Введение в анализ, синтез и моделирование систем
История, предмет, цели системного анализа. Введение основного понятийного аппарата системного анализа, теории систем. Фрактальный объект (кривая Коха). Понятие информации. Процессы и системы в совокупности с человеком с точки зрения естествознания.
Рубрика | Экономико-математическое моделирование |
Вид | курс лекций |
Язык | русский |
Дата добавления | 29.06.2016 |
Размер файла | 696,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для оценки развития, развиваемости системы часто используют не только качественные, но и количественные оценки, а также оценки смешанного типа.
Пример. В системе ООН для оценки социально-экономического развития стран используют индекс HDI (Human Devolopment Index - индекс человеческого развития, потенциала), который учитывает 4 основных параметра, изменяемых от минимальных до максимальных своих значений:
1. ожидаемая продолжительность жизни населения (25-85 лет);
2. уровень неграмотности взрослого населения (0-100 %);
3. средняя продолжительность обучения населения в школе (0-15 лет);
4. годовой доход на душу населения (200-40000 $).
Эти сведения приводятся к общему значению HDI, по которому все страны делятся ООН на высокоразвитые, среднеразвитые и низкоразвитые. Страны с развивающимися (саморазвивающимися) экономическими, правовыми, политическими, социальными, образовательными институтами характерны высоким уровнем HDI. В свою очередь, изменение уровня HDI (параметров, от которых он зависит) влияет на саморазвиваемость указанных институтов, в первую очередь - экономических, в частности, саморегулируемость спроса и предложения, отношений производителя и потребителя, товара и стоимости, обучения и стоимости обучения. Уровень HDI, наоборот, также может привести к переходу страны из одной категории (развитости по данному критерию) в другую, в частности, если в 1994 году Россия стояла на 34 месте в мире (из 200 стран), то в 1996 году - уже на 57-м месте; это приводит к изменениям и во взаимоотношениях с окружающей средой (в данном случае - в политике).
Гибкость системы будем понимать как способность к структурной адаптации системы в ответ на воздействия окружающей среды.
Пример. Гибкость экономической системы - способность к структурной адаптации к изменяющимся социально-экономическим условиям, способность к регулированию, к изменениям экономических характеристик и условий.
Траектория системы определяется ее структурой, элементами, окружением. Для простых систем (будем понимать такие системы как системы не свободные в выборе поведения) траекторию можно изменить, лишь изменив элементы, структуру, окружение. Для непростых (сложных - ниже о них подробнее идет речь) систем изменение траектории может произойти и по другим причинам.
Под регулированием (системы, поведения системы, траектории системы) понимается коррекция управляющих параметров по наблюдениям за траекторией поведения системы с целью возвращения системы в нужное состояние, на нужную траекторию поведения. Под траекторией системы понимается последовательность принимаемых при функционировании системы состояний, которые рассматриваются как некоторые точки во множестве состояний системы. Для физических, биологических и других систем - это фазовое пространство.
Для формализации фактов в системном анализе (как и в математике, информатике и других науках) используется понятия "отношение" и "алгебраическая структура".
Отношение r, определенное над элементами заданного множества Х, - это некоторое правило, по которому каждый элемент хХ связывается с другим элементом (или другими элементами) уХ. Отношение r называется n-рным отношением, если оно связывает n различных элементов X. Множество пар (х,у), которые находятся в бинарном (2-рном) отношении друг к другу, - подмножество декартового множества XЧY. Отношение r элементов хХ, yY обозначают как , r(x,y) или r(X,Y).
Пример. Рассмотрим классическую схему ЭВМ из устройств: 1 - ввода, 2 - логико-арифметическое, 3 - управления, 4 - запоминающее, 5 - вывода. Отношение "информационный обмен" определим так: устройство i находится в отношении r с устройством j, если из устройства i в устройство j поступает информация. Тогда можно это отношение определить матрицей R отношений (наличие r на пересечении строки i и столбца j свидетельствует о том, что устройство i находится в этом отношении с устройством j, а наличие - об отсутствии между ними этого отношения):
R = r r r r
r r r
r
Отношение, задаваемое фразой "для каждого хХ" обозначается xX и называется квантором общности, а отношение "существует хХ" имеет обозначение хХ и называется квантором существования. Факт того, что элементы хХ связаны, выделены некоторым отношением r, обозначают как Х={х: r} или Х={х|r}.
Композиция (произведение) r=r1o r2. отношений r1 и r2, заданных над одним и тем же множеством Х, - это третье отношение r, определяемое правилом:
Отношение r называется отношением 1) тождества; 2) рефлексивным; 3) mpанзитивным; 4) симметричным; 5) обратным к отношению s, если, выполнены, соответственно, условия
1.
2.
3.
4.
5.
Пример. Бинарное отношение равенства чисел "=" - рефлексивное (так как x=x), симметричное (так как x=y => y=x), транзитивное (так как x=>y, y=>z => x=>z). Бинарное отношение "иметь общий делитель" - рефлексивное, симметричное, транзитивное (проверить). Бинарное отношение вложенности множеств "" - рефлексивное, антисимметричное, транзитивное (проверить).
Частично упорядоченной по отношению r системой Х называется система, для которой (т.е. для любых элементов которой) задано отношение r(Х), являющееся транзитивным, несимметричным, рефлексивным.
Упорядоченная по отношению r(Х) система - система Х, такая, что x, yX, либо , либо .
Система с заданным на ней (на определяющем ее множестве элементов) отношением частичного упорядочивания называется системой с порядком, а система с заданным отношением упорядочивания - системой с полным порядком.
Пример. Пусть N - множество натуральных чисел. Отношение r(x,y): "x кратно y" определенное на N, как легко проверить, является отношением частичного порядка. Отношение r(x,y): "xy" определенное на множестве действительных чисел R, - отношение частичного порядка и полного порядка. Отношение r(x,y): "x<y" определенное на R не является отношением полного порядка (не рефлексивно). Отношение вложенности множеств "xy" - отношение частичного упорядочивания множеств, определенное на множестве всех множеств, но оно не является отношением полного порядка (не для любых двух множеств имеет место включение в ту или иную сторону).
Теперь можно дать и формализованное определение понятия структуры.
Структурой, определенной над множеством (или на множестве) Х называется некоторое отношение над Х типа упорядочивания. Более формальное, математическое определение: структура (решетка) - частично упорядоченное множество X, для которого любое двухэлементное подмножество {х,у} из Х имеет наибольший или наименьший элемент (супремум или инфинум).
Таким образом, систему можно понимать как целостный комплекс (кортеж) объектов S = <A, R>, А = {а}, R = {r), где r - отношение над А, A - произвольное множество элементов. Такая система называется замкнутой системой. В замкнутых системах важная характеристика функционирования системы - внутренняя структура системы. Замкнутые системы - абстрактный продукт, продукт мышления, логического построения. Они ограничены ("замкнуты") уровнем их теоретического рассмотрения.
Если Y - множество элементов внешней (по отношению к А) среды С, а в С определены отношения r над C, то тогда кортеж S = <A,Y,R> задает, определяет открытую систему. В открытых системах важной характеристикой функционирования является обмен системы ресурсами (одного или нескольких типов) с другими системами, с окружающей средой, а также характер этого обмена.
Транзитивное, рефлексивное, симметричное отношение называется отношением эквивалентности. Отношение эквивалентности r(Х) разбивает множество систем Х на классы или классы эквивалентности - непустые и непересекающиеся множества систем, каждое из которых вместе с любым своим элементом содержит также все элементы X, эквивалентные ему по отношению r(Х), и не содержит других xХ.
Теорема. Два класса эквивалентности над одним и тем же множеством не пересекаются. Если два элемента x,yX не связаны отношением эквивалентности r(x,y), определенным на Х, то классы эквивалентности по этим элементам не пересекаются. Если на множестве X задано отношение эквивалентности r(x,y), x,yX, а Xx, Xy - классы эквивалентности по x, y соответственно, то Xx=Xy.
Пример. Отношение между x, y, выражаемое равенством x = y+ka, x, y, k, aZ, называется отношением сравнения x и y по модулю a и записывается как x = y (mod a). Это отношение является отношением эквивалентности:
1. x = x (mod a), k=0 (рефлексивность);
2. x = y (mod a) => x = y+ka => y = x+(-k)a => y = x (mod a) (симметричность);
3. x = y(mod a), y = z(mod a) => x = y+ka, y = z+ma => x = z+(k+m)a => x=z(mod a) (транзитивность).
Множество целых чисел Z разбивается этим отношением на k классов:
X0={x: x=ka, k, aZ},
X1={x: x=1+ka, k, aZ},
X2={x: x=2+ka, k, aZ},
. . .
Xk-1 = {x: x=k-1+ka, k, aZ}.
В частности, при k=2 происходит разбиение множества Z на множество X0 - четных и множество X1 - нечетных чисел; при k=3 - множество Z разбивается на классы X0 - кратные 3, X1 - дающие при делении на 3 остаток 1, Х2 - дающие при делении на 3 остаток 2.
Две системы назовем эквивалентными, если они имеют одинаковые цели, составляющие элементы, структуру. Между такими системами можно установить отношение (строго говоря, эквивалентности) некоторым конструктивным образом.
Можно также говорить об "ослабленном" типе эквивалентности - эквивалентности по цели (элементам, структуре).
Пусть даны две эквивалентные системы X и Y и система X обладает структурой (или свойством, величиной) I. Если из этого следует, что и система Y обладает этой структурой (или свойством, величиной) I, то I называется инвариантом систем X и Y. Можно говорить об инвариантном содержании двух и более систем или об инвариантном погружении одной системы в другую. Инвариантность двух и более систем предполагает наличие такого инварианта.
Пример. Если рассматривать процесс познания в любой предметной области, познания любой системы, то глобальным инвариантом этого процесса является его спиралевидность. Следовательно, спираль познания - это инвариант любого процесса познания, независимый от внешних условий и состояний (хотя параметры спирали и его развертывание, например, скорость и крутизна развертывания зависят от этих условий). Цена - инвариант экономических отношений, экономической системы; она может определять и деньги, и стоимость, и затраты. Понятие "система" - инвариант всех областей знания.
Соответствие S - бинарное отношение r над множеством XЧY:
Обратное соответствие к r - это соответствие S-1YЧX вида
Отношения часто используются при организации и формализации систем. При этом для них (над ними) вводятся следующие основные операции:
1. объединение двух отношений r1(x1, x2, ..., xn), r2(x1, x2, ..., xn), заданных над множеством X, есть третье отношение r3(X)=r1 r2 получаемое как теоретико-множественное объединение всех элементов X, для которых справедливо r1 или r2;
2. пересечение - r3(X)=r1 r2 - теоретико-множественное пересечение всех элементов из X, для которых справедливы r1 и r2;
3. проекция отношения r1(Х) размерности k, т.е. отношения r1=r1(x1, x2,..., xk), связывающего элементы x1, x2, ..., xkX (это могут быть и не первые k элементов), - это отношение r2 размерности m<k, т.е. оно использует некоторые из аргументов (параметров) исходного отношения;
4. разность двух отношений r1(x1, x2, ..., xk), r2(x1, x2, ..., xk) - это отношение r3=r1 - r2, состоящее из всех тех элементов X, для которых справедливо отношение r1, но не справедливо отношение r2;
5. декартово произведение двух отношений r2(x1, x2,..., xk) и r1(xn+1, xn+2,..., xn+m) - отношение r3=r1Чr2, составленное всевозможными комбинациями всех элементов X, для которых справедливы отношения r1, r2; первые n компонентов отношения r3 образуют элементы, для которых справедливо отношение r1, а для последних m элементов справедливо отношение r2;
6. селекция (отбор, выборка) по критерию q компонентов, принадлежащих отношению r; критерий q - некоторый предикат.
Алгебры отношений часто называют реляционными алгебрами.
В связи с употреблением интуитивно известного понятия "алгебра" уточним эту структуру, так она часто используется как основной аппарат наиболее формализованного описания систем. Алгебра - наиболее адекватный математический аппарат описания действий с буквами, поэтому алгебраические методы наилучшим образом подходят для описания и формализации различных информационных систем.
Алгеброй A=<X, f> называется некоторая совокупность определенных элементов X, с заданными над ними определенными операциями f (часто определяемые по сходству с операциями сложения и умножения чисел), которые удовлетворяют определенным свойствам - аксиомам алгебры.
Операция f называется n-местной, если она связывает n операндов (объектов - участников этой операции).
Совокупность F={f} операций алгебры A называется ее сигнатурой, а совокупность элементов X={x} - носителем алгебры.
Алгеброй Буля называется алгебра с введенными в ней двумя двухместными операциями, которые поименованы, по аналогии с арифметикой чисел, сложением и умножением, и одной одноместной операцией, называемой штрих-операцией или инверсией, причем эти операции удовлетворяют аксиомам (законам) алгебры Буля:
1. коммутативности - х+у = у+х, ху = ух;
2. ассоциативности - (х+у)+z = х+(у+z), (xy)z = x(yz);
3. идемпотентности - х+х = х, xx = x;
4. дистрибутивности - (x+y)z = xz+yz, xy+z = (x+z)(y+z);
5. инволюции (двойной инверсии) - ;
6. поглощения - x(x+y) = x, x+xy = x;
7. де Моргана - x+y = xy, xy = x+y
8. нейтральности: x(y+y) = x, x+yy = x.
9. существования двух особых элементов (называемых "единица -1" и "нуль-0"), причем 0 = 1, 1 = 0, x+x = 1, xx = 0.
Группоид - алгебра A=<X, f> с одной двухместной операцией f.
Полугруппа - группоид, в системе аксиом которой есть аксиома ассоциативности. Поэтому она называется ассоциативным группоидом.
Пример. Пусть Х={x1, x2, ..., xn} - некоторый алфавит. Тогда он образует полугруппу относительно операции конкатенации слов из S(X). В таких (называемых свободными) полугруппах рассматривается одна из важнейших алгебраических проблем информатики в полугруппах - проблема тождества слов: указать конструктивный процесс установления совпадения двух слов из полугруппы S(X). Эта проблема алгоритмически неразрешима и встречается, например, при разработке архитектуры процессора.
Группа - полугруппа с единицей (с элементом е: еа=ае=а), в которой бинарная операция f является однозначно обратимой, т.е. на этом множестве (на его носителе) разрешимы однозначно уравнения вида xfa=b, afx=b.
Пример. Пусть Х={x1, x2, ..., xn} - некоторая свободная полугруппа. Каждому из хi, i=1, 2,..., n сопоставим его обратный элемент xi-1, а единицу положим равной пустому слову . Тогда Х образует (свободную) группу, если в качестве критерия разрешимости уравнений выбрать соотношения: xixi-1=, xi-1xi=. Одна из важнейших алгебраических проблем информатики в группах - проблема изоморфизма (преобразования с сохранением групповой операции) двух групп: указать конструктивный процесс установления такого преобразования одной группы к другой. Эта проблема возникает при обработке информации, преобразовании одной информационной системы к другой с сохранением информации.
Кольцо - алгебра с двумя бинарными операциями: по одной из них (умножение) она является группоидом, а по другой (сложение) - группой с аксиомой коммутативности (абелевой группой), причем эти операции связаны между собой аксиомами дистрибутивности.
Поле - кольцо, у которого все ненулевые элементы по одной из операций образуют абелеву группу.
Пример. Множество рациональных, действительных чисел, квадратных матриц - образуют и поля, и кольца.
Изоморфизм двух упорядоченных (по отношению r) множеств X и Y - такое взаимно-однозначное соответствие f : X Y, где из того, что x1X и x2X находятся в отношении r следует, что y1=f(x1) и y2=f(x2) находятся в отношении r и наоборот.
Изоморфизм позволяет исследовать инвариантное, общее (системное) в структурах, переносить знания (информацию) от одних структур к другим, прокладывать и усиливать междисциплинарные связи.
Свойство может существовать как структура независимо от системы, ее носителя, а система предоставляет (через свою структуру) возможность (потенцию) свойству взаимодействовать с другими системами (с другими свойствами систем), обладающими таким же свойством.
Вопросы для самоконтроля
1. Каковы основные сходства и отличия функционирования и развития, развития и саморазвития системы?
2. В чем состоит гибкость, открытость, закрытость системы?
3. Какие системы называются эквивалентными? Что такое инвариант систем? Что такое изоморфизм систем?
Задачи и упражнения
1. Составить спецификации систем (описать системы), находящихся в режиме развития и в режиме функционирования. Указать все атрибуты системы.
2. Привести примеры систем, находящихся в отношении: а) рефлексивном, симметричном, транзитивном; б) несимметричном, рефлексивном, транзитивном; в) нетранзитивном, рефлексивном, симметричном; г) нерефлексивном, симметричном, транзитивном; д) эквивалентности.
3. Найти и описать две системы, у которых есть инвариант. Изоморфны ли эти системы?
Темы для научных исследований и рефератов, интернет-листов
1. Функционирование систем, развитие и саморазвитие систем: сравнительный анализ.
2. Гибкость, связность, эквивалентность и инвариантность систем: сравнительный анализ.
3. Алгебра отношений как универсальный аппарат теории систем.
5. Лекция: Классификация систем
Рассматриваются основные типы и классы систем, понятия большой и сложной системы, типы сложности систем, примеры способов определения (оценки) сложности.
Цель лекции: введение в способы классификации систем, большие и сложные системы.
Классификацию систем можно осуществить по разным критериям. Проводить ее жестко - невозможно, она зависит от цели и ресурсов. Приведем основные способы классификации (возможны и другие критерии классификации систем).
1. По отношению системы к окружающей среде:
o открытые (есть обмен ресурсами с окружающей средой);
o закрытые (нет обмена ресурсами с окружающей средой).
2. По происхождению системы (элементов, связей, подсистем):
o искусственные (орудия, механизмы, машины, автоматы, роботы и т.д.);
o естественные (живые, неживые, экологические, социальные и т.д.);
o виртуальные (воображаемые и, хотя реально не существующие, но функционирующие так же, как и в случае, если бы они существовали);
o смешанные (экономические, биотехнические, организационные и т.д.).
3. По описанию переменных системы:
o с качественными переменными (имеющие лишь содержательное описание);
o с количественными переменными (имеющие дискретно или непрерывно описываемые количественным образом переменные);
o смешанного (количественно-качественное) описания.
4. По типу описания закона (законов) функционирования системы:
o типа "Черный ящик" (неизвестен полностью закон функционирования системы; известны только входные и выходные сообщения);
o не параметризованные (закон не описан; описываем с помощью хотя бы неизвестных параметров; известны лишь некоторые априорные свойства закона);
o параметризованные (закон известен с точностью до параметров и его возможно отнести к некоторому классу зависимостей);
o типа "Белый (прозрачный) ящик" (полностью известен закон).
5. По способу управления системой (в системе):
o управляемые извне системы (без обратной связи, регулируемые, управляемые структурно, информационно или функционально);
o управляемые изнутри (самоуправляемые или саморегулируемые - программно управляемые, регулируемые автоматически, адаптируемые - приспосабливаемые с помощью управляемых изменений состояний, и самоорганизующиеся - изменяющие во времени и в пространстве свою структуру наиболее оптимально, упорядочивающие свою структуру под воздействием внутренних и внешних факторов);
o с комбинированным управлением (автоматические, полуавтоматические, автоматизированные, организационные).
Пример. Рассмотрим экологическую систему "Озеро". Это открытая, естественного происхождения система, переменные которой можно описывать смешанным образом (количественно и качественно, в частности, температура водоема - количественно описываемая характеристика), структуру обитателей озера можно описать и качественно, и количественно, а красоту озера можно описать качественно. По типу описания закона функционирования системы, эту систему можно отнести к не параметризованным в целом, хотя возможно выделение подсистем различного типа, в частности, различного описания подсистемы "Водоросли", "Рыбы", "Впадающий ручей", "Вытекающий ручей", "Дно", "Берег" и др. Система "Компьютер" - открытая, искусственного происхождения, смешанного описания, параметризованная, управляемая извне (программно). Система "Логический диск" - открытая, виртуальная, количественного описания, типа "Белый ящик" (при этом содержимое диска мы в эту систему не включаем!), смешанного управления. Система "Фирма" - открытая, смешанного происхождения (организационная) и описания, управляемая изнутри (адаптируемая, в частности, система).
Система называется большой, если ее исследование или моделирование затруднено из-за большой размерности, т.е. множество состояний системы S имеет большую размерность. Какую же размерность нужно считать большой? Об этом мы можем судить только для конкретной проблемы (системы), конкретной цели исследуемой проблемы и конкретных ресурсов.
Большая система сводится к системе меньшей размерности использованием более мощных вычислительных средств (или ресурсов) либо разбиением задачи на ряд задач меньшей размерности (если это возможно).
Пример. Это особенно актуально при разработке больших вычислительных систем, например, при разработке компьютеров с параллельной архитектурой или алгоритмов с параллельной структурой данных и с их параллельной обработкой.
Почти во всех учебниках можно встретить словосочетания "сложная задача", "сложная проблема", "сложная система" и т.п. Интуитивно, как правило, под этими понятиями понимается какое-то особое поведение системы или процесса, делающее невозможным (непреодолимая сложность) или особо трудным (преодолимая сложность) описание, исследование,предсказание или оценку поведения, развития системы.
Определения сложности - различны.
Система называется сложной, если в ней не хватает ресурсов (главным образом, информационных) для эффективного описания (состояний, законов функционирования) и управления системой - определения, описания управляющих параметров или для принятия решений в таких системах (в таких системах всегда должна быть подсистема принятия решения).
Сложной считают иногда такую систему, для которой по ее трем видам описания нельзя выявить ее траекторию, сущность, и поэтому необходимо еще дополнительное интегральное описание (интегральная модель поведения, или конфигуратор) - морфолого-функционально-инфологическое.
Пример. Сложными системами являются, например, химические реакции, если их исследовать на молекулярном уровне; клетка биологического образования, взятая на метаболическом уровне; мозг человека, если его исследовать с точки зрения выполняемых человеком интеллектуальных действий; экономика, рассматриваемая на макроуровне (т.е макроэкономика); человеческое общество - на политико-религиозно-культурном уровне; ЭВМ (особенно пятого поколения) как средство получения знаний; язык - во многих аспектах его рассмотрения.
В сложных системах результат функционирования не может быть задан заранее, даже с некоторой вероятностной оценкой адекватности. Причины такой неопределенности - как внешние, так и внутренние, как в структуре, так и в описании функционирования, эволюции. Сложность этих систем обусловлена их сложным поведением. Сложность системы зависит от принятого уровня описания или изучения системы - макроскопического или микроскопического. Сложность системы может определяться не только большим количеством подсистем и сложной структурой, но и сложностью поведения.
Сложность системы может быть внешней и внутренней.
Внутренняя сложность определяется сложностью множества внутренних состояний, потенциально оцениваемых по проявлениям системы и сложности управления в системе.
Внешняя сложность определяется сложностью взаимоотношений с окружающей средой, сложностью управления системой, потенциально оцениваемых по обратным связям системы и среды.
Сложные системы бывают разных типов сложности:
· структурной или организационной (не хватает ресурсов для построения, описания, управления структурой);
· динамической или временной (не хватает ресурсов для описания динамики поведения системы и управления ее траекторией);
· информационной или информационно-логической, инфологической (не хватает ресурсов для информационного, информационно-логического описания системы);
· вычислительной или реализации, исследования (не хватает ресурсов для эффективного прогноза, расчетов параметров системы, или их проведение затруднено из-за нехватки ресурсов);
· алгоритмической или конструктивной (не хватает ресурсов для описания алгоритма функционирования или управления системой, для функционального описания системы);
· развития или эволюции, самоорганизации (не хватает ресурсов для устойчивого развития, самоорганизации).
Чем сложнее рассматриваемая система, тем более разнообразные и более сложные внутренние информационные процессы приходится актуализировать для того, чтобы была достигнута цель системы, т.е. система функционировала или развивалась.
Пример. Поведение ряда различных реальных систем (например, соединенных между собой проводников с сопротивлениями x1, x2, ... , xn или химических соединений с концентрациями x1, x2, ... , xn, участвующих в реакции химических реагентов) описывается системой линейных алгебраических уравнений, записываемых в матричном виде:
X=AX+B
Заполнение матрицы А (ее структура) будет отражать сложность описываемой системы. Если, например, матрица А - верхнетреугольная матрица (элемент, расположенный на пересечении i-ой строки и j-го столбца всегда равен 0 при i>j), то независимо от n (размерности системы) она легко исследуется на разрешимость. Для этого достаточно выполнить обратный ход метода Гаусса. Если же матрица А - общего вида (не является ни симметричной, ни ленточной, ни разреженной и т.д.), то систему сложнее исследовать (так как при этом необходимо выполнить более сложную вычислительно и динамически процедуру прямого хода метода Гаусса). Следовательно, система будет обладать структурной сложностью (которая уже может повлечь за собой и вычислительную сложность, например, при нахождении решения). Если число n достаточно велико, то неразрешимость задачи хранения матрицы А верхнетреугольного вида в оперативной памяти компьютера может стать причиной вычислительной и динамической сложности исходной задачи. Попытка использовать эти данные путем считывания с диска приведет к многократному увеличению времени счета (увеличит динамическую сложность - добавятся факторы работы с диском).
Пример. Пусть имеется динамическая система, поведение которой описывается задачей Коши вида
y?(t)=ky(t), y(0)=a
Эта задача имеет решение:
y(t)=аe-kt
Отсюда видно, что y(t) при k=10 изменяется на порядок быстрее, чем y(t) при k=1, и динамику системы сложнее будет отслеживать: более точное предсказание для t 0 и малых k связано с дополнительными затратами на вычисления. Следовательно, алгоритмически, информационно, динамически и структурно "не очень сложная система" (при a, k 0) может стать вычислительно и, возможно, эволюционно сложной (при t 0), а при больших t (t?) - и непредсказуемой. Например, для больших t значения накапливаемых погрешностей вычислений решения могут перекрыть значения самого решения. Если при этом задавать нулевые начальные данные а 0, то система может перестать быть, например, информационно несложной, особенно, если а трудно априорно определить.
Пример. Упрощение технических средств работы в сетях, например, научные достижения, позволяющие подключать компьютер непосредственно к сети, "к розетке электрической сети", наблюдается наряду с усложнением самих сетей, например, с увеличением количества абонентов и информационных потоков в интернет. Наряду с усложнением самой сети интернет, упрощаются (для пользователя!) средства доступа к ней, увеличиваются ее вычислительные возможности.
Структурная сложность системы оказывает влияние на динамическую, вычислительную сложность. Изменение динамической сложности может привести к изменениям структурной сложности, хотя это не является обязательным условием. Сложной системой может быть и система, не являющаяся большой системой; существенным при этом может стать связность (сила связности) элементов и подсистем системы (см. вышеприведенный пример с матрицей системы линейных алгебраических уравнений).
Сложность системы определяется целями и ресурсами (набором задач, которые она призвана решать).
Пример. Сложность телекоммуникационной сети определяется:
1. необходимой скоростью передачи данных;
2. протоколами, связями и типами связей (например, для селекторного совещания необходима голосовая телеконференция);
3. необходимостью видеосопровождения.
Само понятие сложности системы не является чем-то универсальным, неизменным и может меняться динамически, от состояния к состоянию. При этом и слабые связи, взаимоотношения подсистем могут повышать сложность системы.
Пример. Рассмотрим процедуру деления единичного отрезка [0; 1] с последующим выкидыванием среднего из трех отрезков и достраиванием на выкинутом отрезке равностороннего треугольника (рис. 4.1); эту процедуру будем повторять каждый раз вновь к каждому из остающихся после выкидывания отрезков. Этот процесс является структурно простым, но динамически сложным, более того, образуется динамически интересная и трудно прослеживаемая картина системы, становящейся "все больше и больше, все сложнее и сложнее". Такого рода структуры называются фракталами, или фрактальными структурами (фрактал - от fraction - "дробь" и fracture - "излом", т.е. изломанный объект с дробной размерностью). Его отличительная черта - самоподобие, т.е. сколь угодно малая часть фрактала по своей структуре подобна целому, как ветка - дереву.
Рис. 4.1. Фрактальный объект (кривая Коха)
Уменьшив сложность системы, часто можно увеличить ее информативность, исследуемость.
Пример. Выбор рациональной проекции пространственного объекта (т.е. более оптимальная визуализация связей и отношений его частей) делает чертеж более информативным. Используя в качестве устройства эксперимента микроскоп, можно рассмотреть некоторые невидимые невооруженным глазом свойства объекта.
Система называется связной, если любые две подсистемы обмениваются ресурсом, т.е. между ними есть некоторые ресурсоориентированные отношения, связи.
При определении меры сложности системы важно выделить инвариантные свойства систем или информационные инварианты и вводить меру сложности систем на основе их описаний.
Здесь приводится математический аппарат, позволяющий формализовать понятие сложности, хотя отметим, что понятие сложности - "сложное".
Мерой ниже будем называть некоторую непрерывную действительную неотрицательную функцию, определенную на множестве событий (систем, множеств) и являющуюся аддитивной, т.е. мера конечного объединения событий (систем, множеств) равна сумме мер каждого события.
Как же определять меру сложности для систем различной структуры? Ответ на этот не менее сложный вопрос не может быть однозначным и даже вполне определённым.
Сложность связывается с мерой м(S) - мерой сложности или числовой неотрицательной функцией (критерием, шкалой) заданной (заданным) на некотором множестве элементов и подсистем системы S.
Возможны различные способы определения меры сложности систем. Сложность структуры системы можно определять топологической энтропией - сложностью конфигурации структуры (системы):
S = k ln W,
где k=1,38Ч10-16 (эрг / град) - постоянная Больцмана, W - вероятность состояния системы. В случае разной вероятности состояний эта формула будет иметь вид (мы ниже вернемся к детальному обсуждению этой формулы и ее различных модификаций):
Пример. Определим сложность иерархической системы как число уровней иерархии. Увеличение сложности при этом требует больших ресурсов для достижения цели. Определим сложность линейной структуры как количество подсистем системы. Определим сложность сетевой структуры как максимальную из сложностей всех линейных структур, соответствующих различным стратегиям достижения цели (путей, ведущих от начальной подсистемы к конечной). Сложность системы с матричной структурой можно определить количеством подсистем системы. Усложнение некоторой подсистемы системы приведет к усложнению всей системы в случае линейной структуры, и, возможно, в случае иерархической, сетевой и матричной структур.
Пример. Для многоатомных молекул число межъядерных расстояний (оно определяет конфигурацию молекулы) можно считать оценкой сложности топологии (геометрической сложности) молекулы. Из химии и математики известна эта оценка: 3N-6, где N - число атомов в молекуле. Для твердых растворов можно считать W равной числу перестановок атомов разных сортов в заданных позициях структуры; для чистого кристалла W=1, для смешанного - W>1. Для чистого кристалла сложность структуры S=0, а для смешанного - S>0, что и следовало ожидать.
Пример. В эколого-экономических системах сложность системы может часто пониматься как эволюционируемость, сложность эволюции системы, в частности, мера сложности - как функция изменений, происходящих в системе в результате контакта с окружающей средой, и эта мера может определяться сложностью взаимодействия между системой (организмом, организацией) и средой, ее управляемости. Эволюционную сложность эволюционирующей системы можно определить как разность между внутренней сложностью и внешней сложностью (сложностью полного управления системой). Решения в данных системах должны приниматься (для устойчивости систем) таким образом, чтобы эволюционная сложность равнялась нулю, т.е. чтобы совпадали внутренняя и внешняя сложности. Чем меньше эта разность, тем устойчивее система, например, чем более сбалансированы внутрирыночные отношения и регулирующие их управляющие государственные воздействия - тем устойчивее рынок и рыночные отношения.
Пример. В математических, формальных системах сложность системы может пониматься как алгоритмизируемость, вычислимость оператора системы S, в частности, как число операции и операндов, необходимых для получения корректного результата при любом допустимом входном наборе. Сложность алгоритма может быть определена количеством операций, осуществляемых командами алгоритма для самого "худшего" (самого длительного по пути достижения цели) тестового набора данных.
Пример. Сложность программного комплекса L может быть определена как логическая сложность и измерена в виде L = L1 /L2 + L3 + L4 + L5, где L1 - общее число всех логических операторов, L2 - общее число всех исполняемых операторов, L3 - показатель сложности всех циклов (определяется с помощью числа циклов и их вложенности), L4 - показатель сложности циклов (определяется числом условных операторов на каждом уровне вложенности), L5 - определяется числом ветвлений во всех условных операторах.
Пример. Аналогично примеру, приведенному в книге Дж. Касти, рассмотрим трагедию В. Шекспира "Ромео и Джульетта". Выделим и опишем 3 совокупности: А - пьеса, акты, сцены, мизансцены; В - действующие лица; С - комментарии, пьеса, сюжет, явление, реплики. Определим иерархические уровни и элементы этих совокупностей.
А:
уровень N+2 - Пьеса;
уровень N+1 - Акты{a1, a2, a3, a4, a5};
уровень N - Сцены{s1, s2,..., sq};
уровень N-1 - Мизансцены{m1, m2, ..., m26}.
В:
уровень N - Действующие лица{c1,c2,...,c25}={Ромео, Джульетта,...}.
С:
уровень N+3 - Пролог (адресован непосредственно зрителю и лежит вне действий, разворачивающихся в пьесе);
уровень N+2 - Пьеса;
уровень N+1 - Сюжетные линии {p1, p2, p3, p4}={Вражда семейств Капулетти и Монтекки в Вероне, Любовь Джульетты и Ромео и их венчание, Убийство Тибальда и вражда семейств требует отмщения, Ромео вынужден скрываться, Сватовство Париса к Джульетте, Трагический исход};
уровень N - Явления {u1, u2, ..., u8}={Любовь Ромео и Джульетты, Взаимоотношения между семейством Капулетти и Монтекки, Венчание Ромео и Джульетты, Схватка Ромео и Тибальда, Ромео вынужден скрываться, Сватовство Париса, Решение Джульетты, Гибель влюблённых};
уровень N-1 - Реплики {r1, r2, ..., r104}={104 реплики в пьесе, которые определяются как слова, обращённые к зрителю, действующему лицу и развивающие неизвестный пока зрителю сюжет}.
Отношения между этими совокупностями на различных уровнях иерархии определяемы из этих совокупностей. Например, если Y - сюжеты, X - действующие лица, то естественно определить связь l между X, Y так: действующее лицо из совокупности X уровня N+1 участвует в сюжете Y уровня N+1. Тогда связность структуры трагедии можно изобразить следующей схемой (рис. 4.2):
Рис. 4.2. Схема структурных связей пьесы
В этом комплексе K(Y, X) все три сюжета становятся отдельными компонентами только на уровне связности q=8. Это означает, что сюжетные линии могут быть различны только для зрителей, следящих за 9 действующими лицами. Аналогично, при q=6 имеются всего 2 компоненты {p1,p2}, {p3}. Следовательно, если зрители могут отслеживать только 7 персонажей, то они видят пьесу, как бы состоящую из двух сюжетов, где p1, p2 (мир влюбленных и вражда семейств) объединены. В комплексе K(Y, X) при q=5 имеются 3 компоненты. Следовательно, зрители, видевшие только 6 сцен, воспринимают 3 сюжета, не связанные друг с другом. Сюжеты р1 и р2 объединяются при q=4, и поэтому зрители могут видеть эти два сюжета как один, если следят только за 5 сценами. Все 3 сюжета сливаются, когда зрители следят лишь за 3 сценами. В комплексе K(Y, X) явление u8 доминирует в структуре при q=35, u3 - при q=26, u6 - при q=10. Следовательно, u8 вероятнее всего поймут те зрители, которые прослушали 36 реплик, хотя для понимания u3 необходимо 27 реплик, а для понимания u6 - только 11 реплик. Таким образом, проведенный анализ дает понимание сложности системы.
В последнее время стали различать так называемые "жесткие" и "мягкие" системы, в основном, по используемым критериям рассмотрения.
Исследование "жестких" систем обычно опирается на категории: "проектирование", "оптимизация", "реализация", "функция цели" и другие. Для "мягких" систем используются чаще категории: "возможность", "желательность", "адаптируемость", "здравый смысл", "рациональность" и другие. Методы также различны: для "жестких" систем - методы оптимизации, теория вероятностей и математическая статистика, теория игр и другие; для "мягких" систем - многокритериальная оптимизация и принятие решений (часто в условиях неопределенности), метод Дельфи, теория катастроф, нечеткие множества и нечеткая логика, эвристическое программирование и др.
Для "переноса" знаний широко используются инварианты систем и изоморфизм систем. Важно при таком переносе не нарушать свойство эмерджентности системы.
Вопросы для самоконтроля
1. Как классифицируются системы?
2. Какая система называется большой? сложной?
3. Чем определяется вычислительная (структурная, динамическая) сложность системы? Приведите примеры таких систем.
Задачи и упражнения
1. Привести пример одной-двух сложных систем, пояснить причины и тип сложности, взаимосвязь сложностей различного типа. Указать меры (приемы, процедуры) оценки сложности. Построить 3D-, 2D-, 1D-структуры сложных систем. Сделать рисунки, иллюстрирующие основные связи.
2. Выбрав в качестве меры сложности некоторой экосистемы многообразие видов в ней, оценить сложность (многообразие) системы.
3. Привести пример оценки сложности некоторого фрагмента литературного (музыкального, живописного) произведения.
Темы для научных исследований и рефератов, интернет-листов
1. Классификационная система классов систем.
2. Большая и сложная система - взаимопереходы и взаимозависимости.
3. Единство и борьба различных типов сложностей.
6. Лекция: Система, информация, знания
Рассматриваются различные аспекты понятия "информация", типы и классы информации, методы и процедуры актуализации информации.
Цель лекции: введение в суть и значение основного, но плохо формализуемого (и поэтому определяемого обычно упрощенно, с учетом потребностей предметной области) понятия "информация" с точки зрения системного анализа.
Понятие информации - одно из основных, ключевых понятий не только в системном анализе, но и в информатике, математике, физике и др. В то же время, это понятие - плохо формализуемое, из-за его всеобщности, объемности, расплывчатости, и трактуется как:
· любая сущность, которая вызывает изменения в некоторой информационно-логической (инфологической - состоящей из сообщений, данных, знаний, абстракций, структурных схем и т.д.) модели, представляющей систему (математика, системный анализ);
· сообщения, полученные системой от внешнего мира в процессе адаптивного управления, приспособления (теория управления, кибернетика);
· отрицание энтропии, отражение меры хаоса в системе (термодинамика);
· связи и отношения, устраняющие неопределенность в системе (теория информации);
· вероятность выбора в системе (теория вероятностей);
· отражение и передача разнообразия в системе (физиология, биокибернетика);
· отражение материи, атрибут сознания, "интеллектуальности" системы (философия).
Мы будем рассматривать системное понимание этой категории, ничуть не отрицая приведенные выше понятия и, более того, используя их по мере надобности.
Процесс познания - это иерархическая система актуализации информации, в которой знания на каждом следующем уровне иерархии являются интегральным результатом актуализации знаний на предыдущем уровне. Это процесс интеграции информационных ресурсов, от получаемых с помощью простого чувственного восприятия и до сложных аксиоматических и абстрактных теорий.
Данные - синтаксические сигналы, образы, актуализируемые с помощью некоторого источника данных. Они рассматриваются безотносительно к семантическому их смыслу.
Информация - это некоторая последовательность сведений, знаний, которые актуализируемы (получаемы, передаваемы, преобразуемы, сжимаемы, регистрируемы) с помощью некоторых знаков символьного, образного, жестового, звукового, сенсомоторного типа.
Информация - это данные, рассматриваемые с учетом некоторой их семантической сущности.
Знания - информация, обеспечивающая достижение некоторой цели и структуры.
Информация с мировоззренческой точки зрения - отражение реального мира. Информация - приращение, развитие, актуализация знаний, возникающее в процессе целеполагающей интеллектуальной деятельности человека.
Никакая информация, никакое знание не появляется сразу: появлению их предшествует этап накопления, систематизации опытных данных, мнений, взглядов, их осмысление и переосмысление. Знание - продукт этого этапа и такого системного процесса.
Информация (в системе, о системе) по отношению к окружающей среде (окружению) бывает трех типов: входная, выходная и внутренняя.
Входная информация - та, которую система воспринимает от окружающей среды. Такого рода информация называется входной информацией (по отношению к системе).
Выходная информация (по отношению к окружающей среде) - та, которую система выдает в окружающую среду.
Внутренняя, внутрисистемная информация (по отношению к данной системе) - та, которая хранится, перерабатывается, используется только внутри системы, актуализируется лишь подсистемами системы.
Пример. Человек воспринимает, обрабатывает входную информацию, например, данные о погоде на улице, формирует выходную реакцию - ту или иную форму одежды. При этом используется внутренняя информация, например, генетически заложенная или приобретенная физиологическая информация о реакции, например, о "морозостойкости" человека.
Внутренние состояния системы и структура системы влияют определяющим образом на взаимоотношения системы с окружающей средой - внутрисистемная информация влияет на входную и выходную информацию, а также на изменение самой внутрисистемной информации.
Пример. Информация о финансовой устойчивости банка может влиять на его деятельность. Накапливаемая (внутрисистемно) социально-экономическая негативная информация (проявляемая, например, социальной активностью в среде) может влиять на развитие системы.
Пример. Генетически заложенная в молекулах ДНК информация и приобретенная информация (хранимая в памяти) влияют на поведение, на адаптацию человека к окружающей среде. В машинах первого поколения внутренняя структура определялась тысячами ламп, причем каждая из них отдельно была невысокой надежности, т.е. подобная система была ненадежной в работе. Это влияло на входную информацию, на функционирование системы, например, такие ЭВМ не были способны на работу в многозадачном режиме, в режиме реального времени (обработки сообщений по мере получения входных данных).
В живой и неживой природе информация может также передаваться некоторой структурой. Такую информацию называют (часто это условно можно отнести к информации) структурной информацией.
Пример. Структурные кольца среза дерева несут информацию о возрасте дерева. Структура питания хищника (или трофическая структура) несет информацию о хищнике, о среде его обитания. Структура плавников рыбы часто несет информацию о глубине среды ее обитания. Структура фирмы может объяснять многие явления и поведение фирмы.
Информация по отношению к конечному результату проблемы бывает:
· исходная (на стадии начала использования актуализации этой информации);
· промежуточная (на стадии от начала до завершения актуализации информации);
· результирующая (после использования этой информации, завершения ее актуализации).
Пример. При решении системы линейных алгебраических уравнений информация о методах решения, среде реализации, входных данных (источники, точность и т.д.), размерности системы и т.д. является исходной информацией; информация о совместности системы уравнений, численных значениях корня и т.д. - результирующая; информация о текущих состояниях коэффициентов уравнений, например, при реализации схемы Гаусса - промежуточная.
Информация (по ее изменчивости при актуализации) бывает:
· постоянная (не изменяемая никогда при ее актуализации);
· переменная (изменяемая при актуализации);
· смешанная - условно-постоянная (или условно-переменная).
Возможна также классификация информации и по другим признакам:
· по стадии использования (первичная, вторичная);
· по полноте (избыточная, достаточная, недостаточная);
· по отношению к цели системы (синтаксическая, семантическая, прагматическая);
· по отношению к элементам системы (статическая, динамическая);
· по отношению к структуре системы (структурная, относительная);
· по отношению к управлению системой (управляющая, советующая, преобразующая);
· по отношению к территории (федеральная, региональная, местная, относящая к юридическому лицу, относящаяся к физическому лицу);
· по доступности (открытая или общедоступная, закрытая или конфиденциальная);
· по предметной области, по характеру использования (статистическая, коммерческая, нормативная, справочная, научная, учебная, методическая и т.д., смешанная) и другие.
Информация в философском аспекте бывает:
· мировоззренческая;
· эстетическая;
· религиозная;
Подобные документы
Характеристика простых и сложных систем, их основные признаки. Общие принципы и этапы экономико-математического моделирования. Назначение рабочего этапа системного анализа - выявление ресурсов и процессов, композиция целей, формулирование проблемы.
контрольная работа [47,7 K], добавлен 11.10.2012Области применения системного анализа, его место, роль, цели и функции в современной науке. Понятие и содержание методик системного анализа, его неформальные методы. Особенности эвристических и экспертных методов исследования и особенности их применения.
курсовая работа [78,8 K], добавлен 20.05.2013Понятие системы управления, ее назначение и целевые функции. Суть параметрического метода исследования на основе научного аппарата системного анализа. Проведение исследования системы управления на предприятии "Атлант", выявление динамики объема продаж.
курсовая работа [367,1 K], добавлен 09.06.2010Использование системного анализа для подготовки и обоснования управленческих решений по многофакторным проблемам. Возникновение синергетики как науки о законах построения организации, возникновения упорядоченности, развитии и самоусложнении системы.
реферат [40,4 K], добавлен 21.01.2015Использование инструментария системного анализа для решения проблем на пути достижения цели - завести аквариум с пираньями. Описание предметной области. Построение дерева целей. Эффективные мероприятия в деревьях мероприятий, сетевой график их реализации.
курсовая работа [97,3 K], добавлен 07.10.2013Основы структурного системного анализа, принципы и вопросы создания функциональных моделей по методологии IDEF0: истоки структурного моделирования, границы системы, точка зрения модели, синтаксис графических диаграмм. Функциональные блоки, дуги.
учебное пособие [514,6 K], добавлен 17.06.2011Методология анализа сложных объектов, изучения и познания процессов. Основные принципы системного подхода к анализу проблем и основные понятия о системах. Декомпозиция, анализ подпроблем и их решение, выявление альтернатив и выбор оптимальных решений.
контрольная работа [47,5 K], добавлен 04.08.2010Определение происхождения эффекта взаимодействия. Последовательность и приёмы системного анализа. Разработка максимального количества альтернатив. Разработка эмпирической модели. Основные типы шкал, используемых при спецификации переменных системы.
презентация [253,7 K], добавлен 19.12.2013Теория системного анализа техносферы. Общая последовательность формализации и моделирования опасных процессов в техносфере. Особенность формализации и моделирования процесса возникновения происшествий в техносфере вообще и в человекомашинных системах.
реферат [26,4 K], добавлен 06.03.2011Общие принципы системного анализа. Основные этапы построения эконометрических моделей и использования их для прогнозирования. Экстраполяция трендов и ее использование в анализе. Правила составления информации подсистем. Модель "спрос-предложение".
реферат [190,5 K], добавлен 24.01.2011