Введение в анализ, синтез и моделирование систем

История, предмет, цели системного анализа. Введение основного понятийного аппарата системного анализа, теории систем. Фрактальный объект (кривая Коха). Понятие информации. Процессы и системы в совокупности с человеком с точки зрения естествознания.

Рубрика Экономико-математическое моделирование
Вид курс лекций
Язык русский
Дата добавления 29.06.2016
Размер файла 696,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2. необходимостью учета (прогноза) инфляционного ожидания и "увеличения" или "очистки" тех или иных составляющих активов и пассивов в зависимости от инфляции;

3. различными параметрами и факторами, влияющими на степень риска, затрудненностью оценки величины риска.

Различные структуры и схемы размещения и привлечения финансовых ресурсов определяют и различные динамические модели.

Например, если схема предусматривает возврат долга с процентами одновременно, реальная ставка рублевого кредита d может быть определена по формуле

d=(z-a)/(1+a/100) (%),

где z - номинальная ставка рублевого кредита (%), а - инфляция за период кредитования (%).

Для валютного кредита, очищенного от инфляции, с учетом внутренней конвертируемости рубля:

d=[((1+z/100)(1+g/100)-(1+a/100))/(1+a/100)]100 (%),

где z - номинальная ставка валютного кредита (%), g - рост курса валюты за период кредитования (%).

Если же договор размещения кредитов предусматривает учет динамики возврата долга (части долга) и уплаты процентов, то реальная ставка может определяться следующей процедурой:

1. определяется динамика срочных выплат (части долга и процентов), гарантирующая полное выполнение обязательств за период кредитования, т.е. обеспечивающая выполнение условий

где gt - ежемесячные (ежеквартальные, ежегодные) выплаты, t - номер месяца (квартала, года), в конце которого происходит выплата, S - размер ссуды, выданной в начале договора кредитования, T - количество дней (месяцев, кварталов, лет) кредитования;

2. задается динамика инфляции, например, дискретная функция at=a(t), t=1,2,...,T;

3. определяется реальная ставка d - решение уравнения:

если кредит - валютный, то необходимо дополнить этапы 1-3 этой процедуры следующими этапами:

4. осуществляется прогноз роста курса валюты, т.е. определяется (задается) дискретная функция gt=g(t), t=1, 2, :, T;

5. реальная ставка определяется из уравнения вида (S - ссуда в валюте):

В долговременных финансово-кредитных операциях проценты либо выплачиваются сразу после их начисления, либо их реинвестируют, применяя сложные проценты. Исходная сумма S (база) увеличивается по принятому (кредитором и дебитором) соглашению, а для простых процентов база постоянная и равна начальной сумме S. Присоединение начисленных процентов к базовой сумме называется капитализацией процентов, t=0,:, T.

Важнейшим показателем при ситуационном анализе и моделировании деятельности и жизнеспособности банка является надежность, банковский или кредитный риск. Надежность банка - не просто вероятность быть надежным банком в данный момент, а вероятность банка сохранять надежностные характеристики и отношения на некотором допустимом промежутке их варьирования и для определенного промежутка времени.

Пусть x=(x1, x2, ..., xn)Щ - вектор, характеризующий надежность банка, а Щ - некоторое множество его допустимых изменений. В качестве меры надежности можно взять условную вероятность p=p(P/Щ), где P - оценка (степень) надежности, P/Щ - оценка при условии изменения xЩ.

Пример. Пусть Щ=Щ(x1,x2,x3) - информационные ресурсы, доступные объекту (субъекту), который производит анализ надежности банка, а x=(x1,x2,x3), где x1 - активы банка, x2 - пассивы банка, x3 - дебиторская задолженность банку. Пусть, например, мы хотим оценить надежность банка, но не имеем о банке информации (или имеем нулевую информацию). Тогда значение p(P/Щ) можно получить, только исходя из двух возможных равновероятных состояний - банк либо надежен, либо не надежен, т.е. p(P/Щ)=0,5. Результат мало информативен и может быть применен к любому банку при любых условиях Щ. Пусть теперь известно, что существует лишь 30 % надежных банков, т.е. мы при оценке надежности банка используем эту информацию. В этом случае можно оценить надежность банка как 0p(P/Щ)0,3. В то же время, как и для предыдущего случая, такая оценка надежности будет малоинформативной, так как здесь мы имеем, как и в первом случае, два возможных состояния (p0,3 и p>0,3) и по формуле Шеннона количество информации в том и в другом случае равно

I=log2N=log22=1 (бит).

Чем более точной информацией о банке владеет вкладчик (дебитор), тем проще ему можно принимать верные решения, т.е. тем чаще и ближе будут оценки вероятности (надежности) p к p=0 и p=1. Чем меньше информации, тем сложнее принять однозначное решение, тем чаще и ближе будет оценка вероятности к p=0,5 ("пятьдесят на пятьдесят").

Величину p(P/Щ) принято называть апостериорной вероятностью (a posteriori - после опыта). Под опытом здесь подразумевается процесс получения информации Щ, следовательно, p(P/Щ) - вероятность быть надежным банком с учетом полученной в результате опыта информации.

При определении надежности (например, экспертами) могут допускаться ошибки, в том числе и субъективного характера. Это - вероятность "ложной классификации". Пусть p1 - вероятность отнесения (априори) надежного банка в класс ненадежных, а p2 - вероятность отнесения (априори) ненадежного банка в класс надежных банков. Если не учитывать гипотез о степени их предпочтения (рейтинг банка), то показатель качества классификации - сумма вероятностей совершения ошибок, т.е. p=p1+p2. Можно снабдить их весами (предпочтения) a1 и a2, например, если a1=1, a2=2, то вероятность p2 в 2 раза важнее p1 (иначе говоря, в 2 раза опаснее относить ненадежный банк в группу надежных, чем надежный банк в группу ненадежных). Тогда итоговый показатель является средневзвешенной суммой вероятностей:

p=a1q1+a2q2,

где a1, a20, q1, q20, q1, q2- вероятности ошибок, q1=1-p1, q2=1-p2.

Показатель p называют байесовским риском. Чем больше p, тем хуже произведена классификация, а чем она ближе к нулю, тем классификация ближе к реальной или априорной классификации.

Для ситуационного анализа необходимо иметь адекватные модели потока платежей. Как правило, этот поток - дискретный. Рассмотрим одну из простых подмоделей модели ситуационного анализа, дополняющую выше приведенную процедуру.

Пусть в момент времени t0=0 имеется капитал x(0) (денежных единиц), а в момент времени t=t1, t2, ...,tn имеются транзакции (приход, расход) y(ti), i=1,2,...,n. Рассмотрим, как это бывает на практике, одинаковые промежутки времени (год, месяц, день) [t0;t1], (t2;t3], ..., (tn-1; tn], т.е. ti-ti-1=const и векторы t=(0, t1, t2,...,tn), x=(x(0), x(t1), x(t2), ..., x(tn)), y=(0, y(t1), y(t2), ..., y(tn)), v=(0, v(t1), v(t2), ..., v(tn)), где v(ti) - коэффициент дисконта на промежутке времени (0;ti], т.е. коэффициент относительной скидки или отношения приращения ссуды (капитала) за срок от 0 до ti к наращенной сумме. Тогда потоки приходов и расходов будут, соответственно, равны

Будем считать доходы кредитора (инвестора) отрицательными величинами (отдает), а поступления - положительными. Тогда z(0)=-x(0) - начальный доход (начальная величина инвестиций), а z(ti)=y(ti)-x(ti) - поступление на его счет, i=1,2,..., n.

Чистая стоимость потока Q=R-P равна:

Аналогично, чистое наращенное значение потока на момент времени ti>0 равно (вводя a(tj, ti) - коэффициент наращения на (tj;ti],j=1,:,n-1)

Наращенное значение всех платежей к моменту времени tn=T равно Qn.

Одним из эффективных механизмов принятия деловых решений (в проблемах инвестирования, выработки стратегии поведения, развития и т.д.) является использование ИСПР (просто СПР) - информационных систем поддержки решений (Decision Support Systems), сочетающих современные средства аналитической обработки и средства визуализации информации и технологии поддержки деятельности экспертной группы.

Пример. В области организационного управления наибольший интерес имеют так называемые ситуационные (эмерджентные) комнаты (центры), позволяющие быстро "погрузить" ЛПР в рассматриваемую проблемную ситуацию, обстановку, помочь разобраться в проблеме и принять локально-оптимальное (не обязательно глобально-оптимальное) решение. Например, президент США имеет несколько таких комнат. Существуют ситуационные центры Президента РФ, Совета Безопасности, МЧС. Ситуационные комнаты - это специальное место для поддержки построения, проигрывания проблемной ситуации и принятия решений одним человеком или группой людей. Эффект от использования ситуационной комнаты зависит от корректности поставленной проблемы, полноты и достоверности используемых данных, сценария обсуждения, технологий интеллектуальной и компьютерной поддержки (например, использования экспертных систем), временного интервала прогноза и др. Простое использование автоматизированной системы обработки документов, поисковых систем, средств визуализации и мультимедиа - недостаточные условия для функционирования ситуационной комнаты. Основная функция СПР - поддержка умственной, эвристической и творческой деятельности ЛПР. СПР может работать в следующих режимах:

1. проблемный мониторинг и актуализация информации (СМИ, органов власти, объектов управления и пр.) с целью текущего информирования и предупреждения о накапливающихся небольших негативных явлениях;

2. планово-аналитический режим - плановое заслушивание и обсуждение аналитических докладов по проблемной ситуации с целью поддержки и принятия заслушиваемого решения по заранее фиксированному сценарию подачи, демонстрации материала для анализа "вширь" и "вглубь";

3. чрезвычайный режим - оперативный мониторинг информации, принятие и контроль исполнения решений по непредвиденным, чрезвычайным проблемам с целью уменьшения негативных факторов, влияющих на обычное в таких ситуациях совмещение построения сценария, обсуждения и принятия решений.

В базовом варианте, ситуационная комната может включать экран коллективного доступа; компьютер (обычно, ноутбук) с возможностью отображения на экран коллективного доступа; средства доступа к базе данных (знаний), в том числе - с целью сохранения сценария обсуждения, систему подготовки презентаций.

Вопросы для самоконтроля

1. Что такое принятие решения? Что такое полезность решения?

2. Что такое ЛПР, СПР, ИСПР?

3. Как могут классифицироваться задачи принятия решений? Как влияет неопределенность и многокритериальность на такую классификацию и на решение задачи принятия решений?

Задачи и упражнения

1. Требуется принять решение о том, когда необходимо проводить профилактический ремонт ЭВМ, чтобы минимизировать потери из-за неисправности. В случае, если ремонт будет производиться слишком часто, затраты на обслуживание будут большими при малых потерях из-за случайных поломок. Так как невозможно предсказать заранее, когда возникнет неисправность, необходимо найти вероятность того, что ПЭВМ выйдет из строя в период времени t. ЭВМ ремонтируется индивидуально, если она остановилась из-за поломки. Через T интервалов времени выполняется профилактический ремонт всех n ПЭВМ. Построить процедуру принятия решения о ремонте (исходя из различных ситуаций, в которые помещено ЛПР).

2. Интенсивность спроса x (спрос в единицу времени) на некоторый товар задается непрерывной функцией распределения f(x). Если запасы в начальный момент невелики, возможен дефицит товара. В противном случае к концу рассматриваемого периода запасы нереализованного товара могут оказаться большими. Потери возможны и в том, и в другом случае. Предложите процедуру принятия решения о необходимом запасе товаров.

3. При работе на ЭВМ необходимо периодически проверять наличие вирусов. Приостановка в обработке информации приводит к определенным экономическим издержкам. Если же вирус вовремя не будет обнаружен, возможна и потеря информации, и затраты на восстановление. Варианты решения таковы: Е1 - полная проверка; Е2 - минимальная проверка (проверка каталога); Е3 - отказ от проверки. ЭВМ может находиться в состояниях: F1 - вирус отсутствует; F2 - вирус есть, но он не успел активизироваться; F3 - некоторые файлы испорчены вирусом и нуждаются в восстановлении. Предложите процедуру принятия решения. Организуйте группу и руководство по ситуационному моделированию для решения этой проблемы (для принятия решений по проблеме).

Темы научных исследований и рефератов, интернет-листов

1. Функции, задачи, поведение ЛПР.

2. Системы поддержки и принятия решений.

3. Оптимизация и принятие решений.

13. Лекция: Модели знаний

Рассматриваются основные модели знаний, их структура, атрибуты, примеры.

Цель лекции: введение в основные модели представления и формализации знаний, их атрибуты и структуры.

Такие понятия как "интеллект", "интеллектуальность", у специалистов различного профиля (системного анализа, информатики, нейропсихологии, психологии, философии и др.) могут несколько различаться, причем это не несет в себе никакой опасности.

Примем, не обсуждая ее положительные и отрицательные стороны, следующую "формулу интеллекта":

"Интеллект = цель + факты + способы их применения",

или, в несколько более "математическом", формализованным виде:

"Интеллект = цель + аксиомы + правила вывода из аксиом".

При поиске наиболее удобных, рациональных средств и форм информационного обмена человек чаще всего сталкивается с проблемой компактного, однозначного и достаточно полного представления знаний.

Знания - система понятий и отношений для такого обмена. Можно условно классифицировать знания в предметной области на понятийные, конструктивные, процедурные, фактографические знания и метазнания.

Понятийные знания - набор понятий, используемых при решении данной задачи, например, в фундаментальных науках и теоретических областях наук, т.е. это понятийный аппарат науки.

Конструктивные знания - наборы структур, подсистем системы и взаимодействий между их элементами, например, в технике.

Процедурные знания - методы, процедуры (алгоритмы) их реализации и идентификации, например, в прикладных науках.

Фактографические - количественные и качественные характеристики объектов и явлений, например, в экспериментальных науках.

Метазнания - знания о порядке и правилах применения знаний (знания о знаниях).

Представление знаний есть процесс, конечная цель которого - представление информации (семантического смысла, значения) в виде информативных сообщений (синтаксических форм): фраз устной речи, предложений письменной речи, страниц книги, понятий справочника, объектов географической карты, мазков и персонажей картины и т.п.

Для этого необходимо пользоваться некоторой конструктивной системой правил для их представления и восприятия (прагматического смысла). Назовем такую систему правил формализмом представления знаний. Неформализуемые знания - это знания, получаемые с применением неизвестных (неформализуемых) правил, например, эвристик, интуиции, здравого смысла и принятия решений на их основе.

Человек пользуется естественным формализмом - языком, письменностью. Язык, языковые конструкции развиваются благодаря тому, что человеческие знания постоянно нуждаются в языковом представлении, выражении, сжатии, хранении, обмене. Мысль, которую нельзя выразить в языковой конструкции, не может быть включена в информационный обмен. Язык - форма представления знаний. Чем многообразнее язык народа, чем больше знаний он может отражать, тем богаче культура народа. В то же время, предложения и слова языка должны иметь однозначный семантический смысл. Особую роль играет язык математики как язык наук (не только точных, но и гуманитарных), формализации знаний, основа изложения системы знаний в естественных науках. Свой язык имеют химия, физика, экономика, информатика и т.д. Языки наук часто пересекаются и взаимообогащаются при исследовании междисциплинарных проблем.

Использование языковых систем и диалектов повышает надежность информационного обмена, снижая возможность неправильного истолкования передаваемой информации и уровень шумов в сообщениях. Главное назначение языка науки - создавать и использовать типовые, "стандартные" формы изложения, сжатия и хранения знаний, ликвидация полисемии (смысловой многозначности) естественного языка. Полисемия, обогащая естественный язык, делая его богаче и выразительнее, тем не менее, является в информационном обмене источником семантического шума, смысловой неоднозначности, а часто - и алогичности, неалгебраичности.

Пример. Найдем и формализуем закономерность в последовательности 1, 10, 11, 100, 111, 1000, 1111, 10000, ... . Из сравнения членов A[i] (i=1,2,...) последовательности, стоящих на четных местах и на нечетных местах, видно, что: 1) элемент на нечетном месте получается из элемента на предыдущем нечетном месте добавлением единицы справа к нему; 2) каждый элемент на четном месте получается из элемента на предыдущем четном месте добавлением справа к нему нуля. Это словесно описанное (неформализованное) правило можно записать на математическом языке, в аналитическом виде. Получим для случаев 1) и 2): A[2n]=10A[2n-2], A[2n-1]=10A[2n-1]+1, n=1, 2, ... . Можно записать формулу, объединяющую обе эти формулы: A[2n+m]=10A[2n+n-2]+m, где m=0 или m=1. Лучшая форма (с меньшей полисемией): А[2n+mod(n,2)]=10A[2n+mod(n,2)-2]+ mod(n,2).

Пример. Формализуем закон формирования последовательности: AB, AAB, ABB, AAAB, ABBB, ... . Словесное описание правила имеет вид: к слову, стоящему на очередном нечетном месте, добавляется с конца символ "В", а к слову, стоящему на очередном четном месте слева, добавляется символ "А". "Формульная" запись правила: Х2n+1=X2n-1+B, X2n=A+X2n-2, n=1, 2, 3, ... . Здесь операция "+" означает конкатенацию (присоединение текста к тексту справа), а Хn - элемент последовательности на n-м месте.

Одной из важных форм (методов) формализации знаний является их представление классом (классификация).

Классификация - выделение некоторого критерия (некоторых критериев) распределения и группировка систем или процессов таким образом, что в одну группу попадают лишь те системы (процессы), которые удовлетворяют этому критерию (значению критерия). Классификация - это метод научной систематики, особенно важный на начальном этапе формирования базовых знаний научного направления. Классификация, установление эквивалентности объектов, систем позволяет решать такие важные задачи информатики как фиксация знаний, поиск по образцу, сравнение и др.

Пример. Такими системами являются классификационная система К. Линнея в ботанике, систематика живых организмов, таблица элементов Д. Менделеева, систематика экономических систем, механизмов, "табель о рангах", введенная Петром Первым в 1722 г. Эта табель подразделяла чины на 14 рангов. Каждому чину соответствовала определенная должность. Первые 6 рангов статской и придворной служб и первый обер-офицерский чин в армии давали право на получение потомственного дворянства, что способствовало формированию дворянской бюрократии. Таким образом, "табель о рангах" выполняла социально-экономическую классификацию определенной (определяющей) части общества, социально-экономическое стимулирующее упорядочивание.

Указанные выше классификационные системы - иерархические структуры (модели) представления знаний. Отдельные понятия, факты, знания, связаны между собой отношениями дедуктивного (от частного к общему), индуктивного (от общего к частному) или индуктивно-дедуктивного вывода и формализуются соответствующими формальными структурами: древовидными, морфологическими, реляционными и др.

Пример. Рассмотрим систему "Фирма". Опишем всех сотрудников фирмы в лексикографически упорядоченном списке с именем "Сотрудники", указывая табельный номер, ФИО, год рождения, образование, специальность, разряд, стаж работы. Этот список дает нам знание о коллективе, его возрастных и профессиональных качествах и др. Составим другой список - "Заработная плата", где укажем для каждого сотрудника условия оплаты, величину их заработка (стоимости единицы времени их работы). Этот список дает нам знания о системе оплаты фирмы, ее финансового состояния и др. Оба списка содержат необходимый объем знаний о трудовом коллективе, если цель исследования этой системы - начисление заработной платы. Здесь мы наблюдаем и древовидные, и морфологические, и реляционные модели представления знаний.

Для более строгой формализации (сложных и динамических) знаний в последнее время используют такой перспективный инструментарий, как категории и функторы. Впрочем, математическая сложность такого аппарата не дает применять его на первоначальных этапах формализации знаний и он чаще используется лишь тогда, когда знания получили достаточно полную математическую форму описания.

Появление и развитие объектно-ориентированных технологий и объектно-ориентированного проектирования, использующих близкие по духу идеи, тем не менее, актуализируют аппарат категорий и функторов, поэтому введем основные начальные понятия.

Категория K=<S,M> - это совокупность S элементов (компоненты, характеристики, параметры, свойства и другие параметры исследуемой системы), называемых объектами категории, и совокупность преобразований, морфизмов M - специального типа преобразований, которые позволяют описывать (определять), например, эквивалентность, инвариантность и другие свойства. Объекты и морфизмы связаны между собой так, что:

1. каждой упорядоченной паре объектов А, ВS сопоставлено множество M(A, B) морфизмов из M;

2. каждый морфизм mM принадлежит только одному из множеств M(A,B);

3. в классе морфизмов М введен закон композиции морфизмов: произведение aob морфизма aM(A,B) на морфизм bM(C,D) определено и принадлежит M(A,B) тогда и только тогда, когда объект BX совпадает с объектом CX, причем композиция морфизмов ассоциативна: (ao b)o c=ao (bo c);

4. в каждом множестве М(A,A) содержится единичный или тождественный морфизм IA: aM(X,A), bM(A,Y),A,X,YF, IA: aoIA=a, IAob=b.

Категории, их использование для представления знаний адекватны мыслительным процедурам человека, учитывающим опыт, интуицию, понимание мира в терминах категорий, которым мы затем приписываем реальные оболочки, конкретные структуры. Объекты категории могут быть связаны между собой, влиять друг на друга, даже если у них нет общего (формального) сходства, а свойства категорий отражают сущность способностей человека, его поведения в окружении.

Функтор - обобщение понятия категории. Для введения преобразования между категориями используем понятие функтора. Функтор - аналог семантической операции, т.е. преобразования информации, приводящего к появлению некоторого смыслового (семантического) содержания.

Функтор определяется парой отображений, которые сохраняют композицию морфизмов и тождественные отображения (сохраняют смысл информации при преобразованиях): одно отображение преобразует объекты S (грубо говоря, - информацию), а другое - преобразует морфизмы M (грубо говоря, - семантический смысл).

Самый плохо формализуемый в информатике процесс - это процесс образования семантического смысла. Строгая математическая основа аппарата категорий и функторов позволяет исследовать семантический смысл математически корректно (путем построения семантических сетей, анализа фреймов, продукционных правил и др.), что является необходимым условием формализации знаний, разработки баз знаний и систем интеллектуальной поддержки принятия решений.

Категорийно-функторный подход к проблеме формализации знаний позволяет формализовать многие интуитивно используемые понятия.

Пример. Формализуем, например, понятия "формула", "теория". Формула Fi - запись вида Ri(k)(x1,:,xk), которую следует читать так: k переменных x1,:, xk удовлетворяют отношению Ri(k). В каждой i-ой формуле Fi может быть различное число свободных (не связанных) переменных. Понятие "(формальная) теория" можно определить как кортеж Т=<S,F>, где S - сигнатура (множество определенных, разрешенных операции), а F - множество формул без свободных переменных (аксиом теории). Если дополнительно определено и множество правил вывода P, то T=<S,F,P>. Отсюда видно, что формальная теория базируется на конкретной предметной области, определяемой сигнатурой.

Для компьютерного представления и обработки знаний и данных о предметной области (об объектах, процессах, явлениях, их структуре и взаимосвязях), они должны быть формализованы и представлены в определенном формализованном виде.

При традиционном способе реализации математической модели, знаний, заложенных в ней, строится моделирующий алгоритм (моделирующая программа), т.е. знания процедурно зависят от метода (алгоритма) обработки. В интеллектуальных системах (в системах искусственного интеллекта, в частности) знания о предметной области представлены в виде декларативной (описательной) модели формирования базы знаний и соответствующих правил вывода из нее и явно не зависят от процедуры их обработки. Для этого используются специальные модели представления знаний, например, продукционные, фреймовые, сетевые и логические. При обработке модели знаний используются процедуры логического вывода, называемые также механизмом или машиной вывода. Обычно в базе знаний зафиксированы общие закономерности, правила, описывающие проблемную среду и предметную область.

Процедуры вывода позволяют на основании общих правил вывести решение для заданной конкретной ситуации, описываемой некоторыми исходными данными. Цепочка логического вывода строится по мере приближения к решению, в зависимости от выведенных на каждом шаге данных и выведенных к этому шагу новых знаний. Конкретные формы организации дедуктивного вывода зависят от того, в какой форме представлены знания в базе знаний (на каком языке представления знаний).

Продукционная модель представления знаний наиболее распространена в приложениях. Модель реализуется правилами-продукциями:

если <условие> то <заключение>.

В качестве условия может выступать любая совокупность суждений, соединенных логическими связками и (), или ().

Пример. Продукцией будет следующее правило:

если (курс доллара-растет)(сезон-осень)(число продавцов-убывает)

то (прогноз цен на рынке жилья - рост рублевых цен на квартиры).

Такого рода правила и знания о ценах, предложении и спросе на рынке жилья могут стать базой для базы знаний о рынке жилья и экспертной системы для риэлторской группы (фирмы).

Существуют две основные стратегии вывода на множестве правил-продукций:

1. прямой вывод (вывод от исходных данных-фактов, аксиом - к цели, по пути вывода пополняя исходную базу знаний новыми полученными истинными фактами; процесс заканчивается лишь тогда, когда выведен факт, эквивалентный искомому);

2. обратный вывод (вывод от целевого факта к данным, на очередном шаге отыскивается очередной факт, в заключительной части содержится факт, эквивалентный исходному факту; процесс заканчивается тогда, когда для каждого факта, выведенного на очередном шаге, не будет найдено правило, имеющее этот факт в качестве заключения, а посылками - исходные или выведенные на предыдущих шагах факты).

Обе приведенные стратегии вывода имеют недостатки, достоинства и модификации.

Пример. Если все множество правил-продукций разбито на группы по некоторому признаку (структурировано), то вместо полного или случайного перебора всех правил при прямом и обратном выводе осуществляется целенаправленный переход от одной группы правил к другой. Используются также смешанные стратегии вывода, сочетающие прямой и обратный вывод.

Продукционные модели удобны для представления логических взаимосвязей между фактами, так как они более формализованы и достаточно строгие (теоретические), модульные (продукции явно между собой не связаны, поэтому их можно модифицировать по модульной технологии), соответствуют долговременной памяти человека.

Представление знаний в виде семантической сети является одной из основных моделей представления знаний.

Семантическая сеть - это ориентированная графовая структура, каждая вершина которой отображает некоторое понятие (объект, процесс, ситуацию), а ребра графа соответствуют отношениям типа "это есть", "принадлежать", "быть причиной", "входить в", "состоять из", "быть как" и аналогичным между парами понятий. На семантических сетях используются специальные процедуры вывода: пополнение сети, наследование свойств, поиск по образцу и др.

Пример. Рассмотрим факт: "причиной неритмичной работы предприятия является старое оборудование, а причиной последнего - отсутствие оборотных средств". Семантическая сеть может содержать вершины "оборотные средства", "старое оборудование", соединяемые ребрами - отношениями типа "быть причиной".

Достоинство семантических сетей - наглядность представления знаний, с их помощью удобно представлять причинно-следственные связи между элементами (подсистемами), а также структуру сложных систем. Недостаток таких сетей - сложность вывода, поиска подграфа, соответствующего запросу.

Характерная особенность семантических сетей - наличие трех типов отношений:

1. класс - элемент класса (часть - целое, класс - подкласс, элемент - множество и т.п.);

2. свойство - значение (иметь свойство, иметь значение и т.п.);

3. пример элемента класса (элемент за, элемент под, раньше, позже и др.).

Фреймовая модель представления знаний задает остов описания класса объектов и удобна для описания структуры и характеристик однотипных объектов (процессов, событий) описываемых фреймами - специальными ячейками (шаблонами понятий) фреймовой сети (знания).

Фрейм - концентратор знаний и может быть активизирован как отдельный автономный элемент и как элемент сети. Фрейм - это модель кванта знаний (абстрактного образа, ситуации), активизация фрейма аналогична активизации этого кванта знаний - для объяснения, предсказания и т.п. Отдельные характеристики (элементы описания) объекта называются слотами фрейма. Фреймы сети могут наследовать слоты других фреймов сети.

Различают фреймы-образцы (прототипы), хранящиеся в базе знаний, и фреймы-экземпляры, создаваемые для отображения реальных ситуаций для конкретных данных.

Фреймовое представление данных достаточно универсальное. Оно позволяет отображать знания с помощью:

· фрейм-структур - для обозначения объектов и понятий;

· фрейм-ролей - для обозначения ролевых обязанностей;

· фрейм-сценариев - для обозначения поведения;

· фрейм-ситуаций - для обозначения режимов деятельности, состояний.

Пример. Фрейм-структурами являются понятия "заем", "вексель", "кредит". Фрейм-роли - "кассир", "клиент", "сервер". Фрейм-сценарии - "страхование", "банкинг", "банкротство". Фрейм-ситуации - "эволюция", "функционирование", "безработица".

Пример. Например, возьмем такое понятие, как "функция". Различные функции могут отличаться друг от друга, но существует некоторый набор формальных характеристик для описания любой функции (фрейм "Функция"): тип и допустимое множество изменений аргумента (область определения функции), тип и допустимое множество значений функции (множество значений функции), аналитическое правило связи аргумента со значением функции. Соответственно, могут быть определены фреймы "Аргумент", "Значение функции", "Закон соответствия". Далее можно определить фреймы "Тип аргумента", "Вычисление значения функции", "Операция" и др. Пример слотов для фрейма "Закон соответствия": аналитический способ задания закона; сложность вычисления (реализации). Чтобы описать конкретное значение фрейма, необходимо каждому слоту придать конкретное значение, например, таким образом:

Имя фрейма - Функция;

Аргумент - x;

Значение функции - y;

Закон соответствия - квадратичный.

Слоты:

Значения аргумента - R;

Способ задания функции - y=ax2+bx+c;

Сложность вычисления - 7.

Пример. Фрейм "Задача вычислительного типа" - на рис. 14.1.

Рис. 14.1. Структура фрейма "Задача вычислительного типа"

Фреймовое представление наглядно и структурировано (модульно) и позволяет получать описание системы в виде связанных, иерархических структур (модулей - фреймов, единиц представления знаний).

Логическая (предикатная) модель представления знаний основана на алгебре высказываний и предикатов, на системе аксиом этой алгебры и ее правилах вывода. Из предикатных моделей наибольшее распространение получила модель предикатов первого порядка, базирующаяся на термах (аргументах предикатов - логических констант, переменных, функций), предикатах (выражениях с логическими операциями). Предметная область описывается при этом с помощью предикатов и системы аксиом.

Пример. Возьмем утверждение: "Инфляция в стране превышает прошлогодний уровень в 2 раза". Это можно записать в виде логической модели: r(InfNew, InfOld, n), где r(x,y) - отношение вида "x=ny", InfNew - текущая инфляция в стране, InfOld - инфляция в прошлом году. Тогда можно рассматривать истинные и ложные предикаты, например, r(InfNew, InfOld, 2)=1, r(InfNew, InfOld, 3)=0 и т.д. Очень полезные операции для логических выводов - операции импликации, эквиваленции и др.

Логические модели удобны для представления логических взаимосвязей между фактами, они формализованы, строги (теоретические), для их использования имеется удобный и адекватный инструментарий, например, язык логического программирования Пролог.

Модель предметной области можно определить упрощенно в виде:

<модель предметной области>=<понятийные знания>+<конструктивные знания>.

При реализации указанных выше моделей используются эвристики - эмпирические или полуэмпирические правила, с помощью которых эксперт (экспертная группа) в отсутствие алгоритма (например, задача плохо структурируема) пытается найти решение, моделируя возможный ход рассуждений эксперта на основе эвристической информации, получаемых в результате опыта, наблюдения, сбора и анализа статистики.

Пример. Сбор эвристической информации у представителей рынка приводит к следующим знаниям, которые можно представить, например, семантической сетью или продукциями:

1. нужно рекламировать свой товар активно в начальный период;

2. нужно поднимать цены в условиях отсутствия конкуренции;

3. нужно опускать цены в условиях жесткой конкуренции;

4. нужно стараться быть монополистом на рынке и др.

Многие знания, особенно находящиеся на стыке наук, трудно формализовать и описать формальными моделями, исследовать аналитически. В таких случаях часто применяют эвристики, эвристические процедуры, использующие аналоги, опыт поиска нового, исследования родственных задач, перебор вариантов с учетом интуиции.

Пример. Такими процедурами учат компьютер играть в шахматы. Шахматная программа - один из самых ранних примеров невычислительного применения ЭВМ. Если в 50-х годах она "играла" на уровне "разрядника", то за 40-50 лет она "научилась играть" на уровне чемпиона мира.

Вопросы для самоконтроля

1. Что такое знания, метазнания? Что такое представление знаний?

2. Что такое категория, функтор?

3. Каковы типы моделей знаний, их характеристики?

Задачи и упражнения

1. Формализуйте понятия "Решить задачу", "Решение задачи", "Метод решения задачи", "Алгоритм решения задачи".

2. Постройте одну продукционную и одну семантическую модели знаний по специальности.

3. Постройте одну фреймовую и одну логическую модели знаний по специальности.

Темы для научных исследований и выступлений (рефератов)

1. Формализованное и не формализованное знание. Методы формализации знания.

2. Модели знания.

3. Категориально-функторный анализ и его применения.

14. Лекция: Новые технологии проектирования и анализа систем

Обзор и классификация новых информационных технологий, наиболее актуальных для анализа и моделирования систем, примеры, тенденции развития технологий.

Цель лекции: содержательное введение в ряд наиболее важных для системного анализа и моделирования новых информационных технологий, в основные тенденции развития новых информационных технологий.

Процесс извлечения (получения) информации строится на основе упорядоченных последовательных действий по сбору, накоплению, отражению, преобразованию, актуализации данных; такие процессы в информатике называются информационными технологиями, и их основными элементами являются технические средства и устройства, например, в телеграфе - телетайпное устройство, в телевидении - телевизор и т.д.

Новые информационные технологии - это информационные технологии, базирующиеся на новых, инфологических и компьютерных средствах получения, хранения, актуализации информации, знаний.

Высокие технологии - это технологии качественного изменения состава, характера, методов решаемых задач, технологии эволюции, а не функционирования.

Пример. Обычная ("старая") технология вычислений ставит основную цель - найти решение задачи за приемлемое время и стоимость. Новая технология использования математических компьютерных пакетов ставит новую цель - найти решение достаточно быстро, точно и экономично. Высокая технология распределенных, квантовых вычислений ставит цель - найти решение задачи, не решаемой (труднорешаемой) обычными технологиями.

В узком понимании, новая информационная технология - использование вычислительной техники и систем связи для создания, сбора, передачи, хранения, обработки информации; она - часть информационного бизнеса.

Любая технология базируется на научно-теоретическом, инженерно-техническом, программном обеспечении. Само по себе это ядро еще не образует технологию. Для этого оно должно быть интегрировано и поддерживаемо сетевыми пространственно-временными, оранизационно-людскими связями и отношениями. Должна быть система, сеть поддержки технологических отношений (TSN).

Пример. TSN системы дистанционного обучения состоит из инфраструктуры - компьютерных сетей, протоколов их взаимодействия и т.д. Хаб (маршрутизатор) - элемент этой системы, но он управляется своим программным обеспечением (например, программа переключения), своим электрическим обеспечением. Хаб сам по себе - не технология. Программа Word - сама по себе не технология (хотя ее часто называют технологией подготовки и редактирования документов), а элемент технологии, определяемой как MS Office - технологии автоматизированого, компьютеризованного делопроизводства, автоматизации работ в офисе.

Традиционная (классическая) информационная технология, как правило, строится на базе хорошо формализуемых, структурируемых интеллектуальных процедур. Новая информационная технология, как правило, строится на основе плохо формализованных и структурированных интеллектуальных процедур.

Цивилизация возможна только при наличии информации, информационных потоков и обменов в обществе.

Информация делает народы человечеством.

Сначала информационные технологии использовались, из-за их сложности, уникальности и дороговизны, только в научных центрах и крупных промышленных компаниях. По мере совершенствования, распространения и удешевления, информационные технологии проникли в разные отрасли и стали развивать их и развиваться сами, что привело к развитию потребностей общества.

Новые информационные технологии бывают следующих базовых типов:

· когнитивные технологии, направленные большей частью на получение, хранение и актуализацию знаний, принятие интеллектуальных решений;

· инструментальные технологии, направленные большей частью на использование в качестве инструментария, среды для построения других технологий и для обслуживания их;

· прикладные технологии, направленные большей частью на решение проблем некоторой проблемной области (или областей);

· коммуникативные технологии, направленные большей частью на решение проблем связи, коммуникаций, общения.

Отметим, что такое деление - весьма условное - и технология может с успехом быть и прикладной, и когнитивной, и инструментальной, и коммуникативной.

Пример. Такова, например, технология компьютерного моделирования, гипермедиа.

Возможно деление (также условное) информационных технологий и по сфере использования, например:

· информационные технологии в науке;

· информационные технологии в образовании;

· информационные технологии в проектировании и производстве;

· информационные технологии в управлении;

· информационные технологии в сфере услуг;

· информационные технологии в сфере быта.

Можно также условно разбить все новые технологии на две группы - технологии корпоративной работы и технологии индивидуальной работы.

Рассмотрим новые информационные технологии, ограничиваясь содержательным простым их обзором, с учетом того, что наиболее важные информационные технологии анализа и синтеза систем - математическое и компьютерное, имитационное моделирование - уже были нами рассмотрены выше. Отметим лишь, что математическое моделирование - "старая" информационная технология, в отличие от компьютерного моделирования, являющегося новой технологией.

1.Технология баз данных (БД) и систем управления БД (СУБД). БД - достаточно большие наборы структурированных данных некоторой предметной области, представленные на машинных носителях и имеющие общую и удобную структуру, единые организационно-методические, программно-технические и языковые средства обеспечения использования данных различными программами пользователей. В зависимости от способа и технологии представления данных, различают иерархические, сетевые или реляционные базы данных, табличные или страничные. В любой БД задается порядок (отношение порядка) на множестве записей (полей записи), например, ключевыми полями, содержимое которых нумеруемо, лексикографически упорядочено. Таких полей может быть несколько, и при сортировке (выборке, модификации) данных записи ищутся сперва по одному ключу, затем - по другому и т.д., пока не будет совпадения или несовпадения требуемых полей. Остальные поля при этом не сравниваются. Такой процесс называется сортировкой или поиском, сравнением по ключу (ключам). Кроме поиска по ключу, можно искать и по значению, перебирая все записи БД, но этот процесс более длителен и часто требует построения дополнительных вспомогательных индексных таблиц для хранения подходящих по поисковому образцу значения записей (если такие есть).

В последнее время распространяется технология удаленных БД. Она базируется на коллективном доступе пользователей к информационным ресурсам, сосредоточенным на едином компьютере, или хост-компьютере, в диалоговом режиме по сетям передачи данных. Информационными продуктами здесь выступают БД разных предметных областей, а также различные директории, рубрикаторы и другие данные, облегчающие пользователю поиск по БД. Информационные услуги предоставляются благодаря наличию разнообразных средств поиска, обработки и выдачи информации. Информационные продукты и программные средства служат главными элементами банков данных или автоматизированных банков данных (АБД) - основной организационной формы, в которой развиваются современные технологии коммерческого распространения информации. Основными особенностями данной технологии, определяющими ее достоинства и ее недостатки, являются:

· предоставление пользователю только информационных услуг, а не непосредственно информационных продуктов, в результате чего он получает (оплачивает) только действительно нужную информацию;

· полнота информации, связанная с загрузкой на мощные хост-компьютеры больших массивов данных;

· высокая скорость обновления, модификации и перемещения информации;

· развитое программное обеспечение, позволяющее не только находить и получать информацию, но и при необходимости осуществлять ее графическую, наукометрическую и эконометрическую обработку.

Интерактивные услуги АБД могут предоставляться в режимах:

· локальном, когда работа пользователя осуществляется с терминала, подключенного к хост-компьютеру;

· удаленном, когда работа пользователя осуществляется с физически удаленного от хост-компьютера терминала по сетям связи.

Пример. В локальном режиме работают читатели библиотеки, осуществляющие поиск в АБД, который расположен на ее вычислительном центре, с терминалов по всему помещению библиотеки. В удаленном режиме можно работать, например, с библиотекой Конгресса США.

СУБД (DBMS - DataBase Management System) - программная система, обеспечивающая общение (интерфейс) программ пользователя и данных из БД. Это общение происходит на специальном непроцедурном языке логического представления данных и структур данных; сами данные описываются средствами также специального языка представления данных, программы пользователя при этом могут быть написаны на языке программирования. СУБД должна иметь средства, позволяющие сформулировать запрос к БД (поиск, сортировка и т.д.) на языке, близком к естественному и понятному для пользователя, но в то же время формальном, реализованном на ЭВМ языке. Такие языки называются языками запросов к базам данных и относятся языкам непроцедурного типа.

Основные функции СУБД:

· управление данными во внешней памяти - обеспечение необходимых структур внешней памяти для хранения данных и манипулирования ими;

· управление буферными областями памяти - обеспечение копирования необходимой части БД в области (буфере) оперативной памяти, а также использование определенных правил манипулирования с буферами;

· управление транзакциями, т.е. последовательностями операций над БД, рассматриваемыми СУБД как одна макрооперация; каждая транзакция не изменяет БД, а, следовательно, можно выполнять различные транзакции, т.е. организовывать многопользовательскую работу с БД через СУБД, в том числе и параллельную;

· поддержание надежности хранения данных в БД через избыточность данных и журнал (часть БД, недоступная пользователям СУБД и тщательно копируемая; в нее поступают записи обо всех изменениях БД) с целью сохранения данных при сбоях аппаратуры или программы;

· поддержка языков БД (языков определения логической структуры БД, языков манипулирования данными) или единого интегрированного языка, содержащего необходимые средства для работы - от проектирования БД до обеспечения базового пользовательского интерфейса с БД.

Пример. База данных ГИБДД всех владельцев автотранспорта, из которой по запросам сотрудников ГИБДД можно оперативно извлечь, например, данные о владельце машины по номеру ее госрегистрации.

2. Технологии хранилищ данных и интеллектуального анализа данных. Хранилище данных - очень большая специализировнная БД и программная система, предназначенная для извлечения, коррекции (чистка, правка) и загрузки данных из источников в БД с многомерной структурой, включая средства упрощения доступа, анализа с целью принятия решения. Интеллектуальный анализ данных (Data Mining) - автоматический поиск скрытых ("не лежащих на поверхности") в больших базах данных взаимоотношений и связей с помощью математического и инфологического анализа, выделения трендов, кластеризации (кластерного анализа), классификации и распознавания (таксономии), шкалирования и т.д. Специальные модели и алгоритмы анализа извлекают из больших баз данных (или из других хранилищ данных, например, электронных таблиц) знания, позволяющие агрегировать, интегрировать и детализировать эти данные и, самое главное, принимать на их основе решения. Это, по сути, идентификация скрытых в них зависимостей.

Пример. Хранилища данных собирают и централизуют текущую информацию о состоянии дел корпорации, о ее услугах, клиентах, поставщиках, и предоставляют аналитические и отчетные инструменты. С помощью анализа финансовых отчетов фирм, можно разбить их на классы по финансовой устойчивости, по вероятности банкротства, что поможет банку-кредитору осуществлять политику их кредитования более эффективно. Интеллектуальный анализ данных в геоинформационных системах может помочь обнаружить и визуализировать участки земной коры с залежами нефти, газа, сейсмоопасные. В бизнесе такой анализ может осуществляться для оценки надежности клиентов, выявления мошенничества, интерактивного маркетинга, анализ трендов и др. т.е. для Business Intellgence.

3. Технология баз знаний (БЗ) и экспертных систем (ЭС). БЗ - накопление, структурирование и хранение с помощью ЭВМ знаний, сведений из различных областей таким организованным способом, что можно иметь доступ к этим знаниям, расширять их, получать, выводить новые знания и т.д.

Пример. БЗ по хирургическим операциям брюшной полости, из которой молодой и неопытный хирург в экстренной хирургической ситуации может извлечь необходимую информацию об операции; сама же БЗ разработана на основе знаний высокопрофессиональных и опытных хирургов.

ЭС - накопление опыта, знаний, умений, навыков высокого уровня профессионалов-экспертов, структурирование и хранение, актуализация с помощью ЭВМ с целью получения экспертных суждений по различным проблемам данной области.


Подобные документы

  • Характеристика простых и сложных систем, их основные признаки. Общие принципы и этапы экономико-математического моделирования. Назначение рабочего этапа системного анализа - выявление ресурсов и процессов, композиция целей, формулирование проблемы.

    контрольная работа [47,7 K], добавлен 11.10.2012

  • Области применения системного анализа, его место, роль, цели и функции в современной науке. Понятие и содержание методик системного анализа, его неформальные методы. Особенности эвристических и экспертных методов исследования и особенности их применения.

    курсовая работа [78,8 K], добавлен 20.05.2013

  • Понятие системы управления, ее назначение и целевые функции. Суть параметрического метода исследования на основе научного аппарата системного анализа. Проведение исследования системы управления на предприятии "Атлант", выявление динамики объема продаж.

    курсовая работа [367,1 K], добавлен 09.06.2010

  • Использование системного анализа для подготовки и обоснования управленческих решений по многофакторным проблемам. Возникновение синергетики как науки о законах построения организации, возникновения упорядоченности, развитии и самоусложнении системы.

    реферат [40,4 K], добавлен 21.01.2015

  • Использование инструментария системного анализа для решения проблем на пути достижения цели - завести аквариум с пираньями. Описание предметной области. Построение дерева целей. Эффективные мероприятия в деревьях мероприятий, сетевой график их реализации.

    курсовая работа [97,3 K], добавлен 07.10.2013

  • Основы структурного системного анализа, принципы и вопросы создания функциональных моделей по методологии IDEF0: истоки структурного моделирования, границы системы, точка зрения модели, синтаксис графических диаграмм. Функциональные блоки, дуги.

    учебное пособие [514,6 K], добавлен 17.06.2011

  • Методология анализа сложных объектов, изучения и познания процессов. Основные принципы системного подхода к анализу проблем и основные понятия о системах. Декомпозиция, анализ подпроблем и их решение, выявление альтернатив и выбор оптимальных решений.

    контрольная работа [47,5 K], добавлен 04.08.2010

  • Определение происхождения эффекта взаимодействия. Последовательность и приёмы системного анализа. Разработка максимального количества альтернатив. Разработка эмпирической модели. Основные типы шкал, используемых при спецификации переменных системы.

    презентация [253,7 K], добавлен 19.12.2013

  • Теория системного анализа техносферы. Общая последовательность формализации и моделирования опасных процессов в техносфере. Особенность формализации и моделирования процесса возникновения происшествий в техносфере вообще и в человекомашинных системах.

    реферат [26,4 K], добавлен 06.03.2011

  • Общие принципы системного анализа. Основные этапы построения эконометрических моделей и использования их для прогнозирования. Экстраполяция трендов и ее использование в анализе. Правила составления информации подсистем. Модель "спрос-предложение".

    реферат [190,5 K], добавлен 24.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.