает в себя это развитие. Исходным здесь явились научные достижения второй половины XIX в. При рассмотрении достижений естествознания XIX в. исследователи обычно обращают внимание на развитие физико-математических наук, на разработку математически "оформленных" научных теорий. И действительно, как отмечалось выше, успехи этих наук поразительны. Были созданы основы учения о тепловых процессах (термодинамика), об электричестве и электромагнитных процессах (электродинамика Максвелла), о строении вещества, о кристаллах. Физико-математические отрасли естествознания цементируют собой науки о природе. Они служат основой для создания новых технических устройств. В XIX в. особо впечатляющие успехи были достигнуты в этой области в результате овладения электричеством. Не менее важные открытия были сделаны и в химии, и в биологии. Достаточно упомянуть имена таких ученых, как К. Линней, Ч. Дарвин, Л. Пастер, Д. Менделеев и др., открытия которых в этих науках имели громадные практические последствия.
Начало научно-технической революции принято относить к середине 50-х гг. XX в. В этот период сделан ряд фундаментальных открытий в естественных науках и осуществлено их производственное применение. Это время овладения энергией атома, создания первых ЭВМ и квантовых генераторов, выпуска серии полимерных и других искусственных материалов, выход человека в космос.
В XX в. теоретическим ядром научно-технической революции становятся важнейшие достижения современного естествознания, в частности его пяти лидирующих наук: физики, химии, биологии, кибернетики, космологии. К их числу прежде всего относятся: 1) открытия физики твердого тела, ядра, элементарных частиц, плазмы; 2) глубокий анализ и синтез; 3) молекулярные основы наследственности и жизни, химическая природа нервных возбуждений; 4) математическая формализация процессов, информатизация, автоматизация и компьютеризация развивающихся систем; 5) теория познания и овладения космическими объектами.
Эти открытия есть революционный скачок в науке в целом, выражение более или менее комплексного освоения новых форм движения материи, атомно-молекулярных процессов во взаимосвязи с космосом. С названными достижениями связано развитие и других наук, в особенности технических: атомной энергетики, электроники, информатики, электрохимической, лазерной технологии и т. п.
На базе успехов в фундаментальных областях науки и происходит расцвет многих весьма разнообразных прикладных исследований и инженерных разработок. Опережающее развитие естествознания, его фундаментальных направлений является необходимой предпосылкой успешного развертывания НТР.
Сращивание новых индустриальных технологий микроэлектроникой и компьютерной техникой является одной из главных особенностей современного этапа научно-технической революции.
Еще одно важное свойство современных технологий -- малоотходность и безотходность, что важно как для роста эффективности производства, так и для сохранения окружающей среды. Глубокие перемены в энергетической базе производства связаны с освоением атомной энергии. За четверть века своего существования атомная энергетика достигла такого уровня, что успешно конкурирует с классическими способами получения энергии.
Основным направлением НТР в области технологии является переход от механической обработки материалов к использованию форм движения материи на молекулярном, атомном, субатомном уровнях, благодаря чему изменилась сама структура вещества. Речь идет о таких технологиях, как химическая, лазерная, прямое преобразование тепловой энергии в электронную, биотехнологическая и генная инженерия.
В современных условиях тема НТР весьма многогранна. И это совершенно естественно, поскольку на протяжении всей истории человечества перед ним никогда не открывались такие поистине фантастические возможности как для гигантского созидания, так и для столь же глобального разрушения. Атомная и термоядерная энергии, которые в обозримом будущем смогут обеспечить подлинное изобилие энергии, автоматизация и информатизация производства, коренным образом меняющиеся условия и характер труда людей, достижения современной химии, позволяющие создать неограниченное количество материалов с заранее заданными свойствами, процесс технологии, колоссальные возможности, открываемые кибернетикой, -- характерные черты современной НТР. Выход человека в космос, широчайший комплекс новых средств охраны здоровья и продления жизни и, наконец, быстрорастущие средства воздействия на процессы органической жизни (на микромолекулярном уровне) -- таков далеко не полный перечень созидательных возможностей, открываемых научно-технической революцией.
Вместе с тем она таит в себе и опасность для человечества. Атомное и термоядерное оружие, накопленные запасы которого в состоянии уничтожить все человечество и все живое на Земле, средства биологической и бактериологической войны, глобальное засорение биосферы планеты, водного и воздушного ее бассейнов, опасности, которые таит в себе новое направление молекулярной биологии (так называемая генная инженерия), -- таковы лишь некоторые подлинно апокалиптические характеристики разрушительных возможностей этой же революции.
Основой, исходной базой научно-технической революции является революция в естественных науках, начавшаяся в первой половине XX в. и продолжающаяся в настоящее время. Революция в естественных науках вызывает революционные по значению перевороты в технике и производстве, а в результате этих последних, в свою очередь, стимулируют и ускоряют процессы революции в естественных науках.
Современное развитие топливно-энергетического, сырьевого и перерабатывающего комплексов немыслимо без опоры на науку. Открытие и использование атомной (ядерной) энергии, изобретение транзисторов, электротехника и электроника, ЭВМ и многие другие новшества обязаны развитию научных исследований. Одним словом, современные преобразования в технике и технологии стали возможны лишь благодаря колоссальному развитию всего комплекса фундаментальных наук о природе -- наук, исследующих принципы строения и эволюции материального мира.
XIX век подготовил величайшую революцию в физике, которая произошла на рубеже XX в.: был произведен успешный прорыв науки на глубинный уровень строения материи -- на уровень микропроцессов, преобразовавший все физическое мышление, что явилось базой развития современной физики твердого тела, лежащей в основе развития электроники. Большинство современных технических наук были в свое время разделами физики. Прогресс физических наук оказывает непосредственное влияние на все основные элементы современного производства -- на его энергетическую базу, на орудия труда и технологию; физика твердого тела оказывает все возрастающее влияние на предметы труда. Это особенно очевидно в современную эпоху, когда на наших глазах происходит рождение атомной и ядерной энергетики, электронной и лазерной технологии, техники на полупроводниковых, микроэлектронных и интегральных схемах и т. п. Успехи физических наук послужили основой для создания и развития очень многих фундаментальных (особенно возникающих на стыке химических и физических, биологических и физических) наук и многих инженерных и научно-технических дисциплин. Так, например, исследование физических явлений в тонких полупроводниковых пленках стали основой работ получения интегральных, гибридных и функциональных схем, что непосредственно связано с процессами миниатюризации и микроминиатюризации электронных приборов и с созданием последних поколений ЭВМ.
С НТР связаны и успехи химической науки. Сейчас химия охватывает все новые и новые сферы органического и неорганического мира, проникает в области ряда смежных наук, формирует пограничные науки, обогащаясь методами и выводами этих наук. В условиях НТР появились новые направления химических наук:
1. элементоорганическая химия, находящаяся на грани органической и неорганической химии. Развитие этого направления открыло возможности создания новых полимеров металлоорганических и кремнийорганических соединений с совершенно немыслимыми ранее свойствами, а также возможности внедрения новых неизмеримо более простых и экономичных технологических методов получения полимеров;
2. химия комплексных соединений, позволяющая открыть многочисленный класс новых химических соединений. Она способствовала созданию промышленности драгоценных металлов и решению химических аспектов атомной энергии;
3. физико-химическая механика, связывающая механические и электрические свойства вещества с его химическим составом и строением;
4. биохимия, которая изучает структуру белка и белковых молекул, функции ферментов, исследует проблемы синтеза белка в организме, зависимости между химическим строением и биологическими функциями белков. Она изучает такие важнейшие свойства и сложные процессы, как иммунитет и иммунные свойства белков;
5. электрохимия -- раздел физической химии, посвященный исследованию свойств систем, содержащих ионы, и процессов с участием ионов, протекающих на границах таких систем с другими телами, особенно металлами;
6. радиохимия связана с решением проблем радиоактивности и радиоизотопов с использованием атомной энергии;
7. геохимия, или химия Земли, которая в своих исследованиях вещества и процессов, происходящих на Земле, опирается на химические законы и методы;
8. химическая кинетика -- наука о химических превращениях, исследующих скорости и направления химических реакций. Она помогла созданию общей теории цепных процессов и открытию возможностей управления цепными химическими реакциями и т. д.;
9. химическая физика дает возможность применения достижений современной физики к основным проблемам химии, а именно к вопросам строения атомов и молекул и к познанию механизма химических реакций.
НТР, успехи физических и химических наук оказали огромное воздействие на подлинную революцию в биологических науках. По определению президента Английского королевского общества, известного физика Блэккета, "молекулярная биология в такой же мере революционировала науку о живом мире, как квантовая теория революционизировала ядерную физику". Интенсивный процесс изучения биологических функций живых существ исходя из анализа молекулярной структуры и молекулярных взаимодействий определил лидирующую роль биохимии и сравнительно новой науки -- молекулярной биологии.
Проникая все глубже в тайны жизненных процессов, биологическая наука раскрывает и механизм использования генетической информации. Особенно интенсивно развиваются молекулярно-биологические исследования, затрагивающие проблемы размножения, наследственности, строения и свойства высокомолекулярных соединений, их биосинтеза и закономерностей их воспроизведения (репродукции) в процессах роста, клеточного деления и развития. Основными объектами молекулярно-биологического изучения являются также такие высокомолекулярные биополимеры, как белки и нуклеиновые кислоты. Отсюда проникновение науки в субмикроскопическое строение клетки, которое принесло самые неожиданные находки, заставляющие радикально пересмотреть многие ранее сложившиеся представления о биохимических, биофизических и физико-химических основах клеточных процессов. Успехи клеточной инженерии позволяют ученым в настоящее время сохранить на длительный срок в соответствующей питательной среде соматические и половые (даже оплодотворенные) клетки умерших животных, в том числе и человека. Если перенести такую оплодотворенную в пробирке яйцеклетку или же соответствующий ей плод в матку матери-суррогата (этот прием получил название -- клонирования), то можно осуществить полноценное вынашивание плода без особых физиологических проблем. В этом плане немаловажное значение имеет теория информации, теория больших систем и системного анализа, теория управления и неразрывно с ним связанная кибернетика -- наука об общих закономерностях процесса управления и передачи информации в машинах и живых организмах.
Таким образом, физика, биология, физиология, биохимия, биофизика, молекулярная биология, генетика, кибернетика и другие современные подразделения естественных наук "атакуют" и завоевывают все новые и новые позиции тайны познания бытия. Но уже сейчас очевидно, что как познавательные, так и практические возможности, которые откроются в связи с революцией в естественных науках, настолько грандиозны и широки по охвату, что они смогут стать отправной позицией для новой научно-технической революции.
2. Территориальные формы организации науки, их эволюция
2.1 Исторические особенности эволюции территориальных форм организации науки в мире
Во второй половине XX в. в рамках социально-экономической географии начало формироваться новое направление, получившее наименование география науки. И хотя это направление в целом еще не достигло большого развития, появились уже работы, в которых рассматриваются география научно-технического потенциала, влияние на размещение производительных сил фактора наукоемкости, изменения, происходящие в территориальных формах организации науки. Видимо, можно говорить о том, что в своем развитии территориальная организация науки прошла несколько исторических этапов.
В эпоху средних веков и раннего нового времени, если рассматривать прежде всего Европу, были наиболее характерны университетские города - такие, как Оксфорд и Кембридж в Англии, Гейдельберг в Германии, Лувен в Бельгии, Коимбра в Португалии и др. Конечно, наряду с этим университеты возникали и просто в больших городах (Тулуза, Гренобль во Франции, Кёльн, Лейпциг, Эрфурт в Германии, Женева, Базель в Швейцарии, Флоренция, Болонья в Италии, Севилья, Саламанка в Испании и др.), в том числе и в столичных (Париж, Рим, Лиссабон, Копенгаген, Прага). К концу XV в. в Европе было уже более 50 университетов. Позднее, после промышленных переворотов, стало расти значение столиц как уже не только университетских, но и общенаучных центров. Сеть университетских и научных центров начала расширяться также в США, Японии, России, некоторых других странах.
С началом НТР традиционные формы территориальной организации науки в общем сохранились, но их было уже недостаточно. Характерная для НТР интеграция науки, техники и производства вызвала к жизни целый ряд принципиально новых ее форм. Им посвящена уже значительная литература. Однако большой терминологический разнобой пока устранить не удалось. В самом деле, при перечислении этих форм пишут о научных парках, исследовательских парках, научно-исследовательских парках, научно-технических парках, научно-промышленных парках, инновационных центрах, инкубаторах, технопарках, технополисах, да и это еще не все. За некоторыми из перечисленных терминов действительно скрываются реальные различия. Например, задача инновационных центров заключается в оказании материального, финансового, научно-методического содействия преимущественно новым фирмам, связанным с наукоемкими технологиями. Однако в большинстве своем эти термины в той или иной степени дублируют друг друга. Дело осложняется еще и тем, что разные страны приняли для себя разную терминологию: во Франции говорят о технологических, в Германии - об инновационных и технологических парках, в Бельгии - об исследовательских центрах, в Великобритании и Нидерландах - о научных парках. По-видимому, в самом генерализованном виде все это разнообразие новых территориальных форм организации науки можно свести к двум главным - технопаркам и технополисам.
Технопарк (технологический, он же научный, научно-технический, научно-промышленный парк) - это такая организационно-территориальная форма взаимодействия науки и производства, при которой определенное количество фирм, выпускающих наукоемкую, высокотехнологичную продукцию, концентрируется в одном специально подготовленном месте, обеспеченном необходимой для этого инфраструктурой (здания, коммуникации). Обычно технопарки группируются вокруг университетов, научных институтов и лабораторий. Финансируют их преимущественно частные компании и банки, а главную их задачу можно сформулировать так: «От идеи до готового продукта». Технопарки, как правило, сравнительно невелики по размерам и узко специализированы на производстве какого-либо вида - преимущественно наукоемкой - продукции, а размещаются либо на свободных от застройки площадях, либо в специально реконструированных для них помещениях, большей частью «под одной крышей».
Первые технопарки появились в США в начале 1950-х гг. в знаменитой с тех пор Силиконовой долине в северной части Калифорнии. Они возникли на базе Стэнфордского университета и стали, можно сказать, исходной точкой мировой компьютерной революции. Затем технопарки в США начали плодиться поистине, как грибы после дождя, так что еще в начале 1990-х гг. общее их число превысило 1000. В начале 1970-х гг. «парковый бум» перекинулся в Западную Европу, где к началу 1990-х гг. количество технопарков превысило 200 (2/3 из этого числа приходятся на Германию, Великобританию и Францию). В 1980-х гг. такой же бум охватил и развивающиеся страны - прежде всего новые индустриальные страны Азии.
Наибольшее число технопарков действует в электронной промышленности, как бы продолжая то направление, которое было задано Силиконовой долиной и технопарками в районе Бостона, связанными с Массачусетским технологическим институтом. Помимо большого числа таких же «электронных» технопарков в США, аналогичные Силиконовые долины возникли в Великобритании, Германии, во Франции, в странах Юго-Восточной Азии. В России также ведется создание семи технопарков для развития высоких технологий, которые обеспечат 751 тыс. новых рабочих мест.
Технополис - это компактный научно-производственный городок, где занимаются разработкой инновационных технологий и развитием наукоемких производств. Технополис можно рассматривать как более высокую ступень технопарка, поэтому неудивительно, что они имеют некоторые общие черты- например, ориентируются на университеты и лаборатории, на обеспечение тесной связи науки с производством. Но между ними есть и довольно существенные различия. Так, технополисы представляют собой специально построенные научные городки, обычно расположенные неподалеку от крупных городов и отличающиеся выгодным географическим положением. При этом по своей территориальной структуре они могут быть как моно-, так и полицентрическими. Далее, для технополисов характерен больший набор выполняемых функций: здесь и наука, и производство, и подготовка научных и управленческих кадров, и выполнение всех стадий НИОКР. Соответственно технополисы имеют значительно более широкую специализацию, охватывающую не одно, а несколько разных направлений. Наконец, их финансируют уже не мелкие частные фирмы, а крупные корпорации и государство. Одно из требований к технополисам - обеспечение благоприятных, комфортных условий для жизни и работы сотрудников. Другое непременное условие - высокоразвитая инфраструктура, в том числе и информационная.
Идея создания технополисов возникла в Японии в начале 1980-х гг. Она была реализована в виде первого крупного технополиса «Цукуба», в котором разместились более 50 институтов, лабораторий и университет. Затем в этой стране началась реализация специальной общегосударственной программы «Технополис», предусматривающей создание большого числа таких научных центров. Японская идея была подхвачена и другими странами, причем не только развитыми, но и развивающимися. При этом нужно, конечно, учитывать, что технополисы (как и технопарки) в разных странах имеют свои национальные особенности, хотя обычно выделяют три их главные модели: американскую, европейскую и японскую.
В какой-то мере правомерно говорить и о российской модели территориальной организации науки. Для нее характерна, во-первых, очень большая роль столицы: Москва была и остается одним из крупнейших научных центров мира; очень велико и значение Санкт-Петербурга. Вторая характерная черта - создание еще в советское время крупных специализированных городов науки. Ярким примером такого рода может служить Новосибирский научный центр (Академгородок). Другой пример такого рода - научно-исследовательские центры, или города науки, в Подмосковье (Дубна, Пущино, Черноголовка, Зеленоград, Обнинск, Жуковский, Королев, Троицк, Протвино), которые, по мнению некоторых отечественных экономико-географов, все же неправомерно было бы причислять к категории технополисов, поскольку они принадлежат Академии наук и ведомствам, не связаны с университетами и занимаются преимущественно фундаментальными исследованиями, не всегда доводя их до конечных, производственных, стадий. Третий пример - рассекреченные в середине 1990-х гг. десять «закрытых» городов Минатома с общим населением около 750 тыс. человек, выполняющие роль отраслевых технополисов оборонной промышленности (рис. 61). В начале XXI в. в стране насчитывалось уже 75 наукоградов (в том числе 31 - в столичном регионе) с общим населением, превышающим 3,5 млн человек. Началось и создание технопарков.
2.2 Характеристика территориальных форм организации науки
Во второй половине XX в. в рамках социально-экономической географии начало формироваться новое направление, получившее наименование география науки. И хотя это направление в целом еще не достигло большого развития, появились уже работы, в которых рассматриваются география научно-технического потенциала, влияние на размещение производительных сил фактора наукоемкости, изменения, происходящие в территориальных формах организации науки. Видимо, можно говорить о том, что в своем развитии территориальная организация науки прошла несколько исторических этапов.
В эпоху средних веков и раннего нового времени, если рассматривать прежде всего Европу, были наиболее характерны университетские города - такие, как Оксфорд и Кембридж в Англии, Гейдельберг в Германии, Лувен в Бельгии, Коимбра в Португалии и др. Конечно, наряду с этим университеты возникали и просто в больших городах (Тулуза, Гренобль во Франции, Кёльн, Лейпциг, Эрфурт в Германии, Женева, Базель в Швейцарии, Флоренция, Болонья в Италии, Севилья, Саламанка в Испании и др.), в том числе и в столичных (Париж, Рим, Лиссабон, Копенгаген, Прага). К концу XV в. в Европе было уже более 50 университетов. Позднее, после промышленных переворотов, стало расти значение столиц как уже не только университетских, но и общенаучных центров. Сеть университетских и научных центров начала расширяться также в США, Японии, России, некоторых других странах.
С началом НТР традиционные формы территориальной организации науки в общем сохранились, но их было уже недостаточно. Характерная для НТР интеграция науки, техники и производства вызвала к жизни целый ряд принципиально новых ее форм. Им посвящена уже значительная литература. Однако большой терминологический разнобой пока устранить не удалось. В самом деле, при перечислении этих форм пишут о научных парках, исследовательских парках, научно-исследовательских парках, научно-технических парках, научно-промышленных парках, инновационных центрах, инкубаторах, технопарках, технополисах, да и это еще не все. За некоторыми из перечисленных терминов действительно скрываются реальные различия. Например, задача инновационных центров заключается в оказании материального, финансового, научно-методического содействия преимущественно новым фирмам, связанным с наукоемкими технологиями. Однако в большинстве своем эти термины в той или иной степени дублируют друг друга. Дело осложняется еще и тем, что разные страны приняли для себя разную терминологию: во Франции говорят о технологических, в Германии - об инновационных и технологических парках, в Бельгии - об исследовательских центрах, в Великобритании и Нидерландах - о научных парках. По-видимому, в самом генерализованном виде все это разнообразие новых территориальных форм организации науки можно свести к двум главным - технопаркам и технополисам.
Технопарк (технологический, он же научный, научно-технический, научно-промышленный парк) - это такая организационно-территориальная форма взаимодействия науки и производства, при которой определенное количество фирм, выпускающих наукоемкую, высокотехнологичную продукцию, концентрируется в одном специально подготовленном месте, обеспеченном необходимой для этого инфраструктурой (здания, коммуникации). Обычно технопарки группируются вокруг университетов, научных институтов и лабораторий. Финансируют их преимущественно частные компании и банки, а главную их задачу можно сформулировать так: «От идеи до готового продукта». Технопарки, как правило, сравнительно невелики по размерам и узко специализированы на производстве какого-либо вида - преимущественно наукоемкой - продукции, а размещаются либо на свободных от застройки площадях, либо в специально реконструированных для них помещениях, большей частью «под одной крышей».
Первые технопарки появились в США в начале 1950-х гг. в знаменитой с тех пор Силиконовой долине в северной части Калифорнии. Они возникли на базе Стэнфордского университета и стали, можно сказать, исходной точкой мировой компьютерной революции. Затем технопарки в США начали плодиться поистине, как грибы после дождя, так что еще в начале 1990-х гг. общее их число превысило 1000. В начале 1970-х гг. «парковый бум» перекинулся в Западную Европу, где к началу 1990-х гг. количество технопарков превысило 200 (2/3 из этого числа приходятся на Германию, Великобританию и Францию). В 1980-х гг. такой же бум охватил и развивающиеся страны - прежде всего новые индустриальные страны Азии.
Наибольшее число технопарков действует в электронной промышленности, как бы продолжая то направление, которое было задано Силиконовой долиной и технопарками в районе Бостона, связанными с Массачусетским технологическим институтом. Помимо большого числа таких же «электронных» технопарков в США, аналогичные Силиконовые долины возникли в Великобритании, Германии, во Франции, в странах Юго-Восточной Азии. В России также ведется создание семи технопарков для развития высоких технологий, которые обеспечат 751 тыс. новых рабочих мест.
Технополис - это компактный научно-производственный городок, где занимаются разработкой инновационных технологий и развитием наукоемких производств. Технополис можно рассматривать как более высокую ступень технопарка, поэтому неудивительно, что они имеют некоторые общие черты- например, ориентируются на университеты и лаборатории, на обеспечение тесной связи науки с производством. Но между ними есть и довольно существенные различия. Так, технополисы представляют собой специально построенные научные городки, обычно расположенные неподалеку от крупных городов и отличающиеся выгодным географическим положением. При этом по своей территориальной структуре они могут быть как моно-, так и полицентрическими. Далее, для технополисов характерен больший набор выполняемых функций: здесь и наука, и производство, и подготовка научных и управленческих кадров, и выполнение всех стадий НИОКР. Соответственно технополисы имеют значительно более широкую специализацию, охватывающую не одно, а несколько разных направлений. Наконец, их финансируют уже не мелкие частные фирмы, а крупные корпорации и государство. Одно из требований к технополисам - обеспечение благоприятных, комфортных условий для жизни и работы сотрудников. Другое непременное условие - высокоразвитая инфраструктура, в том числе и информационная.
Идея создания технополисов возникла в Японии в начале 1980-х гг. Она была реализована в виде первого крупного технополиса «Цукуба», в котором разместились более 50 институтов, лабораторий и университет. Затем в этой стране началась реализация специальной общегосударственной программы «Технополис», предусматривающей создание большого числа таких научных центров. Японская идея была подхвачена и другими странами, причем не только развитыми, но и развивающимися. При этом нужно, конечно, учитывать, что технополисы (как и технопарки) в разных странах имеют свои национальные особенности, хотя обычно выделяют три их главные модели: американскую, европейскую и японскую.
В какой-то мере правомерно говорить и о российской модели территориальной организации науки. Для нее характерна, во-первых, очень большая роль столицы: Москва была и остается одним из крупнейших научных центров мира; очень велико и значение Санкт-Петербурга. Вторая характерная черта - создание еще в советское время крупных специализированных городов науки. Ярким примером такого рода может служить Новосибирский научный центр (Академгородок). Другой пример такого рода - научно-исследовательские центры, или города науки, в Подмосковье (Дубна, Пущино, Черноголовка, Зеленоград, Обнинск, Жуковский, Королев, Троицк, Протвино), которые, по мнению некоторых отечественных экономико-географов, все же неправомерно было бы причислять к категории технополисов, поскольку они принадлежат Академии наук и ведомствам, не связаны с университетами и занимаются преимущественно фундаментальными исследованиями, не всегда доводя их до конечных, производственных, стадий. Третий пример - рассекреченные в середине 1990-х гг. десять «закрытых» городов Минатома с общим населением около 750 тыс. человек, выполняющие роль отраслевых технополисов оборонной промышленности (рис. 61). В начале XXI в. в стране насчитывалось уже 75 наукоградов (в том числе 31 - в столичном регионе) с общим населением, превышающим 3,5 млн человек. Началось и создание технопарков.
Подобные документы
Предмет, задачи и методы социально-экономической географии. Основные теории размещения хозяйства. Политическая карта мира, этапы ее формирования и современная ситуация. Экономико-географическая типология стран, трудовые ресурсы, международная миграция.
реферат [25,2 K], добавлен 09.06.2010Особенности политического и экономико-географического положения страны. Население России. Общая характеристика хозяйства России. Экономико-географическая характеристика экономических районов России. Центрально-Черноземный район. Уральский район (Урал).
реферат [187,7 K], добавлен 16.05.2007Основные предпосылки развития географической науки. Метод научного объяснения мира от Аристотеля, который основывается на использовании логики. География в эпоху Великих географических открытий. Становление современной географии, методы исследований.
реферат [52,6 K], добавлен 15.02.2011География и факторы размещения мирового машиностроения. Основные отрасли современного машиностроительного комплекса на примере общего, транспортного машиностроения, электроники и электротехники. Машиностроительный комплекс стран Латинской Америки, Японии.
курсовая работа [39,8 K], добавлен 06.08.2010Экономико-географическая характеристика важнейших отраслей промышленного производства Северо-Западного федерального округа, их роль в российском производственном потенциале. Общая характеристика транспортной системы. География пассажирских перевозок.
курсовая работа [1,5 M], добавлен 24.03.2015История географии как науки. Задачи современной географии. Географические идеи древнего мира, средневековья. Развитие географической науки в эпоху великих открытий. История русской картографии, вклад русских ученых в развитие теоретической географии.
реферат [22,5 K], добавлен 11.11.2009Этнография и демография как науки о населении, их понятия. Рост численности и плотности населения мира, показатели качества жизни. Структура населения мира по половому, возрастному, религиозному и этническому составу. Наиболее распространенные языки.
презентация [1,8 M], добавлен 23.10.2013История развития и становления географии как науки. Географические идеи древнего мира, античности и средневековья. Развитие географической науки в эпоху великих экспедиций. История русской картографии, вклад ученых в развитие теоретической географии.
презентация [17,1 M], добавлен 26.11.2010Общая характеристика Италии как средиземноморской страны. Экономико-географическая характеристика, этнический состав населения, демографическая ситуация. Структура хозяйства, промышленности и сельского хозяйства. Транспорт, внешние экономические связи.
курсовая работа [45,6 K], добавлен 12.02.2011Экономико-географическая характеристика Мурманской области и Чукотского автономного округа. Влияние экономико-географического положения на размещение и развитие ведущих отраслей производства. Современное состояние и перспективы развития регионов.
курсовая работа [67,1 K], добавлен 24.05.2012