Введение в анализ, синтез и моделирование систем
История, предмет, цели системного анализа. Введение основного понятийного аппарата системного анализа, теории систем. Фрактальный объект (кривая Коха). Понятие информации. Процессы и системы в совокупности с человеком с точки зрения естествознания.
Рубрика | Экономико-математическое моделирование |
Вид | курс лекций |
Язык | русский |
Дата добавления | 29.06.2016 |
Размер файла | 696,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
OpenWindow(10,5,70,13,' Результат работы модели: ',14,7);
ClrScr; WriteLn;
WriteLn('Значение фондов в заданное время Т = ',x[time]:4:2);
If tmin<>0 then
WriteLn(' Величина фондов возрастает с ',tmin,' до ',tmax);
WriteLn(' Максимальное значение фондов = ',maxx:4:2);
Write(' Минимальное значение фондов = ',minx:4:2);
ReadKey; CloseWindow;
End;
{---------------------------------------------------------------------------------------------}
Procedure Mas_OX; { Масштабирование по оси ОХ }
Var
st :String;
Begin
p:=1; While Time>p*24 do inc(p);
For i:=1 to 24 do Begin Str(p*i,st); OutTextXY(65+20*i,420,st) End;
For t:=0 to Time do ax[t]:=70+round(20*t/p);
End;
{-------------------------------------------------------------------------------------------}
Procedure Mas_OY; { Масштабирование по оси ОУ }
Var
st :String;
k, r :Integer;
Begin
If maxx>16
then Begin
k:=1; While maxx>k*16 do inc(k);
For i:=1 to 16 do Begin Str(k*i,st);OutTextXY(35,407-20*i,st);End;
tk:=k;
End
else Begin
r:=1; While (maxx<=16/r) and (r<16) do inc®; dec®;
For i:=1 to (trunc(16/r-0.1)+1) do
Begin
Str(i,st);
OutTextXY(35,407-0*r*i,st)
End;
tk:=1/r;
End;
For t:=0 to Time do ay[t]:=410-round(20*x[t]/tk);
End;
{----------------------------------------------------------------------------------------------}
Procedure Ipol(x1,y1,x2,y2,x3,y3:Real); {Процедура интерполяции}
Var d1, da, db, dc :Real;
Begin
d1:=x1*x1*(x2-x3)+x2*x2*(x3-x1)+x3*x3*(x1-x2);
da:=y1*(x2-x3)+y2*(x3-x1)+y3*(x1-x2);
db:=x1*x1*(y2-y3)+x2*x2*(y3-y1)+x3*x3*(y1-y2);
dc:=x1*x1*(x2*y3-y2*x3)+x2*x2*(x3*y1-y3*x1)+x3*x3*(x1*y2-y1*x2);
aa:=da/d1; bb:=db/d1; cc:=dc/d1;
End;
{--------------------------------------------------------------------------------------------}
Procedure Graf; { Построение графика }
Begin
dv:=detect; InitGraph(dv,mv,''); SetBkColor(7); SetColor(6);
Rectangle(30,40,600,450);
Line(600,60,620,60); Line(620,60,620,470);
Line(50,450,50,470); Line(50,470,620,470);
SetFillStyle(1,1); FloodFill(610,450,6);
SetFillStyle(1,15); FloodFill(100,100,6);
SetColor(5); Circle(70,410,2);
Line(70,410,70,50); Line(70,410,590,410); { оси ОХ и ОУ }
OutTextXY(587,407,'>'); OutTextXY(67,47,'^'); OutTextXY(57,415,'0');
OutTextXY(80,45,'X(T) - (Величина основных фондов производства)');
OutTextXY(590,415,'T'); OutTextXY(540,430,'(Время)'); SetColor(2);
For i:=1 to 16 do Line(67,70+20*i,70,70+20*i);
For i:=1 to 24 do Line(70+20*i,410,70+20*i,413);
Mas_OX; Mas_OY;
For t:=0 to time do Вegin
SetColor(Blue); Circle(ax[t],ay[t],2);
SetFillStyle(SolidFill,Red); FloodFill(ax[t],ay[t],Blue);
End;
SetColor(Red); SetLineStyle(3,1,1);
Line(70,ay[time],ax[time],ay[time]); Line(ax[time],ay[time],ax[time],410);
Ipol(0,x[0],1,x[1],2,x[2]);
For i:=ax[0] to ax[2] do Begin
sx:=p*(i-70)/20;
yi:=410-round(20*(aa*sx*sx+bb*sx+cc)/tk);
SetColor(Red); Circle(i,yi,1);
End;
For t:=1 to Time-2 do Begin
Ipol(t,x[t],t+1,x[t+1],t+2,x[t+2]);
For i:=ax[t+1] to ax[t+2]do
Begin
sx:=p*(i-70)/20;
yi:=410-round(20*(aa*sx*sx+bb*sx+cc)/tk);
SetColor(Red); Circle(i,yi,1);
End;
End;
ReadKey; CloseGraph;
End;
{-------------------------------------------------------------------------------------------}
Begin
While true do
Begin
ClrScr; TextBackGround(2); Window(1,1,80,25); ClrScr;
OpenWindow(30,22,50,24,' Нажмите клавишу: ',4,1);
OpenWindow(5,5,75,16,' Динамика фондов производства ',14,5);
ClrScr; WriteLn;
WriteLn(' Пусть х(t) - основные фонды в момент времени t, y(t) -');
WriteLn(' инвестиции, m - коэффициент амортизации фондов.');
WriteLn(' Модель динамики основных фондов (L - лаг):');
Write(' x`(t) = y(t-L) - mx(t), где х(0) = Хо, y(t)=at+b, ( a,b>0 ).');
ReadKey; CloseWindow;
OpenWindow(15,10,65,17,' Выбирите вариант входа-выхода: ',15,0);
ClrScr; WriteLn;
WriteLn(' С клавиатуры - <1>');
WriteLn(' Из файла - <2>');
WriteLn(' Случайными числами - <3>');
WriteLn(' Выход - <Esc>');
ch:=ReadKey;
Сase ch of
#49: InputKeyboard;
#50: Вegin InputFile; OutputScreen; Еnd;
#51: Вegin InputRnd; OutputScreen; End;
#27: Halt(1);
End;
CloseWindow; Worker; OutputFile;
OpenWindow(22,10,58,14,'',15,5);
ClrScr; WriteLn;
Write('Для просмотра графика нажмите ввод'); ch:=ReadKey;
If ch=#13 then begin Graf; RestoreCrtMode; end;
CloseWindow; TextBackGround(15); Window(1,1,80,25);
ClrScr; OpenWindow(15,10,65,16,'',15,6); ClrScr; WriteLn;
WriteLn(' Хотите еще моделировать ?'); WriteLn;
WriteLn('Для выхода нажмите - < Esc >');
WriteLn('Для продолжения нажмите любую другую клавишу');
ch:=ReadKey;
If ch=#27 then Halt(1);
CloseWindow;
End;
ClrScr; TextBackGround(0);
End.
Этап 4. Проведение вычислительных экспериментов
Эксперимент 1. Поток инвестиций - постоянный и в каждый момент времени равен 10000. В начальный момент капитал - 1000000 руб. Коэффициент амортизации - 0,0025. Найти величину основных фондов через 20 суток, если лаг равен 5 суток.
Эксперимент 2. Основные фонды в момент времени t=0 была равны 5000. Через какое время общая их сумма превысит 120000 руб., если поток инвестиций постоянный и равен 200, а m=0,02, T=3?
Эксперимент 3. Какую стратегию инвестиций лучше использовать, если величина инвестиций постоянная, в начальный момент капитал равен 100000, величина амортизации постоянная?
Этап 5. Модификация (развитие) модели
Модификация 1. Коэффициент амортизации можно взять в форме m=r-sx(t), где r - коэфициент обновления фондов, s - коэффициент устаревания фондов, причем 0r, s1. При этом модель примет вид
xґ(t)=y(t-T)-rx(t)+sx2(t), x(0)=х0
Этой непрерывной, дифференциальной, динамической модели можно поставить в соответствие простую дискретную модель:
хi+1=хi +yj - rхi+sxi 2 ,
x0=с, i=0, 1, 2, :, n, 0<j<n,
где n - предельное значение момента времени при моделировании. Поставить цели и исследовать непрерывную и дискретную модели.
Модификация 2. Одна из моделей математической экономики задается уравнением: dz/dt=((1-c)*z(t)+k(t-w)+a)l, где z(t) - функция, которая характеризует выпуск продукции, k - коэффициент капиталовложений, a - независимые расходы производства, l - скорость реакции выпуска на капиталовложения, c - постоянная спроса, w - запаздывание (лаг). Поставить цели и исследовать непрерывную и дискретную модели.
Модификация 3. Для модели динамики фондов с переменным законом потока инвестиций: а) построить гипотезы, модель и алгоритм для моделирования; б) сформулировать планы вычислительных экспериментов по этой модели; в) реализовать алгоритм и планы экспериментов на ЭВМ.
Математическое моделирование только в последнее время становится на технологическую основу, в связи с этим необходимо отметить особую роль обычно технологичного имитационного моделирования, которое позволяет нам проигрывать реальные ситуации, происходящие в системах, на их моделях. Компьютерное моделирование (получение, накопление, переработка, хранение, использование, актуализация знаний с помощью ЭВМ), в отличие от математического, используется сравнительно недавно, хотя эти технологии моделирования тесно связаны. Компьютерное моделирование, как правило, применяется тогда, когда не удается построить математической аналитической модели или же такая модель трудоемка для исследования.
Пример. Компьютерной (физической) моделью может служить простая модель броуновского движения, получаемая генерацией компьютером нового случайного положения точки на экране и траектории ее движения; при этом отметим, что сам "датчик случайных чисел компьютера (или языка)" - это компьютерная модель, соответствующая математической модели распределения случайной величины (обычно нормального распределения) или так называемой функции распределения. Это распределение - псевдослучайное, получаемое по вполне детерминированному алгоритму.
Вопросы для самоконтроля
1. Что такое математическая модель?
2. Что такое линеаризация, идентификация, оценка адекватности и чувствительности модели?
3. Что такое вычислительный или компьютерный эксперимент? В чем особенности компьютерного моделирования по сравнению с математическим моделированием?
Задачи и упражнения
По приведенным ниже моделям: выписать соответствующую дискретную модель (если приведена непрерывная модель) или непрерывную модель (если приведена дискретная модель); исследовать модель в соответствии с поставленной целью (получить решение, проверить его единственность, устойчивость, наличие стационарного решения); составить алгоритм моделирования; модифицировать модель или разработать на ее основе новую; сформулировать несколько реальных систем, описываемых моделью; линеаризовать и идентифицировать модель (предложить подходы); сформулировать несколько возможных сфер применения моделей и результатов, полученных при ее исследовании; определить тип, входное и выходное множество модели.
1. Концентрация вещества, поступающего в реку со стоком, изменяется в результате действия рассеивания, адвекции, реакции. Концентрация хi вещества в реке зависит только от расстояния i, i=0,1,:, n по течению реки и определяется по формуле: ab(xi+1-2xi+xi+1)-c(xi-xi-1)-daxi=0, где а - площадь поперечного сечения реки, b - коэффициент рассеивания по течению реки, с - полный объемный расход реки, d - скорость разложения органического вещества. Эти величины a, b, c, d считаются пока постоянными. Общий поток вещества определяется: N=cxi-ab(xi+1-xi). Цель моделирования - прогноз загрязнения реки (для каждого i).
2. Пусть x(t) - величина ресурса (вещественного, энергетического или информационного), а(х) - скорость его возобновления, у(t) - величина потребителя (плотность), b=b(x,y) - скорость потребления ресурса потребителем, причем эксперименты показывают, что часто b=b(x). При этих условиях модель баланса ресурса имеет вид: x'(t)=a-by(t), x(0)=m, y'(t)=cby(t)-dy(t), y(0)=n, где с - к.п.д. переработки ресурса для нужд потребителя (например, в биомассу потребителя), d - коэффициент естественной убыли потребителя. Функция b=b(x), обладающая свойствами: а) b(x) - монотонна, т.е. растет или убывает, b'(x)>0 или b'(x)<0; б) b(0)=0 (в начальный момент трофическая функция равна нулю); в) b(x) - ограничена (т.е. скорость потребления ресурса ограничена) называется трофической функцией потребителя. Если а=0 - ресурс не возобновляем, иначе - возобновляем с постоянной скоростью а. Рассмотреть социально-экономическую интерпретацию одной модели. Цель моделирования: а) прогноз потребления; б) прогноз переработки; в) идентификация к.п.д. при различных аналогах трофической функции.
3. Пусть рынок некоторых товаров определен в виде клеточного поля. Некоторые клетки поля вначале считаются занятыми (продавцами). Ближайшие к занятым клеткам свободные (граничащие) клетки образуют периметр кластера продавцов (кластер может состоять также только из одного продавца). Ячейки периметра с вероятностью (с частотой) р занимаются новыми продавцами до тех пор, пока кластер не достигнет границ поля (экономической ниши товара) или не пройдет некоторое заданное время моделирования (время снижения потребительского интереса к товарам). Цель моделирования: а) построение клеточно-автоматной, фрактальной картины рынка через некоторое время; б) построение новых законов занятия ниши продавцами товаров и моделирование.
Темы научных исследований и рефератов, интернет-листов
1. Математическое моделирование: история, личности, будущее.
2. Компьютерное моделирование и его особенности.
3. Роль математического моделирования в современном мире.
11. Лекция: Эволюционное моделирование и генетические алгоритмы
Рассматриваются основные понятия и принципы эволюционного моделирования систем, а также генетических алгоритмов - адекватного аппарата его проведения.
Цель лекции: ввести в суть проблемы, сформулировать основные положения и принципы, цели эволюционного моделирования и дать общее понятие о генетических алгоритмах и их возможностях в эволюционном моделировании.
Потребность в прогнозе и адекватной оценке последствий осуществляемых человеком мероприятий (особенно негативных) приводит к необходимости моделирования динамики изменения основных параметров системы, динамики взаимодействия открытой системы с его окружением (ресурсы, потенциал, условия, технологии и т.д.), с которым осуществляется обмен ресурсами в условиях враждебных, конкурентных, кооперативных или же безразличных взаимоотношений. Здесь необходимы системный подход, эффективные методы и критерии оценки адекватности моделей, которые направлены не только (не столько) на максимизацию критериев типа "прибыль", "рентабельность", но и на оптимизацию отношений с окружающей средой. Если критерии первого типа важны, например, для кратко- и среднесрочного прогнозирования и тактического администрирования, то второго типа - для средне- и долгосрочного прогноза, для стратегического администрирования. При этом необходимо выделить и изучить достаточно полную и информативную систему параметров исследуемой системы и его окружения, разработать методику введения мер информативности и близости состояний системы. Важно отметить, что при этом некоторые критерии и меры могут часто конфликтовать друг с другом.
Многие такие социально-экономические системы можно описывать с единых позиций, средствами и методами единой теории - эволюционной.
При эволюционном моделировании процесс моделирования сложной социально-экономической системы сводится к созданию модели его эволюции или к поиску допустимых состояний системы, к процедуре (алгоритму) отслеживания множества допустимых состояний (траекторий). При этом актуализируются такие атрибуты биологической эволюционной динамики (в скобках даны возможные социально-экономические интерпретации этих атрибутов для эволюционного моделирования) как, например:
1. сообщество (корпорация, корпоративные объекты, субъекты, окружение);
2. видовое разнообразие и распределение в экологической нише (типы распределения ресурсов, структура связей в данной корпорации);
3. экологическая ниша (сфера влияния и функционирования, эволюции на рынке, в бизнесе);
4. рождаемость и смертность (производство и разрушение);
5. изменчивость (экономической обстановки, ресурсов);
6. конкурентные взаимоотношения (рыночные отношения);
7. память (способность к циклам воспроизводства);
8. естественный отбор (штрафные и поощрительные меры);
9. наследственность (производственные циклы и их предыстория);
10. регуляция (инвестиции);
11. самоорганизация и стремление системы в процессе эволюции максимизировать контакт с окружением в целях самоорганизации, возврата на траекторию устойчивого развития и другие.
При исследовании эволюции системы необходима ее декомпозиция на подсистемы с целью обеспечения:
1. эффективного взаимодействия с окружением;
2. оптимального обмена определяющими материальными, энергетическими, информационными, организационными ресурсами с подсистемами;
3. эволюционируемости системы в условиях динамической смены и переупорядочивания целей, структурной активности и сложности системы;
4. управляемости системы, идентификации управляющей подсистемы и эффективных связей с подсистемами системы, обратной связи.
Пусть имеется некоторая система S с N подсистемами. Для каждой i-й подсистемы определим вектор x(i)=(x1(i),x2(i),:,xni(i)) основных параметров (т.е. параметров, без которых нельзя описать и изучить функционирование подсистемы в соответствии с целями и доступными ресурсами системы) и функцию s(i)=s(x(i)), которую назовем функцией активности или просто активностью этой подсистемы.
Пример. В бизнес-процессах это понятие близко к понятию деловой активности.
Для всей системы определены вектор состояния системы x и активность системы s(x), а также понятие общего потенциала системы.
Пример. Потенциал активности может быть определен аналогично биологическому потенциалу популяции, например, с помощью интеграла от активности на задаваемом временном промежутке моделирования.
Эти функции отражают интенсивность процессов как в подсистемах, так и в системе в целом.
Важными для задач моделирования являются три значения s(i)max, s(i)min, s(i)opt - максимальные, минимальные и оптимальные значения активности i-й подсистемы, а также аналогичные значения для всей системы (smax, smin, sopt). В качестве показателя экономического состояния можно брать также отношение значения этого показателя к его нормированному значению, а для комплексного учета влияния параметров на состояние системы можно использовать аналоги меры информационной близости, например, по К. Шеннону.
Если дана открытая экономическая система (процесс), а Н0, Н1 - энтропия системы в начальном и конечном состояниях процесса, то мера информации определяется как разность вида:
ДН=Н0-Н1.
Уменьшение ДН свидетельствует о приближении системы к состоянию статического равновесия (при доступных ресурсах), а увеличение - об удалении. Величина ДН - количество информации, необходимой для перехода от одного уровня организации системы к другой (при ДН>0 - более высокой, при ДН<0 - более низкой организации).
Возможен подход и с использованием меры по Н. Моисееву. Пусть дана некоторая управляемая система, о состояниях которой известны лишь некоторые оценки - нижняя smin и верхняя smax. Известна целевая функция управления F(s(t),u(t)), где s(t) - состояние системы в момент времени t, а u(t) - управление из некоторого множества допустимых управлений, причем считаем, что достижимо uopt - некоторое оптимальное управление из пространства U, t0<t<T, sminssmax. Мера успешности принятия решения:
H=|(Fmax - Fmin)/(Fmax+Fmin)|,
Fmax=max F(uopt, smax), Fmin=min F(uopt, smin), t[t0;T], s[smin;smax].
Увеличение Н свидетельствует об успешности управления системой (успешности принятого управляющего решения).
Активности подсистем прямо или опосредованно взаимодействуют с помощью системной активности s(x), например, по простой схеме вида
Функции j(i), y(i) должны отражать эволюционируемость системы, в частности, удовлетворять условиям:
1. периодичности, цикличности, например:
(0<T<?, t: (i)(s; s(i), t)= (i)(s; s(i), t+T), (i)(s; s(i), t)= (i)(s; s(i), t+T));
2. затухания при снижении активности, например:
(s(x)0 i=1, 2, ..., n) => ( (i) 0, (i) 0);
3. равновесности и стационарности: выбор (определение) функции (i), (i) осуществляется таким образом, чтобы система имела точки равновесного состояния, а s(i)opt, sopt достигались в стационарных точках x(i)opt, xopt для малых промежутков времени; в больших промежутках времени система может (в соответствии с теорией катастроф) вести себя хаотично, самопроизвольно порождая регулярные, упорядоченные, циклические взаимодействия (детерминированный хаос).
Взаимные активности (ij)(s; s(i), s(j), t) подсистем i и j мы не учитываем. В качестве функции (i), (i) могут быть эффективно использованы производственные функции типа Кобба-Дугласа:
В таких функциях важен параметр i, отражающий степень саморегуляции, адаптации системы. Как правило, его нужно идентифицировать.
Функционирование системы удовлетворяет на каждом временном интервале (t; t+ф) ограничениям вида
При этом отметим, что выполнение для ф>0 одного из двух условий
приводит к разрушению (катастрофе) системы.
Пример. Пусть имеется некоторая социально-экономическая среда, которая возобновляет с коэффициентом возобновления (ф,t,x) (0<t<T, 0<x<1, 0<ф<T) свои ресурсы. Этот коэффициент зависит, в общем случае, от мощности среды (ее ресурсоемкости, ресурсообеспеченности). Рассмотрим простую гипотезу: (ф,t,x)= 0+1x, и чем больше ресурсов - тем больше темп их возобновления. Можно записать непрерывную эволюционную модель (a - коэффициент естественного прироста ресурсов, b - их убыли):
Обозначим (ф)=0(ф)+1(ф)x(ф)>0. Тогда
Задача всегда имеет решение x0. Тогда эволюционный потенциал системы можно определить как величину:
Чем выше темп - тем выше л, чем меньше - тем ниже л. Каким бы хорошим ни было состояние ресурсов в начальный момент, они неизменно будут истощаться, если потенциал системы меньше 1.
Пример. Пусть umax - максимальный уровень синтаксических ошибок в программе Р, u(t) - их оставшееся количество к моменту времени t. Исходя из простейшей эволюционной модели du/dt+лumax=0, u(t0)=u0, можно заключить, что уровень ошибок убывает при л(c-t0)-1 (t0<c<T) по закону: u(t) = u0(1+ л(c-t))/(1+л(c-t0)). Если задать дополнительно u(t*)=u*, (umax - неизвестная величина, t* t0), то закон изменения уровня ошибок находится однозначно, так как: с=(u* t0 - u0t*)/(лu* - лu0 ) -1/л.
Отметим, что если ds/dt - общее изменение энтропии системы при воздействии на систему, ds1/dt - изменение энтропии за счет необратимых изменений структуры, потоков внутри системы (рассматриваемой как открытая система), ds2/dt - изменение энтропии за счет усилий по улучшению обстановки (например, экономической, экологической, социальной), то справедливо уравнение И. Пригожина:
ds/dt = ds1/dt + ds2/dt.
При эволюционном моделировании социально-экономических систем полезно использовать и классические математические модели, и неклассические, в частности, учитывающие пространственную структуру системы (например, клеточные автоматы и фракталы), структуру и иерархию подсистем (например, графы и структуры данных), опыт и интуицию (например, эвристические, экспертные процедуры).
Пример. Пусть дана некоторая экологическая система Щ, в которой имеются точки загрязнения (выбросов загрязнителей) xi, i=1, 2, :, n. Каждый загрязнитель xi загрязняет последовательно экосистему в промежутке времени (ti-1; ti], ti=ti-ti-1. Каждый загрязнитель может оказать воздействие на активность другого загрязнителя (например, уменьшить, нейтрализовать или усилить по известному эффекту суммирования воздействия загрязнителей). Силу (меру) такого влияния можно определить через rij, R={rij: i=1,2,:, n-1; j=2,3,:, n}.
Структура задаётся графом: вершины - загрязнители, ребра - меры.
Найдём подстановку минимизирующую функционал вида:
где F - суммарное загрязнение системы с данной структурой S.
Чем быстрее (медленнее) будет произведен учёт загрязнения в точке xi, тем быстрее (медленнее) осуществимы социо-экономические мероприятия по его нейтрализации (усилению воздействия). Чем меньше будет загрязнителей до загрязнителя xi, тем меньше будет загрязнение среды.
В качестве меры rij может быть взята мера, учитывающая как время начала воздействия загрязнителей (предшествующих данной xj), так и число, а также интенсивность этих загрязнителей:
где vij - весовой коэффициент, определяющий степень влияния загрязнителя xi на загрязнитель xj (эффект суммирования), hj - весовой коэффициент, учитывающий удельную интенсивность действия загрязнителя xj или интервал фi, в течение которого уменьшается интенсивность (концентрация) загрязнителя. Весовые коэффициенты устанавливаются экспертно или экспериментально.
Принцип эволюционного моделирования предполагает необходимость и эффективность использования методов и технологии искусственного интеллекта, в частности, экспертных систем.
Основная трудность при построении и использовании эволюционных моделей: в Природе и Познании, в которых эти модели и цели явно или неявно существуют, результаты функционирования системы и достижения цели прослеживаемы часто лишь по прошествии длительного периода времени, хотя в Обществе и Экономике Человек стремится получить результаты в соответствии с целью явно и быстро, с минимальными затратами Ресурсов.
Адекватным средством реализации процедур эволюционного моделирования являются генетические алгоритмы.
Идея генетических алгоритмов "подсмотрена" у систем живой природы, у систем, эволюция которых развертывается в сложных системах достаточно быстро.
Генетический алгоритм - это алгоритм, основанный на имитации генетических процедур развития популяции в соответствии с принципами эволюционной динамики, приведенными выше. Часто используется для решения задач оптимизации (многокритериальной), поиска, управления.
Данные алгоритмы адаптивны, развивают решения, развиваются сами. Особенность этих алгоритмов - их успешное использование при решении NP-сложных проблем (проблем, для которых невозможно построить алгоритм с полиномиально возрастающей алгоритмической сложностью).
Пример. Рассмотрим задачу безусловной целочисленной оптимизации (размещения): найти максимум f(i), i - набор из n нулей и единиц, например, при n=5, i=(1,0,0,1,0). Это очень сложная комбинаторная задача для обычных, "негенетических" алгоритмов. Генетический алгоритм может быть построен следующей укрупненной процедурой:
1. генерируем начальную популяцию (набор допустимых решений задачи) - I0=(i1, i2, :, in), ij{0,1} и определяем некоторый критерий достижения "хорошего" решения, критерий остановки , процедуру СЕЛЕКЦИЯ, процедуру СКРЕЩИВАНИЕ, процедуру МУТАЦИЯ и процедуру обновления популяции ОБНОВИТЬ;
2. k:=0, f0:=max{f(i), iI0};
3. нц пока не()
1. с помощью вероятностного оператора (селекции) выбираем два допустимых решения (родителей) i1, i2 из выбранной популяции (вызов процедуры СЕЛЕКЦИЯ);
2. по этим родителям строим новое решение (вызов процедуры СКРЕЩИВАНИЕ) и получаем новое решение i;
3. модифицируем это решение (вызов процедуры МУТАЦИЯ);
4. если f0<f(i) то f0:=f(i);
5. обновляем популяцию (вызов процедуры ОБНОВИТЬ);
6. k:=k+1
кц
Указанные процедуры определяются с использованием аналогичных процедур живой природы (на том уровне знаний о них, что мы имеем). Например, процедура СЕЛЕКЦИЯ может из случайных элементов популяции выбирать элемент с наибольшим значением f(i). Процедура СКРЕЩИВАНИЕ (кроссовер) может по векторам i1, i2 строить вектор i, присваивая с вероятностью 0,5 соответствующую координату каждого из этих векторов-родителей. Это самая простая процедура. Используют и более сложные процедуры, реализующие более полные аналоги генетических механизмов. Процедура МУТАЦИЯ также может быть простой или сложной. Например, простая процедура с задаваемой вероятностью для каждого вектора меняет его координаты на противоположные (0 на 1, и наоборот). Процедура ОБНОВИТЬ заключается в обновлении всех элементов популяции в соответствии с указанными процедурами.
Пример. Работу банка можно моделировать на основе генетических алгоритмов. С их помощью можно выбирать оптимальные банковские проценты (вкладов, кредитов) некоторого банка в условиях конкуренции с тем, чтобы привлечь больше клиентов (средств). Тот банк, который сможет привлечь больше вкладов, клиентов и средств, и выработает более привлекательную стратегию поведения (эволюции) - тот и выживет в условиях естественного отбора. Филиалы такого банка (гены) будут лучше приспосабливаться и укрепляться в экономической нише, а, возможно, и увеличиваться с каждым новым поколением. Каждый филиал банка (индивид популяции) может быть оценен мерой его приспособленности. В основе таких мер могут лежать различные критерии, например, аналог экономического потенциала - рейтинг надежности банка или соотношение привлеченных и собственных средств банка. Такая оценка эквивалентна оценке того, насколько эффективен организм при конкуренции за ресурсы, т.е. его выживаемости, биологическому потенциалу. При этом особи (филиалы) могут приводить к появлению потомства (новых банков, получаемых в результате слияния или распада), сочетающего те или иные (экономические) характеристики родителей. Например, если один банк имел качественную политику кредитования, а другой - эффективную инвестиционную политику, то новый банк может приобрести и то, и другое. Наименее приспособленные особи (филиалы) совсем могут исчезнуть в результате эволюции. Таким образом, отрабатывается генетическая процедура воспроизводства новых банков (нового поколения), более приспособленных и способных к выживанию в процессе эволюции банковской системы. Эта политика со временем пронизывает всю банковскую "популяцию", обеспечивая достижение цели - появления эффективно работающей, надежной и устойчивой банковской системы. Приведем соответствующий генетический алгоритм (укрупненный и упрощенный):
алг ГЕНЕТИЧЕСКИЙ_АЛГОРИТМ_БАНКОВСКОЙ_СИСТЕМЫ
ввод Начальная структура банка (начальная популяция);
СТРУКТУРА | процедура оценки структуры по приспособлению
Стоп:=0 | флаг для завершения эволюционного процесса
нц пока (Стоп=0)
СЕЛЕКЦИЯ | процедура генетического отбора нового поколения
нц пока (МЕРА) | цикл воспроизводства с критерием МЕРА
| мерой эффективности банковской системы
РОДИТЕЛИ | процедура выбора двух структур (филиалов)
| объединяемых (скрещиваемых) на новом шаге
ОБЪЕДИНЕНИЕ | процедура образования (объединения)
| нового банка (филиала)
ОЦЕНКА | процедура оценки устойчивости нового банка,
| образования (рейтинга, устойчивости)
ВКЛЮЧЕНИЕ | процедура включения (не включения) в новое
| поколение (в банковскую систему)
кц
МУТАЦИЯ | процедура эволюции (мутации) нового поколения
если (ПРОЦЕСС) | проверка функционала завершаемости эволюции
то Стоп:=1
кц
кон.
Мы не конкретизируем структуру процедур СЕЛЕКЦИЯ, МЕРА, РОДИТЕЛИ, ОБЪЕДИНЕНИЕ, ОЦЕНКА, ВКЛЮЧЕНИЕ, МУТАЦИЯ, ПРОЦЕСС, хотя даже на интуитивном уровне ясно, что в этом алгоритме они играют решающую роль для эволюционного процесса. Не менее важен и правильный (эффективный) выбор структуры, а также представления (описания) этой структуры. Часто ее выбирают по аналогии со структурой хромосом, например, в виде битовых строк. Каждая строка (хромосома) представляет собой конкатенацию ряда подстрок (генная комбинация). Гены располагаются в различных позициях строки (локусах хромосомы). Они могут принимать некоторые значения (аллели), например, для битового представления - 0 и 1. Структура данных в генетическом алгоритме (генотип) отражает генетическую модель особи. Окружающая среда, окружение определяется вектором в пространстве параметров и соответствует термину "фенотип". Мера качества (процедура МЕРА) структуры часто определяется целевой функцией (приспособленности). Для каждого нового поколения генетический алгоритм осуществляет отбор пропорционально приспособленности (процедура ОТБОР), модификацию (процедуры РОДИТЕЛИ, ОБЪЕДИНЕНИЕ, ВКЛЮЧЕНИЕ) и мутацию (процедура МУТАЦИЯ). Например, в процедуре ОТБОР каждой структуре ставится в соответствие отношение ее приспособленности к суммарной приспособленности популяции и затем происходит отбор (с замещением) всех особей для дальнейшей генетической обработки в соответствии с этой величиной. Размер отбираемой комбинации можно брать пропорциональным приспосабливаемости, и поэтому особи (кластеры) с более высокой приспособленностью с большей вероятностью будут чаще выбираться, чем особи с низкой приспособленностью. После отбора выбранные особи подвергаются кроссоверу (рекомбинации), т.е. разбиваются на пары. Для каждой пары может применяться кроссовер. Неизмененные особи переходят к стадии мутации. Если кроссовер происходит, полученные потомки заменяют собой родителей и переходят к мутации.
Хотя генетические алгоритмы и могут быть использованы для решения задач, которые, видимо, нельзя решать другими методами, они не гарантируют нахождение оптимального решения (по крайней мере, - за приемлемое время; полиномиальные оценки здесь часто неприменимы). Здесь более уместны критерии типа "достаточно хорошо и достаточно быстро". Главное же преимущество в другом: они позволяют решать сложные задачи, для которых не разработаны пока устойчивые и приемлемые методы, особенно на этапе формализации и структурирования системы, в когнитивных системах. Генетические алгоритмы эффективны в комбинации с другими классическими алгоритмами, эвристическими процедурами, а также в тех случаях, когда о множестве решений есть некоторая дополнительная информация, позволяющая настраивать параметры модели, корректировать критерии отбора, эволюции.
Вопросы для самоконтроля
1. Что такое эволюционное моделирование? Каковы критерии эффективности при эволюционном моделировании? Для какого типа прогнозирования (по длительности) используется и является эффективным эволюционное моделирование?
2. Что такое генетический алгоритм?
3. Каковы основные общие и различные свойства генетических и "не генетических" алгоритмов?
Задачи и упражнения
1. Привести одну экологическую или экономическую эволюционирующую систему и сформулировать основные принципы и понятия для постановки задачи эволюционного моделирования этой системы.
2. На примере некоторой системы показать, как можно осуществить её декомпозицию с целью ее эволюционного моделирования. Указать приоритеты декомпозиции. Привести для задачи некоторый способ (описание) активности системы, а также функции, по которым можно определять эволюционируемость системы.
3. Описать укрупненный генетический алгоритм эволюции некоторого предприятия (некоторых предприятий).
Темы научных исследований и рефератов, интернет-листов
1. Эволюционное моделирование - особенности, значение, приложения.
2. Генетические алгоритмы - особенности, значение, применение.
Имитационное эволюционное моделирование плохо структурируемых, плохо формализуемых систем с помощью генетических алгоритмов.
12. Лекция: Основы принятия решений и ситуационного моделирования
Рассматриваются основные понятия теории принятия решений и ситуационного моделирования систем, примеры.
Цель лекции: содержательное введение в основы принятия решений и ситуационное моделирование систем.
Принятие решения и целеполагающая ресурсоориентированная деятельность человека в социальной, экономической, политической, идеологической, военной сферах тесно связаны. В них крайне нежелательны ошибки, которые могут привести к пагубным последствиям. Но из-за ограниченных информационных возможностей человека ошибки всегда возможны. Поэтому есть настоятельная необходимость применения научного подхода к обоснованию и принятию решений.
Принятие решений, наряду с прогнозированием, планированием, ситуационным анализом обстановки, исполнением решений, контролем и учетом является функцией управления. Все функции управления направлены так или иначе на формирование или реализацию решений, и любую функцию управления технологически можно представить в виде последовательности каких-либо связанных общей целью решений.
При прогнозировании и планировании принимаются решения, связанные с выбором методов и средств, организацией работы, оценкой достоверности информации, выбором наиболее достоверного варианта прогноза и наилучшего варианта плана. Таким образом, функция принятия решений является с методологической и технологической точек зрения более общей, чем другие функции управления. Для лица, принимающего решение (ЛПР), принятие решений является основной задачей, которую он обязан исполнять в процессе управления. Поэтому знание методов, технологий и средств решений этой задачи является необходимым элементом квалификации руководителя, базой для дальнейшего управления.
Конечным результатом любой задачи принятия решений становится решение, конструктивное предписание к действию. Решение является одним из видов мыслительной деятельности и имеет следующие признаки: имеется выбор из множества возможностей; выбор ориентирован на сознательное достижение целей; выбор основан на сформировавшейся установке к действию. Основной характеристикой решения является его эффективность, т.е. степень, темп достижения целей и затраты ресурсов для принятия и реализации решения. Решение тем эффективнее, чем больше степень достижения целей и меньше стоимость затрат.
Принятие решения - это выбор одного из множества рассматриваемых допустимых вариантов. Обычно их число конечно, а каждый вариант выбора определяет некоторый результат (экономический эффект, прибыль, выигрыш, полезность, надежность и т.д.), допускающий количественную оценку. Такой результат обычно называется полезностью решения. Таким образом, ищется вариант с наибольшим значением полезности решения. Возможен и подход с минимизацией противоположной оценки, например, отрицательной величины полезности. Часто на практике встречается ситуация, когда каждому варианту решения соответствует единственный результат (детерминированность выбора решения), хотя возможны и другие случаи, например, когда каждому варианту i и условию j, характеризующему полезность, соответствует результат решения xij. Таким образом, можно говорить о матрице решений ||xij||, i=1,2,:m; j=1,2,:,m. Чтобы оценить решение, необходимо уметь оценивать все его последствия. Существуют различные подходы для такой оценки. Например, если решения альтернативные, то можно последствия каждого из них характеризовать суммой его наибольшего и наименьшего результатов, максимумом из возможных таких сумм, максимумом из максимумов по всем вариантам (оптимистическая позиция выбора), максимумом из среднего арифметического (нейтральная позиция выбора), максимумом из минимума (пессимистическая позиция) и другие.
Классические модели принятия решений, как правило, являются оптимизационными, ставящими цель максимизировать выгоду и на основе этих моделей получить практическую прибыль. Так как теоретиков больше интересует первая сторона, а практиков - вторая, то при разработке и использовании таких моделей необходимо их тесное сотрудничество. Практические рекомендации (решения) могут быть получены, если при построении модели принятия решений придать большее значение учету существенных структурных элементов моделируемой системы, т.е. разработке имитационной модели принятия решений, с привлечением экспериментальных, полуэкспериментальных и теоретических методов. Кроме классических, оптимизационных процедур принятия решений существуют и ряд базовых неклассических (неоклассических) процедур, технологий принятия решений, некоторые из которых мы рассмотрим.
Классификация задач принятия решений проводится по различным признакам. Наиболее существенными являются: степень определенности информации; использование эксперимента для получения информации; количество лиц, принимающих решения; содержание решений; направленность решений.
На процесс принятия решения часто воздействуют различные случайные (стохастические) параметры, усложняющие процедуру. Недостаток информации об их распределении (сложность их измерения) приводит к необходимости принятия каких-то гипотез как об области их изменения, так и о характере их распределения (о функции распределения вероятностей). Правильность используемых гипотез необходимо проверять с помощью методов оценки статистических гипотез. При отсутствии достаточной информации для такой процедуры приходится привлекать большое число типов распределения. Проблемы принятия решений с недетерминированными параметрами называют проблемами принятия решений в условиях недостатка информации. Чем меньше информации у нас, тем больше может оказаться различие между ожидаемым и действительным результатами принимаемых решений в целом. Мера влияния информации (параметров) на результат решения называется релевантностью. Особо важно в социально-экономической сфере принятие решения при наличии рисков (неплатежей, невозвратов кредитов, ухудшения условий жизни и т.д.).
Формализуемые решения принимаются на основе соответствующих математических методов (алгоритмов). Математическая модель задачи оптимизации формализуемого решения включает следующие элементы:
1. заданную оптимизируемую целевую функцию (критерий управляемости): Ф=F(x1,x2,:,xn), где xj (j=1,2,:,n) - параметры, учитываемые при принятии решения (отражающие ресурсы принятия решений);
2. условия, отражающие ограниченность ресурсов и действий ЛПР при принятии решений: gi(xj)<ai, ki (xj)=bi; cj<xj<di, i=1,2,:,m; j=1,2,:, n.
Непременным требованием для решения задачи оптимизации является условие n>m.
В зависимости от критерия эффективности, стратегий и факторов управления выбирается тот или иной метод (алгоритм) оптимизации.
Основными являются следующие классы методов:
1. методы линейного и динамического программирования (принятия решения об оптимальном распределении ресурсов);
2. методы теории массового обслуживания (принятие решения в системе со случайным характером поступления и обслуживания заявок на ресурсы);
3. методы имитационного моделирования (принятие решения путем проигрывания различных ситуаций, анализа откликов системы на различные наборы задаваемых ресурсов);
4. методы теории игр (принятие решений с помощью определения стратегии в тех или иных состязательных задачах);
5. методы теории расписаний (принятие решений с помощью разработки календарных расписаний выполнения работ и использования ресурсов);
6. методы сетевого планирования и управления (принятие решений с помощью оценки и перераспределения ресурсов при выполнении проектов, изображаемых сетевыми графиками);
7. методы многокритериальной (векторной) оптимизации (принятие решений при условии существования многих критериев оптимальности решения) и другие методы.
Выбор решения - заключительный и наиболее ответственный этап процесса принятия решений. Здесь ЛПР должно осмыслить полученную на этапах постановки задачи и формирования решений информацию и использовать ее для обоснования выбора. В реальных задачах принятия решений к началу этапа выбора решения еще сохраняется большая неопределенность, поэтому сразу осуществить выбор единственного решения из множества допустимых решений практически очень сложно. Поэтому используется принцип последовательного уменьшения неопределенности, который заключается в последовательном трехэтапном (обычно) сужении множества решений. На первом этапе исходное множество альтернативных решений Y сужается (используя ограничения на ресурсы) до множества приемлемых или допустимых решений Y1Y. На втором этапе множество допустимых решений Y1 сужается (учитывая критерий оптимальности) до множества эффективных решений Y2Y1. На третьем этапе осуществляется выбор (на основе критерия выбора и дополнительной информации, в том числе и экспертной) единственного решения Y*Y2.
Система принятия решений - совокупность организационных, методических, программно-технических, информационно-логических и технологических обеспечений принятия решений для достижения поставленных целей.
Общая процедура принятия решений может состоять из следующих этапов:
· анализ проблемы и среды (цели принятия решения, их приоритеты, глубина и ограничения рассмотрения, элементы, связи, ресурсы среды, критерии оценки);
· постановка задачи (определение спецификаций задачи, альтернатив и критериев выбора решения);
· выбор (адаптация, разработка) метода решения задачи;
· выбор (адаптация, разработка) метода оценки решения;
· решение задачи (математическая и компьютерная обработка данных, имитационные и экспертные оценки, уточнение и модификация, если это необходимо);
анализ и интерпретация результатов.
Задачи принятия решений могут быть поставлены и решены в условиях детерминированных (определенности, формализованности и единственности целевой функции, ее количественной оцениваемости), риска (возможные решения, исходы распределены вероятностно) и недетерминированных (неопределенности, неточности, плохой формализуемости информации).
В моделях принятия решений используются различные процедуры. В частности, наиболее просты и эффективны следующие:
· методы математического программирования;
· методы кривых безразличия;
· многокритериального выбора альтернатив на основе четкого или же нечеткого отношения предпочтения;
· последовательной оценки и последующего исключения вариантов;
· многомерного ранжирования (шкалирования) объектов и другие.
При выборе pационального pешения необходимо принимать во внимание внешнюю сpеду и побочные явления, динамическую изменчивость критериев оценок решения, необходимость ранжирования аспектов и приоритетов решения, их неполноту и разнородность (а иногда и конфликтность).
Продемонстрируем ситуационное моделирование на примере моделирования деятельности банка. Банковская система является одной из подсистем современной экономической системы, наиболее подверженной информатизации. Развитие банковской системы сопровождается постоянным поиском адекватных оптимальных методов и инструментов управления, принятия решений на основе экономико-математического анализа и моделирования деятельности банков. При этом необходимо учитывать тот факт, что финансовые операции имеют еще и стохастические составляющие, усложняющие и без того сложные процессы начисления процентных ставок, взносов и выплат, регулирования и управления, инвестиций и др. Эти процессы сложны не только динамически, но и вычислительно, логически. Кроме того, от таких прогнозов зависят и прогноз, анализ темпов инфляции, структуры активов и пассивов банка, доходности акций, курсов валют, процентная ставка и др.
Ситуационный анализ денежных потоков состоит в основанном - часто на имитационном моделировании - анализе эффективности того или иного набора финансовых операций и процедур (из множества возможных и допустимых) путем сравнения результатов их воздействия на финансовые, денежные потоки с величиной финансовых, денежных активов без учета их воздействия. Следовательно, ситуационный анализ денежных потоков является динамическим процессом, использующим методы оптимизации и критерии оптимальности. При ситуационном анализе некоторых базовых значений величины активов (соответствующих определенным финансовым условиям и обязательствам, например, величине уставного капитала), можно по некоторым критериям оптимальности (целевым функциям оптимизации), выбрать оптимальный набор возможных, допустимых финансовых операций, обеспечивающих, например, наибольшую доходность. Возможно построение целевой функции максимизации с учетом ликвидности. Возможно также получение решения задач, свидетельствующего об отсутствии роста (или малого роста) каких-либо финансовых параметров, например, активов, из которого можно сделать вывод о невозможности проведения оптимизирующих операций (процедур).
Пусть dt - средний уровень доходности, получаемый в результате проведения некоторых инвестиционных мероприятий, а Pt - процентная ставка на момент времени t=0, 1, 2, ..., T. Тогда рост активов A будет осуществляться по закону
и можно использовать при ситуационном анализе критерий эффективности:
Соотношение между доходностью активов и ценой пассивов коммерческого банка является важнейшим показателем, который отражает эффективность денежно-финансовой политики банка.
Cитуационный анализ соотношения осложняется рядом факторов:
1. структура активов и пассивов могут отражаться ссудами различной длительности, а также различными схемами размещения и привлечения обязательств и ценных бумаг, например, возврат денег может быть осуществлен по схеме ежемесячного отчисления процентов и уплаты кредита в конце либо по схеме единовременного возврата суммы долга и процентов в конце промежутка кредитования;
Подобные документы
Характеристика простых и сложных систем, их основные признаки. Общие принципы и этапы экономико-математического моделирования. Назначение рабочего этапа системного анализа - выявление ресурсов и процессов, композиция целей, формулирование проблемы.
контрольная работа [47,7 K], добавлен 11.10.2012Области применения системного анализа, его место, роль, цели и функции в современной науке. Понятие и содержание методик системного анализа, его неформальные методы. Особенности эвристических и экспертных методов исследования и особенности их применения.
курсовая работа [78,8 K], добавлен 20.05.2013Понятие системы управления, ее назначение и целевые функции. Суть параметрического метода исследования на основе научного аппарата системного анализа. Проведение исследования системы управления на предприятии "Атлант", выявление динамики объема продаж.
курсовая работа [367,1 K], добавлен 09.06.2010Использование системного анализа для подготовки и обоснования управленческих решений по многофакторным проблемам. Возникновение синергетики как науки о законах построения организации, возникновения упорядоченности, развитии и самоусложнении системы.
реферат [40,4 K], добавлен 21.01.2015Использование инструментария системного анализа для решения проблем на пути достижения цели - завести аквариум с пираньями. Описание предметной области. Построение дерева целей. Эффективные мероприятия в деревьях мероприятий, сетевой график их реализации.
курсовая работа [97,3 K], добавлен 07.10.2013Основы структурного системного анализа, принципы и вопросы создания функциональных моделей по методологии IDEF0: истоки структурного моделирования, границы системы, точка зрения модели, синтаксис графических диаграмм. Функциональные блоки, дуги.
учебное пособие [514,6 K], добавлен 17.06.2011Методология анализа сложных объектов, изучения и познания процессов. Основные принципы системного подхода к анализу проблем и основные понятия о системах. Декомпозиция, анализ подпроблем и их решение, выявление альтернатив и выбор оптимальных решений.
контрольная работа [47,5 K], добавлен 04.08.2010Определение происхождения эффекта взаимодействия. Последовательность и приёмы системного анализа. Разработка максимального количества альтернатив. Разработка эмпирической модели. Основные типы шкал, используемых при спецификации переменных системы.
презентация [253,7 K], добавлен 19.12.2013Теория системного анализа техносферы. Общая последовательность формализации и моделирования опасных процессов в техносфере. Особенность формализации и моделирования процесса возникновения происшествий в техносфере вообще и в человекомашинных системах.
реферат [26,4 K], добавлен 06.03.2011Общие принципы системного анализа. Основные этапы построения эконометрических моделей и использования их для прогнозирования. Экстраполяция трендов и ее использование в анализе. Правила составления информации подсистем. Модель "спрос-предложение".
реферат [190,5 K], добавлен 24.01.2011