Статистика в системе наук
Статистика как наука. Предмет, методы и основные категории статистики. Задачи статистики в условиях рыночной экономики. Основные организационные формы, виды и способы статистического наблюдения, его этапы. Относительные величины, их значение и виды.
Рубрика | Экономико-математическое моделирование |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 22.01.2009 |
Размер файла | 550,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
1. Статистика, как наука.
Развитие статистики сходно с развитием языка. Эта наука имеет древние корни. Она зародилась как результат обобщения уже достаточно развитой статистической практики, вызванной потребностями развития общества. Вот лишь некоторые сведения. В Китае более чем за две тысячи лет до нашей эры производились исчисления населения по полу и возрасту, а также собирались сведения о состоянии промышленности и сельском хозяйстве. Упоминания о статистических обследованиях встречаются и в библейских письменах. В Древнем Риме велась статистика численности населения и имущественного положения граждан. Если собирание статистических данных началось в самой глубокой древности, то их обработка и анализ, т. е. зарождение статистики-науки, относится к более позднему периоду - второй половине XVII в.
Во второй половине XVII столетия в Германии возникла школа государствоведения.
Английская школа политических арифметиков возникла на 100 лет раньше немецкой описательной школы.
В первой половине XIX в. возникло третье направление статистической науки - статистико-математическое. В российской статистике не было четкого обособления школ и направлений, но тем не менее, можно отметить русскую описательную школу, русскую школу политических арифметиков, статистическую мысль революционеров-демократов русской социологической школы, различные технологии в русской академической статистике. Таким образом, история развития статистики показывает, что статистическая наука сложилась в результате теоретического обобщения накопленного человечеством передового опыта учетно-статистических расчетов, обусловленных, прежде всего, потребностями управления жизни общества.
2. Предмет, метод, и осн. Категории.
В настоящее время стат. имеет следующее определение.
Стат. - это планомерный и систематический учет массовых общественных явлений, который осуществляется государственными статистическими органами и дает числовое выражение проявляющимся закономерностям.
Вообще статистик очень много, например: стат. промышленности, стат. торговли, экономическая стат., математическая, прикладная и т.д.
Так как стат. имеет дело с массовыми явлениями, то основным понятием является статистическая совокупность.
Стат. совокупность - это множество объектов или явлений, изучаемых стат., которые имеют один или несколько общих признаков и различаются между собой по другим признакам.
Отдельные объекты или явления, образующие статистическую совокупность, называются единицами совокупности.
Явления и процессы в жизни общества изучаются стат. посредством статистических показателей.
Статистический показатель - это количественная оценка свойства изучаемого явления.
Одной из важных категорий статистической науки является понятие признака.
Признак - это характерное свойство изучаемого явления, отличающее его от других явлений.
В разных отраслях стат. изучаются разные признаки. Таким образом, статистических признаков, т.е. свойств, качеств объектов наблюдения очень много. Все их многообразие принято делить на две большие группы: признаки качества и признаки количества.
Качественный признак (атрибутивный) - признак, отдельные значения которого выражаются в виде понятий, наименований.
Количественный признак - признак, определенные значения ко которого имеют количественные выражения.
Каждый объект изучения может обладать целым рядом статистических признаков, но от объекта к объекту одни признаки меняются, другие остаются неизменными. Меняющиеся признаки от одного объекта к другому принято называть варьирующими. Именно эти признаки изучаются в стат., поскольку неизменяющийся признак изучать неинтересно.
Вариация - это многообразие, изменяемость величины признака у отдельных единиц совокупности наблюдения.
Отдельные значения признака называются вариантами этого признака.
3. Метод статистики предполагает следующую последовательность действий:
разработка статистической гипотезы,
статистическое наблюдение,
сводка и группировка статистических данных,
анализ данных,
интерпретация данных.
Прохождение каждой стадии связано с использованием специальных методов, объясняемых содержанием выполняемой работы.
Массовый характер общественных законов и своеобразие их действий предопределяет необходимость исследования совокупных данных.
Закон больших чисел порожден особыми свойствами массовых явлений. Последние в силу своей индивидуальности, с одной стороны, отличаются друг от друга, а с другой - имеют нечто общее, обусловленное их принадлежностью к определенному классу, виду. Причем единичные явления в большей степени подвержены воздействию случайных факторов, нежели их совокупность.
Закон больших чисел в наиболее простой форме гласит, что количественные закономерности массовых явлений отчетливо проявляются лишь в достаточно большом их числе.
4. Задачи статистики в условиях рыночной экономики.
а) предоставление необходимой информации органам государственного управления для принятия решений, связанных с формированием макроэкономической политики;
б) обеспечение информацией о развитии экономики и социальной сферы руководителей предприятий и компаний, менеджеров необходимой им для лучшего понимания макроэкономичеакого климата, в котором функционирует их компании (привлечение инвестиции расширение производства, организации сбыта);
в) информирование об основных итогах и тенденциях социально-экономического развития широкой общественности, научно-исследовательских учреждений, общественно-политических организаций и др.
Статистические органы во всем мире обязаны предоставлять информацию о состоянии в развитии экономики в международные экономические организации: ООН, МВФ, ВМ и др.
При переходе к рыночной экономики основной задачей статистики является введение в статистическую практику показателей и классификаций, предназначенных для описания и анализа рыночной экономики. В новых условиях основное внимание сосредотачивается на обеспечении информацией органов государственного управления для разработки экономической политики, мер по предотвращению негативных тенденций в развитии экономики (ВВП, потребление, накопление, сбережения, показатели занятости и инфляции, дефицита государственного бюджета, доходов населения и др.). Значительная часть этих показателей исчисляется в рамках СНС.
5.Основные организационные формы, виды и способы статистического наблюдения. Стат. наблюдение -- это начальная стадия экономико-стат. набл. Она представляет собой научно организационную работу по собиранию массовых первичных данных о явлениях и процессах общественной жизни.
Любое стат. набл. осуществляется с помощью оценки и регистрации признаков единиц совокупности в соответствующих учетных документах. Таким образом, полученные данные представляют собой факты, которые так или иначе характеризуют явления общественной жизни.
Стат. набл. должно отвечать следующим требованиям.
1. Набл. явления должны иметь научную и практическую ценность, выражать определенные социально-экономические типы явлений.
2. Непосредственный сбор массовых данных должен обеспечить полноту фактов, относящихся к рассматриваемому вопросу, так как явления находятся в постоянном изменении, развитии. В том случае, если отсутствуют полные данные, анализ и выводы могут быть ошибочными.
3. Для обеспечения достоверности стат. данных необходима тщательная всесторонняя проверка качества собираемых фактов.
4. Для того, чтобы создать наилучшие условия для получения объективных материалов, необходима научная организация стат. наблюдения.
Стат. набл. осуществляется в двух формах: путём предоставления отчётности и проведения специально организованных статистических наблюдений.
Виды стат. набл. различаются по времени регистрации данных и по степени охвата единиц исследуемой совокупности.
По характеру регистрации данных во времени различают набл. непрерывное и прерывное. Последнее, в свою очередь подразделяется на набл. периодическое и единовременное.
Непрерывным является такое набл. которое ведётся систематически. При этом регистрация фактов производится по мере их свершения, например, регистрация актов гражданского состояния. При текущем набл. нельзя допускать значительного разрыва между моментом возникновения факта и моментом его регистрации.
Прерывным является такое набл. которое повторяется через определённые промежутки времени.
Единовременное набл. проводится по мере надобности, время от времени, без соблюдения строгой периодичности или вообще проводится единожды.
По степени охвата единиц изучаемой совокупности различают сплошные и несплошные стат. набл.
Сплошным называют такое набл. при котором обследованию подвергаются все без исключения единицы изучаемой совокупности. Путем сплошного набл. осуществляется получение отчетности от предприятий и учреждений.
Несплошным называют такое набл. при котором обследованию подвергаются не все единицы изучаемой совокупности, а только заранее установленная их часть, например, изучение торговых оборотов и цен на городских рынках. Основным видом несплошного набл. является выборочное.
17. Средняя арифметическая исчисляется для сгруппированных данных по формуле:
где xi -- варианты значения признака; fi -- частоты.
При вычислении средней арифметической возможные типичные ошибки заключаются в следующем.
1. Засоренность выборки нетипичными значениями.
Пример 6.4.
Уставный фонд АО разделен акциями 1000 шт. по 1000 руб. следующим образом.
460 акционеров владеют 1 акцией, 10 -- 2, 5 -- 4, 1 -- 500.
Какова будет величина капитала, приходящегося на 1 акционера?
К = (460 ? 1 + 10? 2 + 5 ?4 + 1 ? 500) / (460 + 10 + 5 + 1) = 2,1 тыс. рублей.
2. Изменение состава усредняемой совокупности.
3. Маскировка или взаимная компенсация отклонения.
6. Этапы статистического наблюдения.
Процесс проведения статистического наблюдения включает следующие этапы:
° подготовка наблюдения;
° проведение массового сбора данных;
° подготовка данных к автоматизированной обработке;
° разработка предложений по совершенствованию статистического наблюдения.
Любое статистическое наблюдение требует тщательной, продуманной подготовки. От нее во многом будут зависеть надежность и достоверность информации, своевременность ее получения.
Подготовка статистического наблюдения - процесс, включающий разные виды работ. Сначала необходимо решить методологические вопросы, важнейшими из которых являются определение цели и обьекта наблюдения, состава признаков, подлежащих регистрации; разработка документов для сбора данных; выбор отчетной единицы и единицы, относительно которой будет проводиться наблюдение, а также методов и средств получения данных.
Кроме методологических вопросов необходимо решить проблемы организационного характера, например, определить состав органов, проводящих наблюдение; подобрать и подготовить кадры для проведения наблюдения; составить календарный план работ по подготовке, проведению и обработке материалов наблюдения; провести тиражирование документов для сбора данных.
Проведение массового сбора данных включает работы, связанные непосредственно с заполнением статистических формуляров. Он начинается с рассылки переписных листов, анкет, бланков, форм статистической отчетности и заканчивается их сдачей после заполнения в органы, проводящие наблюдение.
Собранные данные на этапе их подготовки к автоматизированной обработке подвергаются арифметическому и логическому контролю. Оба эти контроля основываются на знании взаимосвязей между показателями и качественными признаками. На заключительном этапе проведення наблюдения анализируются при-чнны, которые привели к неверному заполнению статистических бланков, и разрабатываются предложения по совершенствованию наблюдения. Это очень важно для организации будущих обследований.
Получение сведений в ходе статистического наблюдения требует немало затрат финансовых и трудовых ресурсов, а также времени.
7. Классификация ошибок наблюдения .
Ошибка выборки -- это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности. Она зависит от ряда факторов: степени вариации изучаемого признака, численности выборки, методом отбора единиц в выборочную совокупность, принятого уровня достоверности результата исследования.
Определение ошибки выборочной средней.
При случайном повторном отборе средняя ошибка выборочной средней рассчитывается по формуле:
где -- средняя ошибка выборочной средней; -- дисперсия выборочной совокупности; n -- численность выборки.
При бесповторном отборе она рассчитывается по формуле:
где N -- численность генеральной совокупности.Определение ошибки выборочной доли.
При повторном отборе средняя ошибка выборочной доли рассчитывается по формуле:
где -- выборочная доля единиц, обладающих изучаемым признаком; -- число единиц, обладающих изучаемым признаком; -- численность выборки.
При бесповторном способе отбора средняя ошибка выборочной доли определяется по формулам:
Предельная ошибка выборки связана со средней ошибкой выборки отношением:
При этом t как коэффициент кратности средней ошибки выборки зависит от значения вероятности Р, с которой гарантируется величина предельной ошибки выборки.
Предельная ошибка выборки при бесповторном отборе определяется по следующим формулам:
Предельная ошибка выборки при повторном отборе определяется по формуле:
8. Контроль статистических данных.
Собранный статистический материал должен пройти контроль. Как показывает практика, даже при четко организованном статистическом наблюдении встречаются погрешности и ошибки, которые требуют исправления. Поэтому целью этого этапа является как счетный, так и логический контроль полученных первичных данных. Расхождение между расчетным и действительным значениями исследуемой величины в статистике называют ошибкой наблюдения. В зависимости от причин возникновения различают ошибки регистрации и ошибки репрезентативности.
Ошибки регистрации могут быть случайными и систематическими. Случайные ошибки не имеют определенной направленности и возникают под действием случайных факторов (перестановка цифр, смещение строк и граф при заполнении статистического формуляра). При обобщении массового материала эти ошибки взаимопогашаются.
Систематические ошибки регистрации имеют определенную направленность, могут либо завышать, либо занижать конкретное значение показателя, что в итоге приводит к искажению действительного положения. Примерами систематической статистической ошибки при регистрации служат округление возраста населения на цифрах, заканчивающихся на 5 и 0, преуменьшение доходов в документации для налоговых органов, элементы недостоверности, которые вносят предприятия в те характеристики, от которых зависит расчет с кредиторами, и т.д.
Для выявления ошибок используется счетный контроль, особенно для проверки итоговых сумм. Помимо счетного используется и логический контроль, который может поставить под сомнение правильность полученных данных, поскольку основан на логической взаимосвязи между признаками. Например, при переписи населения полученный факт, что пятилетний ребенок имеет среднее образование, ставится под сомнение и в этом случае ясно, что при заполнении формуляра допущена ошибка.
Если ошибки регистрации свойственны любому наблюдению (сплошному и несплошному), то ошибки репрезентативности - только несплошному наблюдению. Они характеризуют расхождения между значениями показателя, полученного в обследуемой совокупности, и его значением по исходной (генеральной) совокупности. Ошибки репрезентативности также могут быть случайными и систематическими. Случайные ошибки возникают, если отобранная совокупность не полностью воспроизводит все признаки генеральной совокупности и величину этих ошибок можно оценить. Систематические ошибки репрезентативности могут возникать, если нарушен сам принцип отбора единиц из исходной совокупности. В этом случае проводятся проверка полноты собранных данных, арифметический контроль точности информации на предмет ее достоверности, проверка логической взаимосвязи показателей.
Контрольной проверкой собранных данных завершается статистическое наблюдение.
9.Статистическая сводка и группировка.
В результате первой стадии стат. исследования получают сведения о каждой единице совокупности. Задача второй стадии состоит в том, чтобы упорядочить и обобщить первичный материал, свести его в группы и на этой основе дать обобщающую характеристику совокупности. Этот этап в статистике называется сводкой.
Различают простую сводку (подсчет только общих итогов) и стат. группировку, которая сводится к расчленению совокупности на группы по существенному для единиц совокупности признаку. Результаты сводки могут быть представлены в виде стат. рядов распределения.
В зависимости от признака ряды могут быть вариационными (количественными) и атрибутивными (качественными).
Количественные признаки -- это признаки, имеющие кол-ное выражение у отдельных единиц совокупности, например, заработная плата рабочих, стоимость продукции промышленных предприятий и т.д.
Атрибутивные признаки -- это признаки, не имеющие количественной меры. Например, пол, профессия рабочего и т.д.
Вариационные ряды могут быть дискретными или интервальными.
Дискретный ряд распределения -- это ряд, в котором варианты выражены целым числом.
Интервальный ряд распределения -- это ряд, в котором значения признака заданы в виде интервала.
Стат. ряды распределения позволяют систематизировать и обобщать стат. материал. Однако они не дают всесторонней характеристики выделенных групп. Чтобы решить ряд конкретных задач, выявить особенности в развитии явления, обнаружить тенденции, установить зависимости, необходимо произвести группировку стат. данных.
Группировка - это процесс образования групп единиц совокупности однородных в каком-либо отношении, а также имеющих одинаковые или близкие значения группировочного признака.
В зависимости от цели и задач исследования различают следующие виды группировок: типологические, структурные, аналитические.
К типологическим группировкам относят все группировки, которые хар-ют качественные особенности и различия между типами явлений. Структурная группировка - выявляет состав однородной в кач-ном отношении совокупности по какому-либо признаку.
Аналитическая группировка - применяется для исследования взаимосвязи между явлениями. Используя аналитические группировки, определяют факторные и результативные признаки изучаемых явлений. Факторные - это признаки, оказывающие влияние на другие, связанные с ними признаки. Результативные - это признаки, которые изменяются под влиянием факторных.
Образование групп по двум и более признакам, взятым в определенном сочетании, называется комбинированной группировкой.
14. Абсолютные величины и их основные виды.
Абсолютные стат. величины показывают объем, размеры, уровни различных социально-экономических явлений и процессов. Отражают уровни в физических мерах объема, веса и т.п. В общем абсолютные стат. величины - это именованные числа. Они всегда имеют определенную размерность и единицы измерения. Последние определяют сущность абсолютной величины.
Типы абсолютных величин
Натуральные - такие единицы, которые отражают величину предметов, вещей в физических мерах.
Денежные (стоимостные) - используются для характеристики многих экономических показателей в стоимостном выражении.
Трудовые - используются для определения затрат труда (человеко-час, человеко-день).
Условно-натуральные - единицы, к-рые используются для сведения воедино нескольких разновидностей потребительных стоимостей.
Виды абсолютных величин
Индивидуальные - отражают размеры количественных признаков у отдельных единиц изучаемой совокупности.
Общие - выражают размеры, величину количественных признаков у всей изучаемой совокупности в целом.
Абсолютные величины отражают наличие тех или иных ресурсов, это основа материального учета. Они наиболее объективно отражают развитие экономики и являются основой для расчета разных относительных стат. показателей.
15. Относительные величины, их значение и основные виды.
Относительные стат. величины выражают количественные соотношения м/у явлениями общественной жизни, они получаются в результате деления одной абсолютной величины на другую.
Знаменатель (база) - это величина, с к-рой производится сравнение.
Сравниваемая величина - это величина, к-рая сравнивается.
Относительная величина показывает, во сколько раз сравниваемая величина больше или меньше базисной или какую долю первая составляет по отношению ко второй. В ряде случае относительная величина показывает, сколько единиц одной величины приходится на единицу другой.
Важное свойство - относительная величина абстрагирует различия абсолютных величин и позволяет сравнивать такие явления, абсолютные размеры которых непосредственно несопоставимы.
В результате сопоставления одноименных абсолютных величин получают неименованные относительные величины. Они могут выражаться в виде долей, кратных соотношений, процентных соотношений и т.д.
Результатом сопоставления разноименных величин являются именованные относительные величины. Их название образуется сочетанием сравниваемой и базисной абсолютных величин.
Выбор формы зависит от характера аналитической задачи, которая состоит в том, чтобы с наибольшей ясностью выразить соотношение.
10. Статистические таблицы - это наиболее рациональная форма представления результатов статистической сводки и группировки.
Значение статистических таблиц состоит в том, что они позволяют охватить материалы статистической сводки в целом. Статистическая таблица, по существу, является системой мыслей об исследуемом объекте, излагаемых цифрами на основе определенного порядка в расположении систематизированной информации.
В экономической и управленческой работе, связанной с коммерческой деятельностью, статистические таблицы применяются очень часто. Поэтому необходимо научиться правильно их составлять и анализировать.
По внешнему виду статистическая таблица представляет собой ряд пересекающихся горизонтальных и вертикальных линий, образующих по горизонтали строки, а по вертикали - графы (столбцы, колонки), которые в совокупности составляют как бы скелет таблицы.
Таблица, состоящая из строк и граф, которые еще не заполнены цифрами, называется макетом таблицы. Каждая статистическая таблица имеет подлежащее и сказуемое.
Подлежащее таблицы. - это объект нашего изучения (название района, города, предприятия).
Сказуемое. - это система показателей, которыми характеризуется объект изучения, т.е. подлежащее таблицы.
Обычно подлежащее располагается слева, в виде наименования горизонтальных строк, а сказуемое - справа, в виде наименования вертикальных граф.
В таблице могут быть подведены итоги по графам и строкам.
Обязательная часть таблицы - заголовок, показывающий, о чем идет речь в таблице, к какому месту и времени она относится.
В зависимости от построения подлежащего, таблицы делятся на три вида: простые, групповые и комбинационные.
Простыми таблицами называются такие, в подлежащем которых нет группировок, а дается лишь перечень единиц совокупности (перечневые таблицы), административных районов (территориальные таблицы) или периодов времени (хронологические таблицы).
Групповые статистические таблицы дают более информативный материал для анализа изучаемых явлений, благодаря образованным в их подлежащем группам по существенному признаку или выявлению связи между рядом показателей.
Комбинационными таблицами называются такие, в которых подлежащее содержит группировку единиц совокупности по двум или более признакам, взятым в сочетании. Комбинационная таблица устанавливает взаимное действие на результативные признаки существующую связь между факторами группировки.
ПРАВИЛА ЗАПОЛНЕНИЯ
Если одно из числовых выражений данного признака равно нулю, то пересечение соответствующей графы и строки перечеркивается.
Если числовые значения признака неизвестны, то в пересечении графы и строки ставится многоточие.
Если пересечение графы и строки не имеет смысла, то ставится "Х".
Если в таблице проценты по отношению к какому-либо предыдущему году, то этот год должен быть показан в таблице, несмотря на указание его в заголовке.
11. Статистические ряды распределения.
Среди простых группировок особо выделяют ряды распределения.
Ряд распределения - это группировка, в которой для характеристики групп (упорядоченно расположенных по значению признака) применяется один показатель - численность группы. Другими словами, это ряд чисел, показывающий, как распределяются единицы некоторой совокупности по изучаемому признаку.
Ряды, построенные по атрибутивному признаку, называются атрибутивными рядами распределения.
Ряды распределения, построенные по количественному признаку, называются вариационными рядами.
Примером атрибутивных рядов могут служить распределения населения по полу, занятости, национальности, профессии и т.д.
Примером вариационного ряда распределения могут служит распределения населения по возрасту, рабочих - по стажу работы, заработной плате и т.д.
Вариационные ряды распределения состоят их двух элементов вариантов и частот.
Вариантами называются числовые значения колличественного признака в ряду распределения, они могут быть положительными и отрицательными, абсолютными и относительными.
Частоты - это численности отдельных вариантов или каждой группы вариационного ряда. Сумма всех частот называется объемом совокупности и определяет число элементов всей совокупности.
Вариационные ряды в зависимости от характера вариации подразделяются на дискретные и интервальные.
12. Графическое изображение статистических данных.
График - чертеж, на котором при помощи условных геометр. фигур изображаются стат. данные. В результате этого достигается наглядная хар-ка изучаемой стат. совокупности. Правильно построенный график делает стат. информацию более выразительной, запоминающейся и удобно воспринимаемой.
Графики в статистике имеют не только иллюстративное значение, они позволяют получить доп. знания о предмете исследования, к-рые в цифровом варианте остаются скрытыми. Любое стат. исследование на основе какого-либо метода в конечном итоге дополняется использованием графического метода.
Знак Варзара. Варзар предложил использовать прямоугольные фигуры для графического изображения трех показателей, один из которых является произведением двух других. В каждом таком прямоугольнике основание пропорционально одному из показателей -- сомножителей, а высота его соответствует второму показателю. Площадь прямоугольника равна величине третьего показателя, являющегося произведением двух первых. Располагая рядом несколько прямоугольников, относящихся к разным показателям, можно сравнивать не только размеры показателя -- произведения, но и значения показателей -- сомножителей.
ОСНОВНЫЕ ПРАВИЛА
В общем расположении на поле графических образов они размещаются слева направо. При этом масштабные ориентиры графика по горизонтальной шкале, как правило, размещаются от его нижней части. Для вертикальной шкалы масштабные ориентиры обычно размещаются в левой части графика.
В график по возможности следует включать исходные данные. Если это нецелесообразно, то исходные данные должны в табличной форме сопровождать график.
Все буквенные и цифровые значения должны располагаться на графике так, чтобы их легко можно было отсчитать от начала масштабной шкалы. Ряды цифровых данных, отображающие изменения показателей коммерческой деятельности во времени, размещаются в строгой хронологической последовательности и обязательно по оси абсцисс.
Общим требованием графического метода является то, что факторные признаки размещаются на горизонтальной шкале графика и их изменения читаются слева направо, а результативные признаки -- по вертикальной шкале и читаются снизу вверх. При этом важно, чтобы заголовок графика был бы кратким, но достаточно четко пояснял основное его содержание.
16. Сущность и значение средней величины.
Средняя величина - это обобщающий показатель, характеризующий типический уровень явления. Он выражает величину признака, отнесенную к единице совокупности.
Средняя всегда обобщает количественную вариацию признака, т.е. в средних величинах погашаются индивидуальные различия единиц совокупности, обусловленные случайными обстоятельствами. В отличие от средней абсолютная величина, характеризующая уровень признака отдельной единицы совокупности, не позволяет сравнивать значения признака у единиц, относящихся к разным совокупностям. Так, если нужно сопоставить уровни оплаты труда работников на двух предприятиях, то нельзя сравнивать по данному признаку двух работников разных предприятий. Оплата труда выбранных для сравнения работников может быть не типичной для этих предприятий. Если же сравнивать размеры фондов оплаты труда на рассматриваемых предприятиях, то не учитывается численность работающих и, следовательно, нельзя определить, где уровень оплаты труда выше. В конечном итоге сравнить можно лишь средние показатели, т.е. сколько в среднем получает один работник на каждом предприятии. Таким образом, возникает необходимость расчета средней величины как обобщающей характеристики совокупности.
Вычисление среднего - один из распространенных приемов обобщения; средний показатель отрицает то общее, что характерно (типично) для всех единиц изучаемой совокупности, в то же время он игнорирует различия отдельных единиц. В каждом явлении и его развитии имеет место сочетание случайности и необходимости. При исчислении средних в силу действия закона больших чисел случайности взаимопогашаются, уравновешиваются, поэтому можно абстрагироваться от несущественных особенностей явления, от количественных значений признака в каждом конкретном случае. В способности абстрагироваться от случайности отдельных значений, колебаний и заключена научная ценность средних как обобщающих характеристик совокупностей.
Для того, чтобы средний показатель был действительно типизирующим, он должен рассчитываться с учетом определенных принципов.
Остановимся на некоторых общих принципах применения средних величин.
1. Средняя должна определяться для совокупностей, состоящих из качественно однородных единиц.
2. Средняя должна исчисляться для совокупности, состоящей из достаточно большого числа единиц.
3. Средняя должна рассчитываться для совокупности, единицы которой находятся в нормальном, естественном состоянии.
4. Средняя должна вычисляться с учетом экономического содержания исследуемого показателя.
13. Виды и значения обобщающих статистических показателей.
Статистика изучает массовые явления и процессы, исследуя свойства отдельных единиц статистических совокупностей, которые называются признаками. На основании более детальной и обширной информации, представляемой набором значений признаков, формируется обобщенная информация, характеризующая совокупность в целом и связанная с соответствующими статистическими показателями.
Все экономические и социальные категории или понятия носят абстрактный характер, отражают наиболее существенные черты, общие взаимосвязи явлений. И для того, чтобы измерить размеры и соотношения явлений или процессов, т.е. дать им соответствующую количественную характеристику, разрабатывают экономические и социальные показатели, соответствующие каждой категории (понятию). Различают два вида показателей экономического и социального развития общества: плановые (прогнозные) и отчетные (статистические). Плановые показатели представляют собой определенные конкретные значения показателей, достижение которых прогнозируется в будущих периодах. Отчетные показатели (статистические) характеризуют реально сложившиеся условия экономического и социального развития, фактически достигнутый уровень за определенный период; это объективная количественная характеристика (мера) общественного явления или процесса в его качественной определенности в конкретных условиях места и времени. Каждый статистический показатель имеет качественное социально-экономическое содержание и связанную с ним методологию измерения. Статистический показатель имеет также ту или иную статистическую форму (структуру) и может выражать:
-общее число единиц совокупности;
-общую сумму значений количественного признака этих единиц;
-среднюю величину признака;
-величину данного признака по отношению к величине другого и т.п.
Статистические показатели можно условно подразделить на первичные (объемные, количественные, экстенсивные) и вторичные (производные, качественные, интенсивные).
Первичные показатели характеризуют либо общее число единиц совокупности, либо сумму значений какого-либо их признака. Взятые в динамике, в изменении во времени, они характеризуют экстенсивный путь развития экономики в целом или конкретного предприятия в частном случае. По статистической форме эти показатели являются суммарными статистическими величинами.
Вторичные показатели обычно выражаются средними и относительными величинами и, взятые в динамике, обычно характеризуют путь интенсивного развития.
Показатели, характеризующие размер сложного комплекса социально-экономических явлений и процессов, часто называют синтетическими: валовой внутренний продукт (ВВП), национальный доход, производительность общественного труда, потребительская корзина и др.).
В зависимости от применяемых единиц измерения различают показатели натуральные, стоимостные и трудовые (в человеко-часах, нормо-часах). В зависимости от сферы применения различают показатели, исчисленные на региональном, отраслевом уровнях и др. По точности отражаемого явления различают ожидаемые, предварительные и окончательные величины показателей.
В зависимости от объема и содержания объекта статистического изучения различают индивидуальные (характеризующие отдельные единицы совокупности) и сводные (обобщающие) показатели. Таким образом, статистические величины, которые характеризуют собой массы или совокупности единиц, называются обобщающими статистическими показателями (величинами). Обобщающие показатели играют очень важную роль в статистическом исследовании благодаря следующим отличительным особенностям:
-они дают сводную (концентрированную) характеристику совокупностям единиц изучаемых общественных явлений;
-выражают существующие между явлениями связи, зависимости и обеспечивают таким образом взаимосвязанное изучение явлений;
-характеризуют происходящие в явлениях изменения, складывающиеся закономерности их развития и пр., т.е. способствуют выполнению экономико-статистического анализа рассматриваемых явлений, в т.ч. и на основе разложения самих обобщающих величин на составляющие их части, определяющие их факторы и т.п.
Объективное и достоверное исследование сложных экономических и социальных категорий возможно только на основе системы статистических показателей, которые в единстве и взаимосвязи характеризуют различные стороны и аспекты состояния и динамики развития этих категорий.
Построение и совершенствование статистических показателей должно основываться на соблюдении двух основных принципов:
1) объективность и реальность [показатели должны правдиво и адекватно отражать сущность соответствующих экономических и социальных категорий (понятий)];
2) всесторонняя теоретическая и методологическая обоснованность
18. Средние гармоническая, геометрическая и квадратическая.
Средние величины делятся на два больших класса: степенные средние, структурные средние.
К степенным средним относятся такие наиболее известные и часто применяемые виды, как средняя геометрическая, средняя арифметическая и средняя квадратическая.
В качестве структурных средних рассматриваются мода и медиана.
Остановимся на степенных средних. Степенные средние в зависимости от представления исходных данных могут быть простыми и взвешенными. Простая средняя считается по не сгруппированным данным и имеет следующий общий вид:
где Xi - варианта (значение) осредняемого признака; m - показатель степени средней; n - число вариант.
Взвешенная средняя считается по сгруппированным данным и имеет общий вид
, где Xi - варианта (значение) осредняемого признака или серединное значение интервала, в котором измеряется варианта;
m - показатель степени средней; fi - частота, показывающая, сколько раз встречается i-e значение осредняемого признака.
Общие формулы расчета степенных средних имеют показатель степени (m). В зависимости от того, какое значение он принимает, различают следующие виды степенных средних:
средняя гармоническая, если m = -1;
средняя геометрическая, если m -> 0;
средняя арифметическая, если m = 1;
средняя квадратическая, если m = 2;
средняя кубическая, если m = 3.
Формулы степенных средних приведены в табл. 4.4.
Если рассчитать все виды средних для одних и тех же исходных данных, то значения их окажутся неодинаковыми. Здесь действует правило мажорантности средних: с увеличением показателя степени m увеличивается и соответствующая средняя величина:
В статистической практике чаще, чем остальные виды средних взвешенных, используются средние арифметические и средние гармонические взвешенные.
Виды степенных средних
Вид степенной |
Показатель |
Формула расчета |
||
Простая |
Взвешенная |
|||
Гармоническая |
-1 |
|||
Геометрическая |
0 |
|||
Арифметическая |
1 |
|||
Квадратическая |
2 |
|||
Кубическая |
3 |
Среднюю гармоническую применяют для расчетов тогда, когда в качестве весов используются не единицы совокупности - носители признака, а произведения этих единиц на значения признака (т.е. m = Xf).
Главное требование к формуле расчета среднего значения заключается в том, чтобы все этапы расчета имели реальное содержательное обоснование; полученное среднее значение должно заменить индивидуальные значения признака у каждого объекта без нарушения связи индивидуальных и сводных показателей. Этот итоговый показатель называется определяющим, поскольку характер его взаимосвязи с индивидуальными значениями определяет конкретную формулу расчета средней величины. Покажем это правило на примере средней геометрической.
Формула средней геометрической
используется чаще всего при расчете среднего значения по индивидуальным относительным величинам динамики.
Средняя геометрическая применяется, если задана последовательность цепных относительных величин динамики, указывающих, например, на рост объема производства по сравнению с уровнем предыдущего года: i1, i2, i3,..., in. Очевидно, что объем производства в последнем году определяется начальным его уровнем (q0) и последующим наращиванием по годам:
qn=q0? i1? i2?...?in.
Приняв qn в качестве определяющего показателя и заменяя индивидуальные значения показателей динамики средними, приходим к соотношению
Отсюда
19. Структурные средние величины.
Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.
где - начальное значение интервала, содержащего моду;
- величина модального интервала;
- частота модального интервала;
- частота интервала, предшествующего модальному;
- частота интервала, следующего за модальным.
Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда.
где -- начальное значение интервала, содержащего медиану;
-- величина медианного интервала;
-- сумма частот ряда;
-- сумма накопленных частот, предшествующих медианному интервалу;
-- частота медианного интервала.
В качестве структурных средних чаще всего используют показатели моды - наиболее часто повторяющегося значения признака - и медианы - величины признака, которая делит упорядоченную последовательность его значений на две равные по численности части. В итоге у одной половины единиц совокупности значение признака не превышает медианного уровня, а у другой - не меньше его.
Если изучаемый признак имеет дискретные значения, то особых сложностей при расчете моды и медианы не бывает. Если же данные о значениях признака Х представлены в виде упорядоченных интервалов его изменения (интервальных рядов), расчет моды и медианы несколько усложняется. Поскольку медианное значение делит всю совокупность на две равные по численности части, оно оказывается в каком-то из интервалов признака X. С помощью интерполяции в этом медианном интервале находят значение медианы:
, где XMe - нижняя граница медианного интервала; hMe - его величина;
(Sum m)/2 - половина от общего числа наблюдений или половина объема того показателя, который используется в качестве взвешивающего в формулах расчета средней величины (в абсолютном или относительном выражении);
SMe-1 - сумма наблюдений (или объема взвешивающего признака), накопленная до начала медианного интервала;
mMe - число наблюдений или объем взвешивающего признака в медианном интервале (также в абсолютном либо относительном выражении). При расчете модального значения признака по данным интервального ряда надо обращать внимание на то, чтобы интервалы были одинаковыми, поскольку от этого зависит показатель повторяемости значений признака X. Для интервального ряда с равными интервалами величина моды определяется как
, где ХMo - нижнее значение модального интервала; mMo - число наблюдений или объем взвешивающего признака в модальном интервале (в абсолютном либо относительном выражении);
mMo-1 - то же для интервала, предшествующего модальному; mMo+1 - то же для интервала, следующего за модальным;
h - величина интервала изменения признака в группах.
20. ПОКАЗАТЕЛИ ВАРИАЦИИ
Для хар-ки колеблемости признака используется ряд показателей. Наиболее простой из них - Размах вариации - разность м/уизнач-ми вариантов.
Чтобы дать обобщающую хар-ку распределению отклонений, исчисляют среднее линейное отклонение d, к-рое учитывает различие всех единиц изучаемой совокупности.
Ср. лин. откл. опр. как средняя арифмет. из отклонений индивидуальных значений от средней, без учета знака этих отклонений: простое взвешенное.
Дисперсия - это средняя арифметич. квадратов отклонений каждого значения признака от общей средней. В зависимости от исходных данных дисп. может вычисляться по средней арифметич. простой или взвешенной
Среднее квадратическое отклонение - это обобщающая хар-ка абсолютных размеров вариации признака в совокупности.
Чем меньше ср. квадр. откл., тем лучше средняя арифметич. отражает собой всю совокупность. .
Коэфф. осцилляции отражает относит. колеблемость крайних значений признака вокруг средней:
Относит. лин. откл. хар-ет долю усредненного значения абсолютных отклонений от средней величины. .
Коэффициент вариации:
21. Показатели относительного рассеивания.
Показатели относительного рассеивания. Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.
1. Коэффициентом осцилляции отражает относительную колеблемость крайних значений признака вокруг средней
.
2. Относительное линейное отключение характеризует долю усредненного значения признака абсолютных отклонений от средней величины
.
3. Коэффициент вариации:
является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин.
В статистике совокупности, имеющие коэффициент вариации больше 30-35 %, принято считать неоднородными.
У такого способа оценки вариации есть и существенный недостаток. Действительно, пусть, например, исходная совокупность рабочих, имеющих средний стаж 15 лет, со средним квадратическим отклонением s = 10 лет, «состарилась» еще на 15 лет. Теперь = 30 лет, а среднеквадратическое отклонение по-прежнему равно 10. Совокупность, ранее бывшая неоднородной (10/15 ? 100 = 66,7%), со временем оказывается, таким образом, вполне однородной (10/30 ? 100 = 33,3 %).
23. Понятие о выборочном исследовании
Статистическое наблюдение можно организовать как сплошное и несплошное. Сплошное предусматривает обследование всех единиц изучаемой совокупности явления, несплошное -- лишь ее части. К несплошному относится и выборочное наблюдение.
Выборочное наблюдение является одним из наиболее широко применяемых видов несплошного наблюдения. В основе этого наблюдения лежит идея о том, что отобранная в случайном порядке некоторая часть единиц может представлять всю изучаемую совокупность явления по интересующим исследователя признакам. Целью выборочного наблюдения является получение информации, прежде всего, для определения сводных обобщающих характеристик всей изучаемой (генеральной) совокупности. По своей цели выборочное наблюдение совпадает с одной из задач сплошного наблюдения, и поэтому встает вопрос о том, какое из двух видов наблюдения -- сплошное или выборочное -- целесообразнее провести.
При решении этого вопроса необходимо исходить из следующих основных требований, предъявляемых к статистическому наблюдению:
- информация должна быть достоверной, т.е. максимально соответствовать реальной действительности;
- сведения должны быть достаточно полными для решения задач исследования;
- отбор информации должен быть проведен в максимально сжатые сроки для использования ее в оперативных целях;
- денежные и трудовые затраты на организацию и проведение должны быть минимальными.
При выборочном наблюдении эти требования обеспечиваются в большей мере, чем при сплошном. Преимущества этого метода по сравнению со сплошным можно оценить, если оно организовано и проведено в строгом соответствии с научными принципами теории выборочного метода, а именно обеспечение случайности отбора единиц и достаточного их числа. Соблюдение этих принципов позволяет получить такую совокупность единиц, которая представляет всю изучаемую совокупность по интересующим исследователя признакам, т.е. является репрезентативной (представительной).
При проведении выборочного наблюдения обследуются не все единицы изучаемого объекта, т.е. не все единицы совокупности, а лишь некоторая специально отобранная часть. Первый принцип отбора -- обеспечение случайности -- заключается в том, что при отборе каждой из единиц изучаемой совокупности обеспечивается равная возможность попасть в выборку. Случайный отбор -- это не беспорядочный отбор, а отбор при соблюдении определенной методики, например, осуществление отбора по жребию, применение таблицы случайных чисел и т.д.
Второй принцип отбора -- обеспечение достаточного числа отобранных единиц -- тесно связан с понятием репрезентативности выборки. Поскольку любое выборочное наблюдение проводится с определенной целью и четко сформулированными конкретными задачами, то понятие репрезентативности как раз и связано с целью и задачами исследования. Отобранная из всей изучаемой совокупности часть должна быть репрезентативной, прежде всего, в отношении тех признаков, которые изучаются или оказывают существенное влияние на формирование сводных обобщающих характеристик.
24. Способы отбора единиц из генеральной совокупности.
В выборочном наблюдении используются понятия «генеральная совокупность» -- изучаемая совокупность единиц, подлежащая изучению по интересующим исследователя признакам, и «выборочная совокупность» -- случайно выбранная из генеральной совокупности некоторая ее часть. К данной выборке предъявляется требование репрезентативности, т.е. при изучении лишь части генеральной совокупности полученные выводы можно применять ко всей совокупности.
Характеристиками генеральной и выборочной совокупностей могут служить средние значения изучаемых признаков, их дисперсии и средние квадратические отклонения, мода и медиана и др. Исследователя могут интересовать и распределение единиц по изучаемым признакам в генеральной и выборочной совокупностях. В этом случае частоты называются соответственно генеральными и выборочными.
Система правил отбора и способов характеристики единиц изучаемой совокупности составляет содержание выборочного метода, суть которого состоит в получении первичных данных при наблюдении выборки с последующим обобщением, анализом и их распространением на всю генеральную совокупность с целью получения достоверной информации об исследуемом явлении.
Репрезентативность выборки обеспечивается соблюдением принципа случайности отбора объектов совокупности в выборку. Если совокупность является качественно однородной, то принцип случайности реализуется простым случайным отбором объектов выборки. Простым случайным отбором называют такую процедуру образования выборки, которая обеспечивает для каждой единицы совокупности одинаковую вероятность быть выбранной для наблюдения для любой выборки заданного объема. Таким образом, цель выборочного метода -- сделать вывод о значении признаков генеральной совокупности на основе информации случайной выборки из этой совокупности.
25. Ошибки выборки.
Между признаками выборочной совокупности и признаками генеральной совокупности, как правило, существует некоторое расхождение, которое называется ошибкой статистического наблюдения. При массовом наблюдении ошибки неизбежны, но возникают они в результате действия различных причин. Величина возможной ошибки выборочного признака происходит из-за ошибок регистрации и ошибок репрезентативности.
Ошибки регистрации, или технические ошибки, связаны с недостаточной квалификацией наблюдателей, неточностью подсчетов, несовершенством приборов и т.п. Под ошибкой репрезентативности (представительства) понимают расхождение между выборочной характеристикой и разыскиваемой (истинной) характеристикой генеральной совокупности. Ошибки репрезентативности бывают случайными и систематическими.
Систематические ошибки связаны с нарушением установленных правил отбора. Случайные ошибки объясняются недостаточно равномерным представлением в выборочной совокупности различных категорий единиц генеральной совокупности.
В результате первой причины (систематическая ошибка) выборка легко может оказаться смещенной, т.к. при отборе каждой единицы допускается ошибка, всегда направленная в одну и ту же сторону. Эта ошибка получила название ошибки смещения. Ее размер может превышать величину случайной ошибки. Особенность ошибки смещения состоит в том, что, являясь постоянной частью ошибки репрезентативности, она увеличивается с увеличением объема выборки.
Случайная же ошибка с увеличением объема выборки уменьшается. Кроме того, величину случайной ошибки можно определить, тогда как размер ошибки смещения практически определить очень сложно, а иногда и невозможно, поэтому важно знать причины, вызывающие ошибку смещения, и предусмотреть мероприятия по ее устранению.
Подобные документы
Предмет, метод, показатели статистики. Понятия и категории статистического наблюдения. Показатели вариации, абсолютные и относительные величины, графический и индексный методы. Взаимосвязь социально-экономических явлений. Сглаживание рядов динамики.
курс лекций [132,9 K], добавлен 23.02.2009Основные понятия статистики. Этапы проведения статистического наблюдения. Свойства средней арифметической. Формы, виды и способы наблюдения. Статистические ряды распределения. Виды дисперсий и правило их сложения. Изучение динамики общественных явлений.
презентация [938,2 K], добавлен 18.04.2013Основные задачи статистики предприятия, населения, инвестиций. Способы, формы и виды статистического наблюдения. Сводка и группировка статистических данных. Структурная и аналитическая группировка данных. Абсолютные, относительные и средние величины.
контрольная работа [262,6 K], добавлен 07.03.2011История эконометрики и прикладной статистики. Прикладная статистика в народном хозяйстве. Точки роста. Непараметрическая статистика. Статистика объектов нечисловой природы - часть прикладной статистики.
реферат [61,6 K], добавлен 08.01.2009Метод статистического исследования. Генеральная совокупность и выборка. Приведение статистики темпа инфляции за 10 лет. Выборочное обследование торговых предприятий, оценка величины запаса (в днях оборота). Этапы корреляционно-регрессионного анализа.
контрольная работа [170,0 K], добавлен 20.01.2014Способы описания случайной величины, основные распределения и их генерация в Excel. Дисперсионный анализ как особая форма анализа регрессии. Применение элементов линейной алгебры в моделировании экономических процессов и решение транспортной задачи.
курс лекций [1,6 M], добавлен 05.05.2010Статистика - количественная сторона массовых экономико-социальных явлений и их связи с качественной стороной конкретных условий места и времени. Математические основы статистики и использование компьютерных технологий в статистическом исследовании.
учебное пособие [2,7 M], добавлен 13.03.2008Сущность и роль статистики во взглядах российских ученых. Принятие оптимального решения как предпосылка обеспечения конкурентоспособности. Эволюция статистической науки. Движение от практических потребностей управления к их теоретическому осмыслению.
контрольная работа [25,4 K], добавлен 30.03.2013Основные понятия математической статистики. Нахождение коэффициента эластичности модели. Проведение экономического анализа, составление прогноза и построение доверительной области. Вычисление зависимости показателя от фактора. Проверка созданной модели.
контрольная работа [173,9 K], добавлен 19.06.2009Расчет показателей показательной статистики, построение графического изображения вариационного ряда с их использованием и оценка изучаемого явления, общая характеристика. Расчет средней арифметической, методы расчета. Уровень доверительной вероятности.
контрольная работа [592,1 K], добавлен 10.02.2009