Моделирование и идентификация объектов управления

Принципы построения математических моделей. Физические и математические модели. Принципы составления математических моделей. Аналитические методы определения характеристик. Виды упрощений математических моделей. Задачи статистической идентификации.

Рубрика Экономико-математическое моделирование
Вид методичка
Язык русский
Дата добавления 17.07.2011
Размер файла 626,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Первым этапом работы является постановка задачи (блок 1), включающая формулировку задания на основе анализа исходных данных о системе и её изученности, оценки выделяемых для построения модели ресурсов (кадры, финансы, технические средства, время и т.д.) в сопоставлении с ожидаемым научно-техническим и социально-экономическим эффектом.

Постановка задачи завершается установлением класса разрабатываемой модели и соответствующих требований к ее точности и чувствительности, быстродействию, условиям эксплуатации, последующей корректировки и т.д.

Следующим этапом работы (блок 2) является формулировка модели на основе понимания сущности описываемого процесса, разделяемого в интересах его формализации на элементарные составляющие явления (теплообмен, гидродинамика, химические реакции, фазовые превращения и т.д.) и согласно принятой степени детализации - на агрегаты (макроуровень), зоны, блоки (микроуровень), ячейки. При этом становится ясно, какими явлениями необходимо или нецелесообразно пренебречь, в какой мере надо учесть взаимосвязь рассматриваемых явлений. Каждому из выделенных явлений ставится в соответствие определенный физический закон (уравнение баланса) и устанавливаются начальные и граничные условия его протекания. Запись этих соотношений с помощью математических символов - следующий этап (блок 3), состоящий в математическом описании изучаемого процесса, образующем его исходную математическую модель.

В зависимости от физической природы процессов в системе и характера решаемой задачи математическая модель может включать уравнения баланса массы и энергии для всех выделенных подсистем (блоков) модели, уравнения кинетики химических реакций и фазовых переходов и переноса вещества, импульса, энергии и т.д., а также теоретические и (или) эмпирические соотношения между различными параметрами модели и ограничения на условия протекания процесса. В связи с неявным характером зависимости выходных параметров Y от входных переменных X в полученной модели необходимо выбрать удобный метод и разработать алгоритм решения задачи (блок 4), сформулированной в блоке 3. Для реализации принятого алгоритма используются аналитические и численные средства. В последнем случае необходимо составить и отладить программу для ЭВМ (блок 5), выбрать параметры вычислительного процесса (блок 6) и осуществить контрольный счёт (блок 8). Аналитическое выражение (формула) или программа, введенная в ЭВМ, представляют новую форму модели, которая может быть использована для изучения или описания процесса, если будет установлена адекватность модели натурному объекту (блок 11).

Для проверки адекватности необходимо собрать экспериментальные данные (блок 10) о значениях тех факторов и параметров, которые входят в состав модели. Однако проверить адекватность модели можно только в том случае, если будут известны (из табличных данных и справочников) или дополнительно экспериментально определены некоторые константы, содержащиеся в математической модели процесса (блок 9).

Отрицательный результат проверки адекватности модели свидетельствует о её недостаточной точности и может быть следствие целого набора различных причин. В частности, может потребоваться переделка программы с целью реализации нового алгоритма, не дающего столь большой погрешности, а также корректировка математической модели или внесение изменений в физическую модель, если станет ясно, что пренебрежение какими-либо факторами является причиной неудачи. Любая корректировка модели (блок 12) потребует, конечно, повторного осуществления всех операций, содержащихся в нижележащих блоках.

Положительный результат проверки адекватности модели открывает возможность изучения процесса путём проведения серии расчётов на модели (блок 13), т.е. эксплуатации полученной информационной модели. Последовательная корректировка информационной модели с целью повышения её точности путём учёта взаимного влияния факторов и параметров, введения в модель дополнительных факторов и уточнение различных «настроечных» коэффициентов позволяет получить модель с повышенной точностью, которая может быть инструментом для более глубокого изучения объекта. Наконец, установление целевой функции (блок 15) с помощью теоретического анализа или экспериментов и включение в модель оптимизирующего математического аппарата (блок 14) для обеспечения целенаправленной эволюции системы в область оптимума даёт возможность построить оптимизационную модель процесса. Адаптация полученной модели для решения задачи управления производственным процессом в реальном масштабе времени (блок 16) при включении в систему средств автоматического регулирования завершает работу по созданию математической модели управления.

Контрольные вопросы

1. Аналитические методы разработки математических моделей.

2. Этапы разработки детерминированных моделей.

ЛЕКЦИЯ 7. Виды упрощений математических моделей

После перехода от описания моделируемой системы S к ее модели Mк, построенной по блочному принципу, необходимо построить математические модели процессов, происходящих в различных блоках. Математическая модель представляет собой совокупность соотношений (например, уравнений, логических условий, операторов), определяющих характеристики процесса функционирования системы S в зависимости от структуры системы, алгоритмов поведения, параметров системы, воздействий внешней среды E, начальных условий и времени. Математическая модель является результатом формализации процесса функционирования исследуемой системы, т.е. построения формального (математического) описания процесса с необходимой в рамках проводимого исследования степенью приближения к действительности.

Для иллюстрации возможностей формализации рассмотрим процесс функционирования некоторой гипотетической системы S, которую можно разбить на m подсистем с характеристиками y1 (t), y2 (t), …, yhy (t) с параметрами h1, h2, …, hnH при наличии входных воздействий x1, x2, …, xnX и воздействий внешней среды . Тогда математической моделью процесса может служить система соотношений вида

Если бы функции f1, f2, …, fm были известны, то соотношения (1) оказались бы идеальной математической моделью процесса функционирования системы S. Однако на практике получение модели достаточно простого вида для больших систем чаще всего невозможно, поэтому обычно процесс функционирования системы S разбивают на ряд элементарных подпроцессов. При этом необходимо так проводить разбиение на подпроцессы, чтобы построение моделей отдельных подпроцессов было элементарно и не вызывало трудностей при формализации. Таким образом, на этой стадии сущность формализации подпроцессов будет состоять в подборе типовых математических схем. Например, для стохастических процессов это могут быть схемы вероятностных автоматов (P-схемы), схемы массового обслуживания (Q-схемы) и т.д., которые достаточно точно описывают основные особенности реальных явлений, составляющих подпроцессы, с точки зрения решаемых прикладных задач.

Таким образом, формализация процесса функционирования любой системы S должно предшествовать изучение составляющих его явлений. В результате появляется содержательное описание процесса, которое представляет собой первую попытку четко изложить закономерности, характерные для исследуемого процесса, и постановку прикладной задачи. Содержательное описание является исходным материалом для последующих этапов формализации: построения формализованной схемы процесса функционирования системы и математической модели этого процесса. Для моделирования процесса функционирования системы на ЭВМ необходимо преобразовать математическую модель процесса в соответствующий моделирующий алгоритм и машинную программу.

Подэтапы первого этапа моделирования. Рассмотрим более подробно основные подэтапы построения концептуальной модели системы Mк и ее формализации.

Постановка задачи машинного моделирования системы. Дается четкая формулировка задачи исследования конкретной системы S и основное внимание уделяется таким вопросам, как: а) признание существования задачи и необходимости машинного моделирования; б) выбор методики решения задачи с учетом имеющихся ресурсов; в) определение масштаба задачи и возможности разбиения ее на подзадачи.

Необходимо также ответить на вопрос о приоритетности решения различных подзадач, оценить эффективность возможных математических методов и программно-технических средств их решения. Тщательная проработка этих вопросов позволяет сформулировать задачу исследования и приступить к ее реализации. При этом возможен пересмотр начальной постановки задачи в процессе моделирования.

Анализ задачи моделирования системы. Проведение анализа задачи способствует преодолению возникающих в дальнейшем трудностей при ее решении методом моделирования. На рассматриваемом втором этапе основная работа сводится именно к проведению анализа, включая: а) выбор критериев оценки эффективности процесса функционирования системы S; б) определение эндогенных и экзогенных переменных модели M; в) выбор возможных методов идентификации; г) выполнение предварительного анализа содержания второго этапа алгоритмизации модели системы и ее машинной реализации; д)выполнение предварительного анализа содержания третьего этапа получения и интерпретации результатов моделирования системы.

Определение требований к исходной информации об объекте моделирования и организация ее сбора. После постановки задачи моделирования системы S определяются требования к информации, из которой получают качественные и количественные исходные данные, необходимые для решения этой задачи. Эти данные помогают глубоко разобраться в сущности задачи, методах ее решения. Таким образом, на этом подэтапе проводится: а) выбор необходимой информации о системе S и внешней среде E; б) подготовка априорных данных; в) анализ имеющихся экспериментальных данных; г) выбор методов и средств предварительной обработки информации о системе.

При этом необходимо помнить, что именно от качества исходной информации об объекте моделирования существенно зависят как адекватность модели, так и достоверность результатов моделирования.

Выдвижение гипотез и принятие предположений. Гипотезы при построении модели системы S служат для заполнения «пробелов» и понимания задачи исследователем. Выдвигаются такие гипотезы относительно возможных результатов моделирования системы S, справедливость которых проверяется при проведении машинного эксперимента. Предположения предусматривают, что некоторые данные известны или их нельзя получить. Предположения могут выдвигаться относительно известных данных, которые не отвечают требованиям решения поставленной задачи. Предположения дают возможность провести упрощения модели в соответствии с выбранным уровнем моделирования. При выдвижении гипотез и принятия предположений учитываются следующие факторы: а) объем имеющейся информации для решения задач; б) подзадачи, для которых информация недостаточна; в) ограничения на ресурсы времени для решения задачи; г) ожидаемые результаты моделирования.

Таким образом, в процессе работы с моделью системы S возможно многократное возвращение к этому подэтапу в зависимости от полученных результатов моделирования и новой информации об объекте.

Определение параметров и переменных модели. Прежде чем перейти к описанию математической модели, необходимо определить параметры системы входные и выходные переменные воздействия внешней среды Конечной целью этого подэтапа является подготовка к построению математической модели системы S, функционирующей во внешней среде E, для чего необходимо рассмотрение всех параметров и переменных модели и оценка степени их влияния на процесс функционирования системы в целом. Описание каждого параметра и переменной должно даваться в следующей форме: а) определение и краткая характеристика; б) символ обозначения и единица измерения; в) диапазон изменения; г) место применения в модели.

Установление основного содержания модели. На этом подэтапе определяется основное содержание модели и выбирается метод построения модели системы, которые разрабатываются на основе принятых гипотез и предположений. При этом учитываются следующие особенности: а) формулировка задачи моделирования системы; б) структура системы S и алгоритмы ее поведения, воздействия внешней среды E; в) возможные методы и средства решения задачи моделирования.

Обоснование критериев оценки эффективности системы. Для оценки качества процесса функционирования моделируемой системы S необходимо выбрать некоторую совокупность критериев оценки эффективности, т.е. в математической постановке задача сводится к получению соотношения для оценки эффективности как функции параметров и переменных системы. Эта функция представляет собой поверхность отклика в исследуемой области изменения параметров и переменных и позволяет определить реакцию системы. Эффективность системы S можно оценить с помощью интегральных или частных критериев, выбор которых зависит от рассматриваемой задачи.

Определение процедур аппроксимации. Для аппроксимации реальных процессов, протекающих в системе S, обычно используются три вида процедур: а) детерминированную; б) вероятностную; в) определения средних значений.

При детерминированной процедуре результаты моделирования однозначно определяются по данной совокупности входных воздействий, параметров и переменных системы S. В этом случае отсутствуют случайные элементы, влияющие на результаты моделирования. Вероятностная (рандомизированная) процедура применяется в том случае, когда случайные элементы, включая воздействия внешней среды E, влияют на характеристики процесса функционирования системы S и когда необходимо получить информацию о законах распределения выходных переменных. Процедура определения средних значений используется тогда, когда при моделировании системы интерес представляют средние значения выходных переменных при наличии случайных элементов.

Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель Mк в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в)принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реавльных процессов при построении модели. Таким образом, на этом подэтапе проводится пробный анализ задачи, рассматриваются возможные методы ее решения и дается детальное описание концептуальной модели Mк, которая затем используется на втором этапе моделирования.

Проверка достоверности концептуальной модели. После того как концептуальная модель Mк описана, необходимо проверить достоверность некоторых концепций модели перед тем, как перейти к следующему этапу моделирования системы S. Проверять достоверность концептуальной модели достаточно сложно, так как процесс ее построения является эвристическим и такая модель описывается в абстрактных терминах и понятиях. Один из методов проверки модели Mк -применение операций обратного перехода, позволяющий проанализировать модель, вернуться к принятым аппроксимациям и, наконец, рассмотреть снова реальные процессы, протекающие в моделируемой системе S. Проверка достоверности концептуальной модели Mк должна включать: а) проверку замысла модели; б0 оценку достоверности исходной информации; в) рассмотрение постановки задачи моделирования; г) анализ принятых аппроксимаций; д) исследование гипотез и предположений.

Только после тщательной проверки концептуальной модели Mк не позволяют получить достоверные результаты моделирования.

Проверка достоверности модели системы. Эта проверка является первой из проверок, выполняемых на этапе реализации модели. Так как модель представляет собой приближенное описание процесса функционирования реальной системы S, то до тех пор, пока не доказана достоверность модели Mм, нельзя утверждать, что с ее помощью будут получены результаты, совпадающие с теми, которые могли бы быть получены при проведении натурного эксперимента с реальной системой S. Поэтому определение достоверности модели можно считать наиболее важной проблемой при моделировании систем. От решения этой проблемы зависит степень доверия к результатам, полученным методом моделирования. Проверка модели на рассматриваемом подэтапе должна дать ответ на вопрос, насколько логическая схема модели системы и используемые математические соотношения отражают замысел модели, сформированный на первом этапе. При этом проверяются: а) возможность решения поставленной задачи; б) точность отражения замысла в логической схеме; в) полнота логической схемы модели; г) правильность используемых математических соотношений.

Только после того, как разработчик убеждается путем соответствующей проверки в правильности всех этих положений, можно считать, что имеется логическая схема модели системы S, пригодная для дальнейшей работы по реализации модели на ЭВМ.

При реализации моделирующих алгоритмов на ЭВМ вырабатывается информация о состояниях процесса функционирования исследуемых систем z (t) є Z. Эта информация является исходным материалом для определения приближенных оценок искомых характеристик, получаемых в результате машинного эксперимента, т.е. критериев оценки. Критерием оценки будем называть любой количественный показатель, по которому можно судить о результатах моделирования системы. Критериями оценки могут служить показатели, получаемые на основе процессов, действительно протекающих в системе или получаемых на основе специально сформированных функций этих процессов.

В ходе машинного эксперимента изучается поведение исследуемой модели M процесса функционирования системы S на заданном интервале времени [О,Т].Поэтому критерий оценки является в общем случае векторной случайной функцией, заданной на этом же интервале:

Часто используют более простые критерии оценки, например, вероятность определенного состояния системы в заданный момент времени t * є [О, Т], отсутствие отказов и сбоев в системе на интервале [О,Т] и т.д. При интерпретации результатов моделирования вычисляются различные статистические характеристики закона распределения критерия оценки.

Рассмотрим общую схему фиксации и обработки результатов моделирования системы, которая приведена на рис. 3. Будем рассматривать гипотетическую модель M, предназначенную для исследования поведения системы S на интервале времени [О, Т]. В общем случае критерием интерпретации результатов моделирования является нестационарный случайный n-мерный процесс Полагаем для определенности, что состояние моделируемой системы S проверяется каждые ? t временных единиц, т.е. используется «принцип ? t». При этом вычисляют значения , критерия Таким образом, о свойствах случайного процесса судят по свойствам случайной последовательности , или, иначе говоря, по свойствам m-мерного вектора вида

Рис.3.

Процесс функционирования системы S на интервале [О, Т] моделируется N-кратно с получением независимых реализаций вектора Работа модели на интервале [О, Т] называется прогоном модели.

На схеме, изображенной на рис. 3, обозначено I?i; J?j; K?k; N?N; T?t; DT??t; Q?q.

В общем случае алгоритмы фиксации и статистической обработки данных моделирования содержат три цикла. Полагаем, что имеется машинная модель Mм системы S.

В н у т р е н и й ц и к л (блоки 5-8), позволяет получить последо-вательность в моменты времени t=0, ? t, 2 ? t, …, k ? t=T.

Основной блок 7 реализует процедуру вычисления последовательности Именно в этом блоке имитируется процесс функционирования моделируемой системы S на интервале времени [О, Т].

П р о м е ж у т о ч н ы й ц и к л (блоки 3-10), в котором организуется N-кратное повторение прогона модели, позволяющее после соответствующей статистической обработки результатов судить об оценках характеристик моделируемого варианта системы. Окончательное моделирование варианта системы S может определяться не только заданным числом реализаций (блок 10), как это показано на схеме, но и заданной точностью результатов моделирования. В этом цикле содержится блок 9, реализующий процедуру фиксации результатов моделирования по i-му прогону модели

В н е ш н и й ц и к л (блоки 1-12) охватывает оба предшествующих цикла и дополнительно включает блоки 1, 2, 11, 12, управляющие последовательностью моделирования вариантов системы S. Здесь организуется поиск оптимальных структур, алгоритмов и параметров системы S, т.е. блок 11 обрабатывает результаты моделирования исследуемого k-го варианта системы OPM [Q, K], блок 12 проверяет удовлетворительность полученных оценок характеристик процесса функционирования системы требуемым (ведет поиск оптимального варианта системы ПОВ [S (K)], блок 1 изменяет структуру, алгоритмы и параметры системы S на уровне ввода исходных данных для очередного k-го варианта системы ВИД [S (K)]. Блок 13 реализует функцию выдачи результатов моделирования по каждому k-му варианту модели системы Sk, т.е. ВРМ [Q K].

Рассмотренная схема позволяет вести статистическую обработку результатов моделирования в наиболее общем случае при нестационарном критерии . В частных случаях можно ограничиться более простыми схемами.

Если свойства моделируемой системы S определяются значением критерия в некоторый заданный момент времени, например в конце периода функционирования модели t=k? t=T, то обработка сводится к оценке распределения n-мерного вектора по независимым реализациям , полученным в результате N прогонов модели.

Если в моделируемой системе S по истечению некоторого времени с начала работы t0=k0? t установится стационарный режим, то о нем можно судить по одной, достаточно длинной реализации критерия , стационарного и эргодического на интервале [t0, Т]. Для рассмотренной схемы это означает, что исключается средний цикл (n=1) и добавляется оператор, позволяющий начать обработку значений при j?k0.

Другая особенность применяемых на практике методов статистической обработки результатов моделирования связана с исследованием процесса функционирования систем с помощью моделей блочной конструкции. В этом случае часто приходится применять раздельное моделирование отдельных блоков модели, когда имитация входных воздействий для одного блока проводится на основе оценок критериев, полученных предварительно на другом блоке модели. При раздельном моделировании может иметь место либо непосредственная запись в накопителе реализаций критериев, либо их аппроксимация, полученная на основе статистической обработки результатов моделирования с последующим использованием генераторов случайных чисел для имитации этих воздействий.

Контрольные вопросы

1. Анализ результатов моделирования системы.

2. Представление результатов моделирования.

3. Интерпретация результатов моделирования.

ЛЕКЦИЯ 8. Постановка задачи идентификации

Идентификация математического описания объекта является основным этапом в построении адекватной математической модели процесса и поэтому представляет собой одну из центральных задач математического моделирования химико-технологических процессов. Как уже отмечалось, большинство таких процессов представляет собой многофазную много-компонентную среду, распределенную в пространстве и во времени. Су-щественной особенностью этих процессов является их детерминированно-стохастическая природа, определяемая наложением стохастических особен-ностей гидродинамической обстановки в аппарате на процессы массо-и теплопереноса. Как следствие этого, параметры математических моделей отражают стохастические особенности протекания процесса и определяются статистическими методами.

В настоящее время наиболее разработана теория оценивания линейных по параметрам математических моделей. Однако большинство моделей химико-технологических процессов нелинейны по параметрам, что создает значительные трудности при решении задач их идентификации. Поэтому часто идентификацию нелинейных моделей проводят либо с помощью при-ближенных оценок, либо путем линеаризации исходной модели химико-технологического процесса. В настоящей главе будут рассмотрены методы идентификации как линейных, так и нелинейных математических моделей.

Так как наряду с оценкой неизвестных параметров задача идентифи-кации подразумевает сравнение рассчитываемых по модели переменных состояния химико-технологического процесса с наблюдаемыми (экспери-ментальными) значениями, то в данной главе рассматриваются и методы установления соответствия (адекватности) модели реальному объекту.

Контрольные вопросы

1. Основные этапы идентификации

2. Априорная и апостериорная информация

3. Классификация методов идентификации

ЛЕКЦИЯ 9. Критерий идентификации

Критерии адекватности моделей. Математическая модель объекта является лишь его определенным в рамках принятых допущений аналогом. Поэтому значения переменньгх, получаемые на модели и объекте, различаются. Здесь возникает задача установления близости модели реальному объекту (установления адекватности модели). Прежде чем приступить к проверке и установлению адекватности, необходимо выработать критерий, который позволил бы сделать заключение о соответствии модели и объекта. Они базируются в основном на методах дисперсионного анализа и анализа остатков.

Дисперсионный анализ моделей используется для сравнения величин остятков с величинами характеризуюшими ошибку измерений. Используя такое сравненне, исследователь способен установить как общую адекватность модели, так и способы ее дальнейшего упрощения с помощью выбрасывания из модели незначимых членов. Для этого вычисляют величины сумм квадратов, характеризующие соответственно разброс экспериментальных данных и разброс рассчитанных по модели значений отклика. Разности называемые остатками, представляют собой меру неспособности модели точно описать экспериментальные данные. Очевидно, что если испытывая модель истинна, то остатки фактически есть оценки экспериментальной ошибки измерений.

На основании метода наименьших квадратов можно показать, что для перечисленных сумм справедливо следующее равенство:

SS (1) = SS (2) + SS (3).

При проведении дисперсионного анализа каждому отдельному изме-рению отклика приписывается одна степень свободы. Следовательно, при постановке п опытов для однооткликовой ситуации (ситуации с одной за-меряемой выходной переменной) общая сумма квадратов SS(1) обладает п степенями свободы; SS(3) имеет (п - р) и SS(2) имеет р степенеи сво-боды (р -- число параметров в модели , с использованием оценок кото-рых вычисляется сумма SS (2) ).

При проведении повторных измерений в одинаковых условиях эксперимента сумма квадратов, содержит всю необходимую информацию об ошибках измерений.

Если проведено п повторных опытов при каждом из ц различных условий проведения эксперимента, то сумма квадратов имеет п- 1 степеней свободы в одном повторном эксперименте (одна степень свободы используется для оценки), в то время как сумма квадратов обла-дает п- р-q(п-- 1) степенями свободы: поедеднее число определяется как разность между числом степеней свободы остаточной суммы квадратов.

Суммы квадратов, обусловленные различными источниками, будучи поделенными на соответствующие числа степеней свободы, определяют соответствующие дисперсии. Очевидно, что адекватность модели может определяться отношением дисперсии адекватности модели к дисперсии воспроизводимости. Если это отношение велико (по крайней мере существенно больше единицы), то имеются достаточно веские доводы в пользу того, что испытываемая модель не отражает результаты эксперимента,

Если модель правильно отражает свойства объекга, то расхождения между экслериментальными значениями и соответствующими значениями, вычислениыми по модели, можно рассматривать как случайные величины. Тогда установление адекватности можно проводить с помощыо проверки некоторых статистических гипотез. Под статистическими гипотезами понимают некоторые предположения относительно распределений генеральной совокупности случайной величины. Проверка гипотезы заключается в сопоставлении статистических показателей, критериев проверки, вычисляемых по выборке, со значениями этих показателей, определенными в предположении, что проверяемая гипотеза верна. Чтобы принять или отвергнуть гипотезу, задают уровень значимости р (обычно от 0,1 до 5 %), который определяет вероятность того, что верная гипотеза будет отвергнута на основании анализа выборки.

Оценка адекватности однооткликовых моделей с помощью критерия Фишера. В случае однооткликовых моделей адекватность может быть проверена с помощью критерия Фишера (? -критерия).

Основная гипотеза, которая при этом проверяется, состоит в следую-щем : можно ли считать сравниваемые выборочные дисперсии оценками одной и той же генеральной дисперсии ? Если да, то дисперсии незначимо отличаются друг от друга. Рассчитанные по модели значения удовлет-ворительно совпадают с экспериментальными и модель адекватна объек-ту в пределах точности эксперимента. В противном случае модель неадекватна обьекту.

Контрольные вопросы

1. Критерий идентификации

2. Функционал невязки

3. Минимизация функционала невязки

ЛЕКЦИЯ 10. Общие задачи статистической идентификации

В практике моделирования систем информатики наиболее часто приходится иметь дело с объектами, которые в процессе своего функционирования содержат элементы стохастичности или подвергаются стохастическим воздействиям внешней среды. Поэтому основным методом получения результатов с помощью имитационных моделей таких стохастических систем является метод статистического моделирования на ЭВМ, использующий в качестве теоретической базы предельные теоремы теории вероятностей. Возможность получения пользователем модели результатов статистического моделирования сложных систем в условиях ограниченности машинных ресурсов существенно зависит от эффективности процедур генерации псевдослучайных последовательностей на ЭВМ, положенных в основу имитации воздействий на элементы моделируемой системы.

Общая характеристика метода статистического моделирования

На этапе исследования и проектирования систем при построении и реализации машинных моделей (аналитических и имитационных) широко используется метод статистических испытаний (Монте-Карло), который базируется на использовании случайных чисел, т. е. возможных значений некоторой случайной величины с заданным распределением вероятностей. Статистическое моделирование представляет собой метод получения с помощью ЭВМ статистических данных о процессах, происходящих в моделируемой системе. Для получения представляющих интерес оценок характеристик моделируемой системы S с учетом воздействий внешней среды Е статистические данные обрабатываются и классифицируются с использованием методов математической статистики [10, 13, 18].

Сущность метода статистического моделирования. Таким образом, сущность метода статистического моделирования сводится к построению для процесса функционирования исследуемой системы S некоторого моделирующего алгоритма, имитирующего поведение и взаимодействие элементов системы с учетом случайных входных воздействий и воздействий внешней среды Е, и реализации этого алгоритма с использованием программно-технических средств ЭВМ.

Различают две области применения метода статистического моделирования: 1) для изучения стохастических систем; 2) для решения детерминированных задач. Основной идеей, которая используется для rrрешения детерминированных задач методом статистического моделирования, является замена детерминированной задачи эквивалентной схемой некоторой стохастической системы, выходные характеристики последней совпадают с результатом решения детерминированной задачи. Естественно, что при такой замене вместо точного решения задачи получается приближенное решение и погрешность уменьшается с увеличением числа испытаний (реализации моделирующего алгоритма) N.

В результате статистического моделирования системы S получается серия частных значений искомых величин или функций, статистическая обработка которых позволяет получить сведения о поведении реального объекта или процесса в произвольные моменты времени. Если количество реализации N достаточно велико, то полученные результаты моделирования системы приобретают статистическую устойчивость и с достаточной точностью могут быть приняты в качестве оценок искомых характеристик процесса функционирования системы S.

Теоретической основой метода статистического моделирования систем на ЭВМ являются предельные теоремы теории вероятностей. Множества случайных явлений (событий, величин) подчиняются определенным закономерностям, позволяющим не только прогнозировать их поведение, но и количественно оценить некоторые средние их характеристики, проявляющие определенную устойчивость. Характерные закономерности наблюдаются также в распределениях случайных величин, которые образуются при сложении множества воздействий. Выражением этих закономерностей и устойчивости средних показателей являются так называемые предельные теоремы теории вероятностей, часть из которых приводится ниже в пригодной для практического использования при статистическом моделировании формулировке. Принципиальное значение предельных теорем состоит в том, что они гарантируют высокое качество статистических оценок при весьма большом числе испытаний (реализации) N. Практически приемлемые при статистическом моделировании количественные оценки характеристик систем часто могут быть получены уже при сравнительно небольших (при использовании ЭВМ) N.

Неравенство Чебышева. Для неотрицательной функции g () случайной величины и любого K>0 выполняется неравенство

P{g()>=K}M[g()]/K. (4.1)

В частности, если g()=(--x)2 и К=k22 (где х--среднее арифметическое;

-- среднее квадратическое отклонение), то

P{| -x|>=k} 1/k2). (4.2)

Теорема Бернулли. Если проводится N независимых испытаний, в каждом из которых некоторое событие А осуществляется с вероятностью р, то относительная частота появления события m/N при N сходится по вероятности к р, т. е. при любом >0

lim P{|mlN-p|>=}=0, (4.3)

где т -- число положительных исходов испытания.

Теорема Пуассона. Если проводится N независимых испытаний и вероятность осуществления события А в i-м испытании равна рi, то относительная частота появления события m/N при N сходится по вероятности к среднему из вероятностей рi, т. е. при любом >0

Теорема Чебышева. Если в N независимых испытаниях наблюдаются значения x1,x2,…,xn случайной величины , то при N среднее арифметическое значений случайной величины сходится по вероятности к ее математическому ожиданию а, т. е. при любом >0

Обобщенная теорема Чебышева. Если 1, … ,n -- независимые случайные величины с математическими ожиданиями а1, ... аn и дисперсиями 12, ..,n2, ограничен-ными сверху одним и тем же числом, то при N среднее арифметическое значений случайной величины сходится по вероятности к среднему арифметическому их математических ожиданий:

Теорема Маркова. Выражение (4.6) справедливо и для зависимых случайных величин 1, … ,n , если только

Совокупность теорем, устанавливающих устойчивость средних показателей, принято называть законом больших чисел.

Центральная предельная теорема. Если 1, … ,n -- независимые одинаково распределенные случайные величины, имеющие математическое ожидание а и дисперсию 2, то при N закон распределения суммы, неограниченно приближается к нормальному:

N ?

lim P{<( xi-Na)vN?<?}=1/v2? ? e-t*t/2 dt = Ф0(?)- Ф0(?) (4.7)

N00 i=1 ?

Здесь интеграл вероятностей ?

Ф0(?)=1/2? ? e-t*t/2dt.

-

Теорема Лапласа. Если в каждом из N независимых испытаний событие А появляется с вероятностью р, то

lim P{<(m-Np)vNp(1-p) <?}=Ф0(?)- Ф0(?) (4.8)

N

где m -- число появлений события А в N испытаниях. Теорема Лапласа является частным случаем центральной предельной теоремы.

Примеры статистического моделирования. Статистическое моделирование систем на ЭВМ требует формирования значений случайных величин, что реализуется с помощью датчиков (генераторов) случайных чисел. Не останавливаясь пока на способах их реализации для целей моделирования на ЭВМ, поясним сущность метода статистического моделирования следующими примерами.

Пример 4.1. Необходимо методом статистического моделирования найти оценки выходных характеристик некоторой стохастической системы Sr, функционирование которой описывается следующими соотношениями: х = 1 -- е - " -- входное воздействие, v=1-e- -- воздействие внешней среды, где и -- случайные величины, для которых известны их функции распределения. Целью моделирования является оценка математического ожидания М[у] величины у. Зависимость последней от входного воздействия х и воздействия внешней среды v имеет вид y= vx2+v2.

В качестве оценки математического ожидания М[у], как следует из приведенных теорем теории вероятностей, может выступать среднее арифметическое, вычисленное по формуле N

y=1/N ?yi,

i=1

где уi-- случайное значение величины у; N -- число реализации, необходимое для cстатистической устойчивости результатов.

Структурная схема системы Sr показана на рис. 4.1.

Здесь элементы выполняют следующие функции:

вычисление В1:возведение в квадрат К,:суммирование С:извлечение квадратного корня И:

Схема алгоритма, реализующего метод статистического моделирования для оценки M[y] системы Sr, приведена на рис. 4.2. Здесь LA и FI -- функции распределения случайных величин и ; N- заданное число реализации; Ii-номер текущей реализации; LATi; FIIi; EXPe; MYM[y], SYyi- суммирующая ячейка; ВРМ[...], ГЕН[...], ВРМ[...]--процедуры ввода исходных данных, генерации псевдослучайных последовательностей и выдачи результатов моделирования соответственно.

Таким образом, данная модель позволяет получить методом статистического моделирования на ЭВМ статистическую оценку математического ожидания выходной характеристики М[у] рассмотренной стохастической системы Sr. Точность и достоверность результатов взаимодействия в основном будут определяться числом реализации N.

Пример 4.2. Необходимо методом статистического моделирования найти оценку площади фигуры (рис. 4.3), ограниченной осями координат, ординатой =1 и кривой =f(); при этом для определенности предполагается, что 0? f()?1 для всех , 0?а?1.

Таким образом, данная задача является чисто детерминированной, и ее аналитическое решение сводится к вычислению определенного интеграла, т. е. искомая площадь фигуры.

Для решения этой детерминированной задачи методом статистического моделирования необходимо предварительно построить адекватную по выходным характеристикам стохастическую систему SD , оценки характеристик которой будут совпадать с искомыми в данной детерминированной задаче.

Система SD функционирует следующим образом: получается пара независимых случайных чисел интервала (0, 1), определяется координата точки (хi хi+1), показанной на рис. 4.3, вычисляется ордината уi =f(xi) и проводится сравнение величин i и хi+1; причем если точка (хi, хi+1) попала в площадь фигуры (в том числе и на кривую f(x)), то исход испытания считается положительным hi= 1 и в итоге можно получить статистическую оценку площади фигуры Sф по заданному числу реализаций N.

Логическая схема моделирующего алгоритма вероятностной системы SD предcтавлена на рис. 4.5. Здесь Уу=f(а)--заданная функция (табличная кривая);

N--заданное число реализации; Ii номер текущей реализации; XIxi, XIIxi+1, HIhi, Ss, SHh'- суммирующая ячейка.

Таким образом, построение некоторой стохастической системы SD позволяет методом статистического моделирования получить оценки для детерминированной задачи.

Пример 4.3. Необходимо методом статистического моделирования решить следующую задачу. Проводится s= 10 независимых выстрелов по мишени, причем вероятность попадания при одном выстреле задана и равна р. Требуется оценить вероятность того, что число попаданий в мишень будет четным, т. е. О, 2, 4, 6, 8,10. Данная задача является вероятностью, причем существует ее аналитическое решение.

В качестве объекта статистического моделирования можно рассмотреть следующую вероятностную систему Sp, структура которой представлена где элементы выполняют такие функции.

Выходным воздействием в данной системе Sp является событие четного числа попаданий в мишень в серии из десяти выстрелов. В качестве оценки выходной характеристики необходимо при числе испытаний (серий выстрелов), равном N, найти вероятность четного числа попаданий:

Логическая схема алгоритма статистического моделирования для оценки искомой характеристики такой системы Р(у) приведена на рис. 4.7. Здесь Р=р--заданная вероятность попадания в мишень при одном выстреле; N -- заданное число реализации; XIxi, HJhj, PYP(y), SY yj- суммирующая ячейка.

В данном моделирующем алгоритме после ввода исходных данных и реализации операторов цикла происходит обращение к генератору случайных чисел, т. е. получаются значения х, случайной величины, равномерно распределенной в интервале (0, 1). Вероятность попадания случайной величины в интервал (0, р), где о< 1, равна длине этого отрезка, т. е. Р {xi<p] == p. Поэтому при каждом моделировании выстрела полученное случайное число х, сравнивается с заданной вероятностью р и при х,<р регистрируется «попадание в мишень», а в противном случае -- «промах». Далее моделируются серии из десяти испытаний каждая, подсчитывается четное число «попаданий» в каждой серии и находится статистическая оценка искомой характеристики Р (у).

Таким образом, подход при использовании статистического моделирования независимо от природы объекта исследования (будет ли он детерминированным или стохастическим) является общим, причем при статистическом моделировании детерминированных систем (система 5д в примере 4.2) необходимо предварительно построить стохастическую систему, выходные характеристики которой позволяют оценить искомые.

Отметим, что во всех рассмотренных примерах не требуется запоминания всего множества генерируемых случайных чисел, используемых при статистическом моделировании системы S. Запоминается только накопленная сумма исходов и общее число реализаций. Это немаловажное обстоятельство вообще является характерным при реализации имитационных моделей методом статистического моделирования на ЭВМ.

Псевдослучайные последовательности и процедуры их машинной генерации

При статистическом моделировании систем одним из основных вопросов является учет стохастических воздействий. Количество случайных чисел, используемых для получения статистически устойчивой оценки характеристики процесса функционирования системы S при реализации моделирующего алгоритма на ЭВМ, колеблется в достаточно широких пределах в зависимости от класса объекта моделирования, вида оцениваемых характеристик, необходимой точности и достоверности результатов моделирования. Для метода статистического моделирования на ЭВМ характерно, что большое число операций, а соответственно и большая доля машинного времени расходуются на действия со случайными числами. Кроме того, результаты статистического моделирования существенно зависят от качества исходных (базовых) последовательностей случайных чисел. Поэтому наличие простых и экономичных способов формирования, последовательностей случайных чисел требуемого качества во многом определяет возможность практического использования машинного моделирования систем [31, 37, 46].

Рассмотрим возможности и особенности получения последовательностей случайных чисел при статистическом моделировании систем на ЭВМ. На практике используются три основных способа генерации случайных чисел: аппаратный (физический), табличный (файловый) и алгоритмический (программный).

Аппаратный способ. При этом способе генерации случайные числа вырабатываются специальной электронной приставкой -- генератором (датчиком) случайных чисел,-- служащей в качестве одного из внешних устройств ЭВМ. Таким образом, реализация этого способа генерации не требует дополнительных вычислительных операций ЭВМ по выработке случайных чисел, а необходима только операция обращения к внешнему устройству (датчику). В качестве физического эффекта, лежащего в основе таких генераторов чисел, чаще всего используются шумы в электронных и полупроводниковых приборах, явления распада радиоактивных элементов и т. д. Рассмотрим принцип получения случайных чисел от приставки, основанный, например, на эффекте шума в полупроводниковых приборах.

Структурная схема аппаратного генератора случайных чисел приведена на рис. 4.8, а. Здесь ИШ -- источник шума; КС -- ключевая схема; ФИ -- формирователь импульсов; ПС -- пересчетная схема. При усилении шумов на выходе ИШ получается напряжение, которое является случайным процессом, показанным на временной диаграмме рис.4.8, б. Причем отрезок шумовой реализации uk(t), сформированный на интервале времени (0,Т) с помощью КС, содержит случайное число выбросов. Сравнение напряжения uk(t) с пороговым Un позволят сформировать на выходе ФИ серию импульсов uф(t). Тогда на выходе ПС может быть получена последовательность случайных чисел хi(t). Например, если провести масштабирование и принять длину интервала (0,Т) за единицу, то значения интервалов времени ti=ti+1-ti между соседними импульсами uф(t) будут случайными числами хi(0,1). Возможны и другие схемные решения аппаратных генераторов случайных чисел [29 , 37]. Однако аппаратный способ получения случайных чисел не позволяет гарантировать качество последовательности непосредственно во время моделирования системы S а ЭВМ, а также повторно получать при моделировании одинаковые последовательности чисел.

Табличный способ. Если случайные числа, оформленные в виде таблицы, помещать во внешнюю или оперативную память ЭВМ, предварительно сформировав из них соответствующий файл (массив чисел), то такой способ будет называться табличным. Однако этот способ получения случайных чисел при моделировании систем на ЭВМ обычно рационально использовать при сравнительно небольшом объеме таблицы и соответственно файла чисел, когда для хранения можно применять оперативную память. Хранение файла во внешней памяти при частном обращении в процессе статистического моделирования на рационально, так как вызывает увеличение затрат машинного времени при моделировании системы из-за необходимости обращения к внешнему накопителю. Возможны промежуточные способы организации файла, когда он переписывается в оперативную память периодически по частям. Это уменьшает время на обращение к внешней памяти, но сокращает объем оперативной памяти, который можно использовать для моделирования процесса функционирования системы S.

Контрольные вопросы

1. Структурная статистическая идентификация.

2. Статистические аппараты исследования

3. Организация статистической процедуры.

ЛЕКЦИЯ 11. Прямые методы определения динамических характеристик объектов

Контрольные вопросы

1. Преобразование Фурье

2. Частотные характеристики.

3. Переходные функции

4. Импульсная переходная функция

ЛЕКЦИЯ 12. Параметрическая идентификация объектов

Применение методов наименьших квадратов и максимального правдоподобия для нахождения точечных оценок параметров. Построенные с по-мощью экспериментального либо экспериментально-аналитического метода математические модели содержат неизвестные константы (параметры), значения которых определяются по экспериментальным данным. Если используемые модели линейны относительно искомых параметров, то за-дача их оценки сравнительно легко решается методами линейного регрес-сионного анализа и, в частности, методом наименыиих квадратов.

Оценка неизвестных параметров в методе наименьших квадратов про-изводится с помощью минимизации суммы квадратов рассогласований. Такой подход во многих важных ситуациях приводит к оценкам, обладаю-щим важными свойствами оптимальности.

Схему наблюдений называют линейной моделью. Эту модель удобно записать в матричной форме.

В данном случае применение метода наименыних квадратов состоит в минимизации суммы квадратов

Однако подавляющее большинство моделей нелинейны по парамет-рам, что значительно усложняет методы их оценки. Рассмотрим процедуру идентификации таких моделей более подробно. Пусть имеется т моделей механизма протекания процесса в аппарате.

Между случайными величинами обычно существует такая связь, при которой с изменением одной величины меняется распределение другой. Такая связь называется стохастической.

Если две случайные величины X и ? независимы, то дисперсия суммы этих величин равна сумме дисперсий:

Д(Х + ?)=Д(Х) + Д(?).

Если же данное равенство не выполняется, то величины X и ? являются зависимыми.

Матрица в правой части последнего уравнения называется дисперсионно-ковариационной матрицей, Ее диагональные элементы представляют собой дисперсии случайных величин, а недиагональные -- ковариации соответствующих случайных величин, определяющие статистическую зависимость между ними.

Рассмотрим сначала однооткликовые модели, т.е. модели с одной вы-ходной переменной. При оценке неизвестных параметров моделей очень часто используется метод максимального правдоподобия, предложенный Р. Фишером и являющийся основой многих процедур проверки гипотез и доверительного интервального оценивания для больших выборок.

Пусть имеется непрерывная случайная величина, закон распределения которой задан плотностью вероятности f(х, ?). Составим функцию правдоподобия:

Суть метода. максимального правдоподобия состоит в том, что в ка-честве оценок параметров ?п -- (?1у ?2, ..., ?р) берут такие значения ?1г ?2, ..., ?р, при которых fп достигает наибольшего возможного значения. Так как 1пf/п достигает максимума при тех же значекиях ?, что и сама fп, то на практике часто удобнее использовать функцию 1пfп , которую можно называть логарифмической функцией правдоподобия. Значения ?\, ?2, …, ?р являются функциями выборки Хі, х2, ..., хп и называются оценками максимального правдоподобия.

Для нахождения оценок максимального правдоподобия следует ре-шить относительно ?1г?2,..., ?р систему уравнений правдоподобия

Если семейство распределений ошибок воспроизводимости еи отве-чает условиям регулярности, то оценки максималь?ого правдоподобия в большинстве случаев являются состоятельными в том смысле, что оценка параметров по вероятности стремится к истинному значению, когда объем опмтов неограниченно растет. Условия регулярности и состоятельности обсспечивают асимптотическую эффективность оценок параметров. Кроме того, если распределение ошибок измерений принадлежит параметрическому эспоненциальному типу, то оценка вектора неизвестных параметров является достаточной, т.е. содержит всю необходимую информацию, имеющуюся в исходных экспериментальных данных. Итак, оценки искомых параметров, найденные методом максимального правдоподобия, при достаточно слабых ограничениях на функцию распределения ошибок еи и ири больших выборках обладают многими важными оптимальными свойствами.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.