Экологическая безопасность продуктов пищевого назначения

Проблемы безопасности пищевых продуктов. Сущность модификации и денатурализации продуктов питания. Характеристика токсичных элементов и нитратов в сырье и готовых продуктах питания. Требования к санитарному состоянию сырья и пищевых производств.

Рубрика Кулинария и продукты питания
Вид курсовая работа
Язык русский
Дата добавления 08.08.2015
Размер файла 331,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ВВЕДЕНИЕ

Актуальность исследования обусловлена тем, что вмешательство человека в окружающую среду обусловило загрязненность пищевого сырья и продуктов питания токсичными веществами. При этом вредные вещества, попав в экосистему, не исчезают бесследно. Даже в низких концентрациях при длительном воздействии они могут повредить человеку, животным и растениям. Как показали исследования, многие ксенобиотики могут передаваться по пищевым цепям, а в отдельных звеньях пищевой цепи может происходить их концентрирование, если они не разлагаются и не выводятся из организма. Это характерно и для человека как составного элемента экосистемы, находящегося на вершинах многих пищевых цепей.

По данным Государственной службы наблюдений за состоянием окружающей среды, уровни загрязнения природной среды в РФ за последние 10 лет оставались высокими, что не могло не сказаться на контаминации (загрязнении) пищевых продуктов различными ксенобиотиками, что представляет реальный риск развития у потребителей хронических интоксикаций и негативных для здоровья отдаленных последствий. Это связано с широким использованием пестицидов в сельском хозяйстве, с увеличением производства и оборота генетически модифицированных пищевых продуктов, с ростом популярности биологически активных добавок к пище и т.д.

Таким образом, в промышленно развитых странах в условиях избытка продуктов питания наиболее актуальной проблемой становится проблема качества и безопасности пищи.

Целью данной работы является исследование современного состояния экологической безопасности продуктов пищевого назначения.

В соответствии с целью были поставлены и решены следующие задачи:

- охарактеризовать проблемы безопасности пищевых продуктов;

- рассмотреть модификацию и денатурализацию продуктов питания;

- изучить нитраты в сырье для пищевых продуктов;

- дать характеристику токсичных элементов в сырье и готовых продуктах питания;

- оценить требования к санитарному состоянию сырья и пищевых производств.

Объектом исследования являются продукты пищевого назначения.

Предмет исследования - экологическая безопасность продуктов пищевого назначения.

Методы исследования: диалектико-правовой, системнго анализа.

1. ПРОБЛЕМЫ БЕЗОПАСНОСТИ ПИЩЕВЫХ ПРОДУКТОВ

В последние десятилетия потребители пищевых продуктов стали уделять пристальное внимание вопросам пищевой безопасности. Именно поэтому, проблемы обеспечения безопасности и качества продукции становятся все более актуальными для предприятий пищевой промышленности России в связи с переходом страны на новые политические и экономические отношения. В настоящее время на предприятиях России зачастую создаются условия, в которых не всегда возможно обеспечение безусловной безопасности пищи при отсутствии современной системы контроля качества и безопасности продовольственного сырья и готовых видов пищевой продукции. На развитие этой проблемы оказывают влияние множество факторов. К наиболее важным из них относятся [5]:

- новые системы производства, в том числе увеличение массового производства и удлинение пищевых цепей;

- новые вещества, загрязняющие окружающую среду, и изменение экологии и климата;

- новые пищевые продукты, технологии переработки, ингредиенты, добавки и упаковка;

- изменения в состоянии здоровья населения или отдельной группы населения;

- изменение рационов питания и рост спроса на пищевые продукты минимальной переработки;

- изменение способа покупки пищевых продуктов, рост уличного потребления и приема пищи вне дома;

- новые методы анализа, позволяющие обнаруживать опасные факторы, о которых ранее никто не подозревал.

Нововведения в процессах производства и хранения пищи позволяют, с одной стороны, расширить ассортимент пищевой продукции, увеличить сроки хранения и обеспечить удовлетворение требований потребителя, с другой стороны - формируют новые опасные для здоровья человека факторы. безопасность пищевой питание нитрат токсичный сырье

В Федеральном законе «О техническом регулировании» контроль над безопасностью продукции и процессов заявлен важнейшей функцией государства. Определение безопасности продукции в данном законе трактуется следующим образом: «безопасность продукции» - состояние, при котором отсутствует недопустимый риск. Причем риск здесь рассматривается как «вероятность причинения вреда жизни или здоровью граждан»[2].

Качество и безопасность пищевой продукции являются необходимыми характеристиками, которые требуют управления и контроля со стороны организации. В пищевой промышленности одним из главных требований потребителя является именно безопасность пищевых продуктов. Использование продуктов питания не должно приводить к пищевым отравлениям, а сами продукты не должны содержать опасные ингредиенты. В связи с этим проблема внедрения системы обеспечения пищевой безопасности в последние годы становится все актуальнее.

По мнению В. Л. Аршакуни, система обеспечения безопасности пищевой продукции - это система для разработки и осуществления скоординированной деятельности по руководству и управлению организацией в целях обеспечения безопасности пищевой продукции. [1]

Разработку системы обеспечения безопасности пищевой продукции можно определить как процесс, добавляющий ценность организации. Пищевое предприятие, которое разработало и внедрило у себя эту систему, открывает перед собой новые горизонты развития: завоевание новых рынков, обеспечение лояльности и преданности потребителей.

Выполнение данного процесса является не основным в деятельности организации. Разработка системы обеспечения пищевой безопасности продуктов - это разовый процесс, то есть, выполнив данный процесс единожды, организация не будет повторять его. Исходя из этого, можно сказать, что разработка данной системы на предприятии - это своего рода проект, который имеет четкие сроки начала деятельности и ее окончание.

При разработке системы обеспечения безопасности на пищевом предприятии необходимо учитывать, что внедрять ее в производство следует путем «встраивания» в действующую на предприятии систему контроля, а не создавать какую-то новую структуру.

основу систем пищевой безопасности может быть положена концепция «планирования безопасности», направленная на предотвращение рисков. Ее основными положениями являются: безопасность пищевого продукта закладывается при разработке его рецептуры; планируемые технологические процессы должны обеспечивать безопасность поставляемого продукта.

Причем важно, чтобы выполнялись оба эти положения - самая безопасная рецептура не гарантирует безопасности конечного продукта, если технология его производства не была безопасной. «Планирование безопасности» является важнейшим элементом в формировании системы безопасности, позволяющим обеспечить пищевую безопасность во всей производственной и сбытовой цепи.

На этой основе можно смоделировать процесс достижения высокого уровня безопасности пищевого продукта. Он представлен на рисунке 1.

Рисунок 1 - Модель процесса достижения пищевой безопасности продукции

Данный подход реализуется с помощью целого ряда жестких схем, обеспечивающих устойчивую поставку безопасных продуктов и включающих: надежные средства разработки безопасных продуктов и информацию (например, возможность проведения различных микробиологических исследований для получения необходимой прогностической информации и понимания взаимодействия между микроорганизмами и ингредиентами продукта); правильные производственные практики (системы мойки и дезинфекции, обеспечивающие безопасность производств); постоянное обучение всего персонала, участвующего в разработке рецептуры и производстве продукта, что делает обеспечение безопасности пищевых продуктов прочно укоренившейся привычкой; надежные системы качества для контроля безопасности производственных процессов. [4]

Несомненно, для производителей пищевых продуктов наивысшим приоритетом должна быть пищевая безопасность. Поэтому в настоящее время для обеспечения качества и безопасности пищевой продукции в пищевой промышленности наиболее часто применяются системы управления на основе следующих стандартов: ИСО 9001:2000 (Системы менеджмента качества. Требования); НАССР (Анализ рисков и критические контрольные точки); GMP (Надлежащая производственная практика); ИСО 22000:2007 (Системы менеджмента безопасности пищевых продуктов. Требования для любой организации по всей пищевой цепочке).

Стандарт ИСО 9001 служат универсальной основой для построения системы менеджмента качества, потому что содержит базовые понятия и принципы общего менеджмента.

Система менеджмента качества (СМК) на базе МС ИСО 9000 благодаря заложенному в ее основу процессному подходу, предусматривает упорядочение всей системы управления предприятием. СМК охватывает все стадии жизненного цикла пищевой продукции, то есть основные производственные процессы.

Стандарты ИСО серии 9000 требуют при разработке СМК любого предприятия, в том числе и пищевого, идентификации всех функционирующих на предприятии взаимосвязанных процессов и разработки таких методов и средств управления ими, которые должны приводить к постоянному повышению результативности этих процессов. Это требование стандартов распространяется также и на процессы управления (стратегическое планирование, финансовый менеджмент и т.д.), и на поддерживающие процессы (техническое обслуживание оборудования, подготовка персонала и др.).

Необходимо обратить внимание на то, что те пищевые предприятия, которые занимаются разработкой и внедрением СМК по стандарту ИСО 9001:2000, должны в соответствии с требованиями разделов 7 и 8 этого стандарта «Измерение, анализ и улучшение», разработать свою систему проведения мониторинга и измерений критических значений параметров, контролируемых по ходу технологических процессов, а также систему мониторинга и измерений параметров готовой продукции.

Стандарт ИСО 9001 ориентирован, в первую очередь, на нужды и ожидания потребителей, в связи с чем, безопасность пищевых продуктов является наиболее важным аспектом. Поэтому в комбинации с требованиями стандартов ИСО 9000 в современной практике применяются система HACCP, требования к которой установлены в ГОСТ Р ИСО 51705.1-2001 «Управление качеством пищевых продуктов на основе принципов НАССР».

Система НАССР является в настоящее время основной моделью управления качеством и безопасностью пищевых продуктов в промышленно развитых странах.

В стандарте ГОСТ Р 51705.1-2001 дана следующая расшифровка термина НАССР: «концепция, предусматривающая систематическую идентификацию, оценку и управление опасными факторами, существенно влияющими на безопасность продукции» [20].

По мнению Л. А. Небалуевой, НАССР - это предупредительный метод, используемый в пищевой промышленности как гарантия безопасности производимых продуктов питания. Данный метод определяет системный подход к процессу производства продуктов питания и способствует выявлению возможных факторов риска химического, физического и биологического происхождения, их анализ и контроль [5].

Рассмотренные определения в целом не являются противоречащими друг другу, поскольку оба они учитывают принципы системности и предупредительности концепции НАССР, что оказывает существенное влияние на безопасность производимой продукции.

Система НАССР построена на принципах обязательности обеспечения безопасности продукции и нацелена на осуществление контрольных мер, позволяющих предотвратить появление или развитие опасных факторов, управляя причинами их возникновения на всех этапах продуктовой цепи. Она устраняет зависимость от результатов выборочного контроля готовой продукции, перенося акценты на управляемость процессов производства и обслуживания.

В системе НАССР особое внимание обращено на критические контрольные точки, в которых все виды риска, связанные с употреблением пищевых продуктов, могут быть предотвращены, устранены и снижены до приемлемого уровня в результате целенаправленных мер контроля.

Система НАССР помогает организациям сконцентрироваться на опасностях, влияющих на безопасность продуктов питания, а также устанавливать и контролировать предельные значения показателей в критических контрольных точках в ходе производственного процесса.

В соответствии с системой НАССР для пищевой продукции существует три типа рисков. С точки зрения источников их возникновения риски подразделяются на:

- микробиологические риски. Существенными рисками для многих пищевых продуктов могут быть патогенны (болезнетворные микроорганизмы) и микробные токсины. Некоторые компоненты и/или готовые продукты потенциально содержат патогенны или представляют собой среду для развития микробных токсинов, которые могут вызвать серьезные заболевания, иногда со смертельным исходом. Реализованные микробиологические риски могут стать причиной хронических заболеваний;

- химические риски. Химические загрязняющие вещества в пищевой продукции могут быть либо естественного происхождения, либо образовываться в процессе обработки. Высокие уровни содержания вредных химических веществ служат причиной острого течения болезни, в то время как более низкие уровни приводят к хроническим заболеваниям. Понятие «потенциальные химические риски» включает микотоксины, антибиотики, пестициды и сульфиты;

- физические риски. Физическими рисками считаются любые объекты или материалы, которые являются частью изделия, но должны быть удалены из него, или не предназначены для того, чтобы быть частью изделия, но могут случайно попасть в него в процессе производства. [6, с.31-32]

Несомненно, для производителей пищевых продуктов наивысшим приоритетом должна быть пищевая безопасность. Это может быть достигнуто посредством внедрения на предприятиях системы НАССР, эффективность работы которой должна постоянно проверяться. Многие производители имеют неправильное представление о системе НАССР, считая ее некой автономной системой, полностью обеспечивающей производство безопасных пищевых продуктов. Конечно, НАССР играет очень важную роль, но она - лишь один из элементов эффективной системы управления пищевой безопасностью, которая может быть представлена в виде «здания пищевой безопасности». В нем системы обеспечения обязательных условий (prerequisite systems) являются фундаментом, системы НАССР стенами, а крышу образуют общие системы контроля качества, включая процедуры отслеживания и отзыва продукции. В качестве обязательных условий могут выступать гарантии качества со стороны поставщика, правильные производственные практики и личная гигиена персонала.

В настоящее время разработка и внедрение на предприятии системы НАССР проводятся на основе действующих национальных стандартов. В нашей стране, как уже было отмечено, таким стандартом является ГОСТ Р 51705.1 - 2001. В соответствии с ним система НАССР разрабатывается с учетом семи основных принципов:

- идентификация потенциального риска или рисков (опасных факторов), которые сопряжены с производством продуктов питания, начиная с получения сырья (разведения или выращивания) до конечного потребления, включая все

стадии жизненного цикла продукции (обработку, переработку, хранение и реализацию) с целью выявления условий возникновения потенциального риска (рисков) и установления необходимых мер для их контроля; - выявление критических контрольных точек в производстве для устранения (минимизации) риска или возможности его появления, при этом рассматриваемые операции производства пищевых продуктов могут охватывать поставку сырья, подбор ингредиентов, переработку, хранение, транспортирование, складирование и реализацию; - в документах системы НАССР или технологических инструкциях следует установить и соблюдать предельные значения параметров для подтверждения того, что критическая контрольная точка находится под контролем; - разработка системы мониторинга, позволяющая обеспечить контроль критических контрольных точек на основе планируемых мер или наблюдений; - разработка корректирующих действий и применение их в случае отрицательных результатов мониторинга; - разработка процедур проверки, которые должны регулярно проводиться для обеспечения эффективности функционирования системы НАССР; - документирование всех процедур системы, форм и способов регистрации данных, относящихся к системе НАССР. [2]

Практическое применение принципов НАССР дает немало положительных примеров достижения высоких результатов по обеспечению безопасности пищевой продукции. Однако во многих случаях большие трудности предприятия испытывают при внедрении данной системы в условиях формирования или функционирования СМК, соответствующей требованиям ИСО 9001. Поэтому в последние годы стала явно проявляться необходимость повышения интегрированности принципов НАССР и принципов ТQM, заложенных в ИСО 9001.

В связи с этим в 2005 году был принят международный стандарт ИСО 22000 «Системы менеджмента безопасности пищевой продукции. Требования», российская версии данного стандарта - ГОСТ Р ИСО 22000-2007 «Системы менеджмента безопасности пищевой продукции. Требования к организациям, участвующим в цепи создания пищевой продукции». Он обеспечил унификацию требований к системам НАССР и их сближение с требованиями других стандартов на системы менеджмента.

В стандарте ИСО 22000-2005 содержаться требования к разработке и содержанию основных ключевых документов системы обеспечения безопасности пищевой продукции. К этим документам относятся: программы обязательных предварительных мероприятий; производственные программы обязательных предварительных мероприятий; план НАССР [1, с.89].

Невозможно создать эффективную систему НАССР без соответствующих предварительных программ. Концепция предварительных программ была отработана при внедрении системы НАССР в пищевой промышленности.

Обязательные предварительные программы формируются на основе инструкций по безопасности и добровольных программ обеспечения безопасности продукции пищевой промышленности. Самой основной и обязательной предварительной программой можно считать правила и методы надлежащей производственной практики - GMP.

Рисунок 2 - «Дом безопасности продукции» [6, c.27]

Руководство по НАССР, предназначенное для предприятий пищевой промышленности, должно содержать требования GMP и стандартных санитарно-гигиенических процедур, которые являются обязательными предварительными программами для НАССР. Данные программы включают в себя следующие направления: личная гигиена работников; безопасность воды; борьба с вредителями; защита от вредных примесей; предотвращение перекрестного загрязнения; качество мытья рук и санитарно-гигиенические условия; качество и чистота контактных поверхностей для приготовления пищевой продукции; маркировка, хранение и использование токсичных веществ.

Таким образом, из всего вышесказанного можно сделать вывод, что повсеместная разработка системы обеспечения пищевой безопасности является одним из наиболее эффективных способов достижения безопасности пищевых продуктов. А для создания наиболее эффективной системы управления безопасностью пищевых продуктов предприятиям необходимо сочетать и объединять подходы, изложенные в нескольких международных стандартах. Процесс разработки системы обеспечения безопасности пищевых продуктов является процессом, добавляющим ценность организации.

2. МОДИФИКАЦИЯ И ДЕНАТУРАЛИЗАЦИЯ ПРОДУКТОВ ПИТАНИЯ

В результате денатурализации продуктов (очистка, дистилляция, рафинирование) из натуральных продуктов исчезают многие полезные вещества. В качестве классического примера приводится рафинированный сахар, который из ценнейшего продукта питания превратился в «белый яд». Его химический естественный состав изменился и, соответственно, изменилось присущее ему физиологическое воздействие на организм.

Подобный негативный эффект характерен для хлеба, выпеченного из «безжизненной белой муки», который в эксперименте на мышах и крысах вызывает при длительном применении рост злокачественных опухолей. Причиной этого, возможно, является значительное снижение содержания важнейших макро- и микронутриентов в обогащенном белом хлебе по сравнению с хлебом из цельной пшеницы, что явно определяется при сравнительном анализе состава высокоочищенной пшеничной муки и муки из цельного зерна.

Под понятием рафинирования понимают фабрично-заводские процессы, которые обеспечивают продукт полной очисткой либо отделкой. Рафинирование применяют как в пищевой, так и в металлургической промышленности. Разумный и адекватный человек уже должен задуматься, стоит ли ему питаться продуктами, которые обрабатывают и обесцвечивают по технологиям металлургии.

Например, натуральный продукт в процессе рафинирования разделяют на составные части, затем некоторые из этих частей пускают в отходы, несмотря на то, что они содержат огромное количество не только питательных, но и необходимых для организма веществ. Более того, большая часть так называемых отходов рафинирования крайне нужна человеческому организму для нормального усвоения продукта. Отсюда вывод: рафинированные продукты не являются неполноценной пищей, они лишь питательная биомасса.

Рассмотрим наиболее известные и вредные продукты, прошедшие стадию рафинирования.

Белый рафинированный сахар и сахар-рафинад

Многие исследование подтверждают, употребление белого сахара прямым образом связано с развитием сахарного диабета, ожирения, рака, сердечно-сосудистых заболеваний. Белый сахар совершенно не содержит витаминов, минералов, а его употребление приводит к уменьшению запасов хрома и других веществ из организма.

Белая мука

В процессе помола пшеничной крупы из неё удаляется до 70-90% витаминов и минералов. Белая мука похожа на сахар, поскольку не несёт никакой пищевой ценности, только калории. Выбирайте серую муку грубого помола, обдирную ржаную муку или отруби. То есть, чем выше сорт муки -- тем он менее полезен. Такие парадоксы в нашем цивилизованном обществе.

Шлифованный рис

В процессе шлифования риса оболочка зерна и сам рисовый зародыш удаляются. Очень зря! Эти «отходы» являются самой богатой витаминами и микроэлементами частью рисового зёрнышка! Такой шлифованный рис становится обычным рафинированным крахмалом, а это -- легкоусвояемые углеводы.

На протяжении многих веков рис был и остаётся основной пищей для жителей стран Дальнего Востока. После повсеместного введения в моду шлифованного риса, жители этих стран стали часто болеть «бери-бери». Самый простой способ избавиться от этой болезни -- употребление не шлифованного риса или рисовых отрубей.

Нешлифоанный рис можно свободно найти в обычных супермаркетах. Он заметно выделяется от своих собратьев более тёмным цветом. По стоимости и вкусовым качествам он аналогичен остальным видам риса. Поэтому, если вы стремитесь к полноценному и полезному питанию -- переходите на нерафинированный рис.

Рафинированное масло

Наиболее полезными считаются нерафинированные растительные масла холодного отжима, ведь в них сохранены витамины A, E и другие активные вещества, содержащиеся в исходном продукте.

В процессе очистки из масла удаляют все «вредные» вещества, но вместе с ними удаляются все полезные и натуральные витамины и полезные аминокислоты. Рафинированное масло практически не имеет вкуса и запаха, а так же имеет светлый, почти прозрачный цвет. Такое масло биологически неактивно, оно не несёт ценности для здоровья человеческого организма и годится лишь для смазки скрипучих механизмов. Нерафинированное масло, наоборот, обладает сильным душистым вкусом и запахом, имеет тёмный цвет и густую консистенцию.

Процессы жарки способны «убить» все полезные витамины и химические соединения из нерафинированного масла. Поэтому, наиболее эффективно нерафинированными маслами заправлять готовые салаты и другие блюда. В свободном доступе можно найти нерафинированные оливковое, подсолнечное и льняное масло. Но их гораздо больше

К модифицированным продуктам относят генно-модифицированные продукты (ГМО) рассмотрим их более подробно.

Принцип создания трансгенных растений и животных схожи. И в том, и в другом случае в ДНК искусственно вносятся чужеродные последовательности, которые встраивают, интегрируют генетическую информацию вида.

Основные объекты генной инженерии в растительном мире: соя, кукуруза, картофель, хлопчатник, сахарная свекла. При этом вырабатывается повышенная резистентность к колорадскому жуку, к вирусам, защита от насекомых, от разнообразных бурильщиков, сосальщиков, обеспечивает отсутствие повышенных остаточных количеств пестицидов. За последние 5 лет в мире земельные площади, используемые под трансгенные растения, увеличились с 8 млн. га до 46 млн. га.

Ни одна новая технология не была объектом такого пристального внимания ученых всего мира. Все это обусловлено тем, что мнения ученых о безопасности генетически модифицированных источников питания расходятся. Нет ни одного научного факта против использования трансгенных продуктов. В тоже время некоторые специалисты считают, что существует риск выпуска нестабильного вида растений, передача заданных свойств сорнякам, влияние на биоразнообразие планеты, и главное - потенциальная опасность для биологических объектов, для здоровья человека путем переноса встроенного гена в микрофлору кишечника или образование из модифицированных белков под воздействием нормальных ферментов, так называемых минорных компонентов, способных оказывать негативное влияние.

Трансгенными могут называться те виды растений, в которых успешно функционирует ген (или гены) пересаженные из других видов растений или животных. Делается это для того, чтобы растение-реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генноизмененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться. Также часто такие растения дают более богатый и стабильный урожай (возможно повышение урожайности на 40-50%), чем их природные аналоги.

Ниже приведены примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи; чтобы скот быстрее набирал вес, ему вкалывают измененный гормон роста (но при этом молоко наполняется гормонами, вызывающими рак); чтобы соя не боялась гербицидов, в нее внедряют гены петунии, а также некоторых бактерий и вирусов. Соя - один из основных компонентов многих кормов для скота и почти 60% продуктов питания. В России, как и во многих странах Европы, генетически измененные сельхозкультуры (в мире их создано больше 30-ти видов) пока не распространяются такими бешеными темпами, как в США, где официально закреплена идентичность "натуральных" и "трансгенных" продуктов питания.

На данный момент в России зарегистрировано множество видов продуктов из модифицированной сои, среди которых: фитосыр, смеси функциональные, сухие заменители молока, мороженое "Сойка-1", 32 наименования концентратов соевого белка, 7 видов соевой муки, модифицированные бобы сои, 8 видов соевых белковых продуктов, 4 наименования соевых питательных напитков, крупка соевая обезжиренная, комплексные пищевые добавки в ассортименте и специальные продукты для спортсменов, тоже в немалом количестве. Надзор за генетически модифицированными продуктами осуществляется Научно-исследовательским институтом питания РАМН и также учреждениями-соисполнителями: Институтом вакцин и сывороток им. И. И. Мечникова РАМН, Московским научно-исследовательским институтом гигиены им. Ф.Ф. Эрисмана Минздрава России.

Решение проблемы быстрорастущего потребления сельскохозяйственных продуктов на фоне снижения площади посевных земель, возможно с помощью технологий получения трансгенных растений, направленных на эффективную защиту сельскохозяйственных культур и увеличение урожайности.

Получение трансгенных растений является на данный момент одной из перспективных и наиболее развивающихся направлений агропроизводства. Существуют проблемы, которые не могут быть решены такими традиционными направлениями как селекция, кроме того, что на подобные разработки требуются годы, а иногда и десятилетия. Создание трансгенных растений, обладающих нужными свойствами, требует гораздо меньшего времени и позволяет получать растения с заданными хозяйственно ценными признаками, а также обладающих свойствами, не имеющими аналогов в природе. Примером последнего могут служить полученные методами генной инженерии сорта растений, обладающих повышенной устойчивостью к засухе.

Создание трансгенных растений в настоящее время развиваются по следующим направлениям:

1) Получение сортов сельскохозяйственных культур с более высокой урожайностью.

2) Получение сельскохозяйственных культур, дающих несколько урожаев в год (например, в России существуют ремонтантные сорта клубники, дающие два урожая за лето).

3) Создание сортов сельскохозяйственных культур, токсичных для некоторых видов вредителей (например, в России ведутся разработки, направленные на получение сортов картофеля, листья которого являются остро токсичными для колорадского жука и его личинок).

4) Создание сортов сельскохозяйственных культур, устойчивых к неблагоприятным климатическим условиям (например, были получены устойчивые к засухе трансгенные растения, имеющие в своем геноме ген скорпиона).

5) Создание сортов растений, способных синтезировать некоторые белки животного происхождения (например, в Китае получен сорт табака, синтезирующий лактоферрин человека).

Таким образом, создание трансгенных растений позволяет решить целый комплекс проблем, как агротехнических и продовольственных, так и технологических, фармакологических и т.д. Сейчас практически не осталось пестицидов и других видов ядохимикатов, которые нарушали бы естественный баланс в локальных экосистемах и наносили бы невосполнимый ущерб окружающей среде.

Создать генетически измененное растение на данном этапе развития науки для генных инженеров не составляет большого труда.

Существует несколько достаточно широко распространенных методов для внедрения чужеродной ДНК в геном растения.

Самый распространенный способ внедрения чужих генов в наследственный аппарат растений - с помощью болезнетворной для растений бактерии Agrobacterium tumefaciens. Эта бактерия умеет встраивать в хромосомы заражаемого растения часть своей ДНК, которая заставляет растение усилить производство гормонов, и в результате некоторые клетки бурно делятся, возникает опухоль. В опухоли бактерия находит для себя отличную питательную среду и размножается. Для генной инженерии специально выведен штамм агробактерии, лишенный способности вызывать опухоли, но сохранивший возможность вносить свою ДНК в растительную клетку.

Нужный ген "вклеивают" с помощью рестриктаз в кольцевую молекулу ДНК бактерии, так называемую плазмиду. Эта же плазмида несет ген устойчивости к антибиотику. Лишь очень небольшая доля таких операций оказывается успешной. Те бактериальные клетки, которые примут в свой генетический аппарат "прооперированные" плазмиды, получат кроме нового полезного гена устойчивость к антибиотику. Их легко будет выявить, полив культуру бактерий антибиотиком, - все прочие клетки погибнут, а удачно получившие нужную плазмиду размножатся. Теперь этими бактериями заражают клетки, взятые, например, из листа растения. Опять приходится провести отбор на устойчивость к антибиотику: выживут лишь те клетки, которые приобрели эту устойчивость от плазмид агробактерии, а значит, получили и нужный ген.

Генетически модифицированные продукты стали одним из достижений биологии ХХ в. Но вопрос о безопасности таких продуктов для человека до сих пор остается открытым. Проблема генетически - модифицированных продуктов актуальна, поскольку в ней экономические интересы многих стран приходят в противоречие с основными правами человека.

В результате денатурализации продуктов (очистка, дистилляция, рафинирование) из натуральных продуктов исчезают и преобразуются многие полезные вещества. В качестве примера можно привести топленое молоко, которое менее полезно, чем цельное, однако содержит больше кальция.

К модификации мясного и молочного сырья относят следующие методы модификации:

1. Химические (изменение химического состава)

2. Физико-химические

3. Биологические

Например, добиться сбалансированного состава аминокислот, максимально приближенного к их составу в грудном молоке, компания Nestle® разработала сложный процесс, в результате которого белковый состав коровьего молока кардинально меняется. Подобная модификация состава детских молочные продукты Nestle® осуществляется, в основном, за счёт частичного или полного замещения казеина сывороточным белком, а также за счёт обогащения им компонентов коровьего молока.

Рассмотрим более подробно физические методы модификации молочного сырья.

Сепарирование

Сепарирование молока -- это разделение его на две фракции различной плотности: высокожирную (сливки) и низкожирную (обезжиренное молоко). Осуществляется сепарирование под действием центробежной силы в барабане сепаратора. Молоко, распределяясь в барабане между тарелками в виде тонких слоев, перемещается с небольшой скоростью, что создает благоприятные условия для наиболее полного отделения высокожирной фракции (жировых шариков) за короткое время. Процесс сепарирования молока подчиняется закону Стокса:

где -- скорость выделения жировых шариков, см/с; -- средний радиус рабочей части тарелки сепаратора, см; радиус жирового шарика, см; -- частота вращения барабана сепаратора, ; --плотность плазмы и жира, кг/м3; -- динамическая вязкость, .

В соответствии с этим законом скорость выделения жировой фракции из молока находится в прямой зависимости от размеров жировых шариков, плотности плазмы молока, габаритов и частоты вращения барабана и в обратно пропорциональной зависимости от вязкости молока. С увеличением размеров жировых шариков и плотности плазмы молока ускоряется процесс сепарирования и отделения сливок. Чем выше содержание сухих обезжиренных веществ в молоке, тем выше плотность плазмы и цельного молока. Следовательно, молоко большей плотности будет иметь лучшие условия для сепарирования. Повышение вязкости молока приводит к снижению скорости выделения жировой фракции.

Кроме того, существенное влияние на сепарирование оказывают кислотность и температура молока.

Повышение кислотности молока приводит к изменению коллоидного состояния его белков, сопровождающемуся иногда выпадением хлопьев; в результате нарастает вязкость, что затрудняет сепарирование.

Повышение температуры молока способствует снижению его вязкости и переходу жира в жидкое состояние, что улучшает сепарирование. Оптимальная температура сепарирования 35...45 °С. Нагревание молока до этой температуры обеспечивает хорошее обезжиривание.

Наряду с сепарированием при 35...45 °С иногда применяют высокотемпературное сепарирование при 60...85 °С. С увеличением температуры сепарирования повышаются производительность сепаратора и качество обезжиривания. Однако высокотемпературное сепарирование имеет и ряд недостатков: увеличение содержания жира в обезжиренном молоке вследствие частичного выпадения альбумина, препятствующего выделению жира; сильное вспенивание сливок и обезжиренного молока; возрастание раздробления жировых шариков.

Рис. 1. Схема работы сепарирующего устройства:

а -- молокоочистителя; б-- сливкоотделителя; 1 -- исходное молоко; 2 -- легкая фракция (очищенное молоко или сливки); 3-- частицы, образующие осадок; 4-- осадок (слизь); 5--тяжелая фракция (обезжиренное молоко)

Большое внимание уделяют сепарированию при низких температурах, так называемому сепарированию холодного молока. Однако сепарирование при низкой температуре на обычных сепараторах приводит к снижению их производительности почти вдвое из-за повышения вязкости и частичной кристаллизации жира.

Процесс сепарирования в сепараторе осуществляется в такой последовательности (рис. 1, б). Цельное молоко по центральной трубке поступает в тарелкодержатель, из которого по каналам, образованным отверстиями в тарелках, поднимается в верхнюю часть комплекта тарелок и растекается между ними. В межтарелочном пространстве жировые шарики как более легкая фракция молока движутся к центру барабана, далее по зазору между кромкой тарелки и тарелкодержателем поднимаются вверх и поступают в камеру для сливок. Затем под напором сливки поступают в патрубок, на котором установлены измеритель количества сливок (ротаметр) и регулировочный вентиль. Обезжиренное молоко как более тяжелая фракция направляется к периферии барабана (в грязевое пространство), поднимается вверх и поступает в патрубок, на котором установлены манометр и регулировочный вентиль (кран).

Регулировочный вентиль предназначен для регулирования жирности получаемых сливок, которая изменяется в зависимости от количества сливок и обезжиренного молока. При постоянных количестве и массовой доле жира в поступающем молоке уменьшение количества выходящих сливок приводит к повышению массовой доли жира в них и, наоборот, увеличение количества сливок снижает в них массовую долю жира.

Исходя из соотношения масс сливок и обезжиренного молока можно найти требуемую жирность сливок. Определив расчетным путем соотношение между массами сливок и обезжиренного молока, устанавливают это соотношение при помощи регулировочного устройства.

На молочные предприятия молоко поступает с разным содержанием жира и сухого обезжиренного молочного остатка (СОМО), а в готовом продукте жир и СОМО должны быть в определенном количестве или соотношении. В связи с этим необходима нормализация сырья.

Нормализация молока

Нормализация -- это регулирование состава сырья для получения готового продукта, отвечающего требованиям стандарта.

При нормализации исходного (цельного) молока по жиру могут быть два варианта: жира в цельном молоке больше, чем требуется в производстве, и жира в цельном молоке меньше, чем требуется. В первом варианте жир частично отбирают путем сепарирования или к исходному молоку добавляют обезжиренное молоко. Во втором варианте для повышения жирности исходного молока добавляют к нему сливки. Массы сливок и обезжиренного молока, необходимых для добавления к исходному молоку, рассчитывают по уравнениям материального баланса, который можно составить для любой составной части молока.

Один из простейших способов нормализации по жиру -- нормализация путем смешивания в емкости рассчитанных количеств нормализуемого молока и нормализующего компонента (сливок или обезжиренного молока). Нормализующий компонент добавляют при тщательном перемешивании смеси в емкости.

Рис. 2. Схема нормализации с применением сепаратора-сливкоотделителя, снабженного нормализующим устройством:

а -- при Жм > Жя_ м; б -- при Жм < Жн. м. Здесь Ж,,, Жн м -- соответственно массовые доли жира в исходном и нормализованном молоке

Нормализацию смешиванием можно осуществить в потоке (рис. 2, а), когда непрерывный поток нормализуемого молока смешивается в определенном соотношении с потоком нормализующего продукта.

Нормализация молока с использованием сепаратора-сливкоотделителя осуществляется в таком порядке: нормализуемое молоко подается на сепаратор-сливкоотделитель, где разделяется на сливки и обезжиренное молоко. Затем полученные сливки и обезжиренное молоко смешиваются в потоке в требуемом соотношении, а часть сливок (при Жм > Жн м) или обезжиренного молока (при Жи < Жн м) отводится как избыточный продукт (рис. 2, б).

Массовая доля жира в молоке, нормализованном в потоке, регулируется автоматически с помощью систем управления УНП (управление нормализацией в потоке) и УНС (управление нормализацией в потоке с применением сепаратора-сливкоотделителя). Основная задача систем управления процессом нормализации заключается в получении стабильных заданных значений массовой доли жира или другого параметра нормализованного молока.

Гомогенизация молока

Гомогенизация -- это обработка молока (сливок), заключающаяся в дроблении (диспергировании) жировых шариков путем воздействия на молоко значительных внешних усилий. Известно, что при хранении свежего молока и сливок из-за разницы в плотности молочного жира и плазмы происходит всплывание жировой фракции, или ее отстаивание. Скорость отстаивания жира зависит от размеров жировых шариков, вязкости, от возможности соединения жировых шариков друг с другом. Как известно, размеры жировых шариков колеблются в широких пределах -- от 0,5 до 18 мкм. Согласно формуле Стокса скорость выделения (всплывания) жирового шарика прямо пропорциональна квадрату его радиуса. В процессе гомогенизации размеры жировых шариков уменьшаются примерно в 10 раз (размер -1,0 мкм), а скорость всплывания их соответственно становится примерно в 100 раз меньше. В процессе дробления жирового шарика перераспределяется его обол очечное вещество. На построение оболочек образовавшихся мелких шариков мобилизуются плазменные белки, а часть фосфатидов переходит с поверхности жировых шариков в плазму молока. Этот процесс способствует стабилизации высокодисперсной жировой эмульсии гомогенизированного молока. Поэтому при высокой дисперсности жировых шариков гомогенизированное молоко практически не отстаивается.

Механизм дробления жировых шариков, схематично показанный на рисунке 3, заключается в следующем.

Рис. 3. Схема дробления жировых шариков в клапанной щели гомогенизатора:

--диаметр отверстия в седле клапана; -- скорость движения молока в клапане; -- скорость в пограничном сечении; -- давление в клапане; -- скорость движения в щели клапана; -- давление в шели клапана; -- высота щели клапана

В гомогенизирующем клапане на границе седла гомогенизатора и клапанной щели имеется порог резкого изменения сечения потока, а следовательно, и изменения скорости движения. При переходе от малых скоростей движения к высоким жировой шарик деформируется: его передняя часть, включаясь в поток в гомогенизирующей щели с большой скоростью, вытягивается в нить и дробится на мелкие капельки. Таким образом, степень раздробленности, или эффективность гомогенизации, зависит прежде всего от скорости потока при входе в гомогенизирующую щель, а следовательно, от давления гомогенизации, которое всегда определяет скорость.

С повышением давления усиливается механическое воздействие на продукт, возрастает дисперсность жира, а средний диаметр жировых шариков уменьшается. По данным ВНИКМИ, при давлении 15 МПа средний диаметр жировых шариков составляет 1,43 мкм, а эффективность гомогенизации 74 %, при давлении 20 МПа средний диаметр шариков уменьшается до 0,97 мкм, а эффективность возрастает до 80 %. Повышения давления можно достигнуть, снабдив гомогенизатор двумя или тремя клапанами.

С повышением давления усиливается механическое воздействие на продукт, возрастает дисперсность жира, а средний диаметр жировых шариков уменьшается. По данным ВНИКМИ, при давлении 15 МПа средний диаметр жировых шариков составляет 1,43 мкм, а эффективность гомогенизации 74 %, при давлении 20 МПа средний диаметр шариков уменьшается до 0,97 мкм, а эффективность возрастает до 80 %. Повышения давления можно достигнуть, снабдив гомогенизатор двумя или тремя клапанами. Такие гомогенизаторы называют двух- или трехступенчатыми. Однако повышение давления приводит к увеличению расхода электроэнергии, поэтому оптимальное давление составляет 10...20 МПа. Рекомендуемое давление гомогенизации зависит от вида и состава изготовляемого продукта. С повышением содержания жира и сухих веществ в продукте следует применять более низкое давление гомогенизации, что обусловлено необходимостью снижения энергетических затрат.

Интенсивность гомогенизации возрастает с повышением температуры, так как при этом жир переходит полностью в жидкое состояние и уменьшается вязкость продукта. При повышении температуры снижается также отстаивание жира. При температурах ниже 50 °С отстаивание жира усиливается, что приводит к ухудшению качества продукта. Наиболее предпочтительной считают температуру гомогенизации 60...65 °С. При чрезмерно высоких температурах сывороточные белки в гомогенизаторе могут осаждаться.

Кроме того, эффективность гомогенизации зависит от свойств и состава продукта (вязкость, плотность, кислотность, содержание жира и сухих веществ). С повышением кислотности молока эффективность гомогенизации уменьшается, так как в кислом молоке снижается стабильность белков и образуются белковые агломераты, затрудняющие дробление жировых шариков. При повышении вязкости и плотности молока эффективность гомогенизации также снижается.

В настоящее время применяют два вида гомогенизации: одно- и двухступенчатую. При одноступенчатой гомогенизации могут образовываться агрегаты мелких жировых шариков, а при двухступенчатой происходит разрушение этих агрегатов и дальнейшее диспергирование жировых шариков.

Иногда при производстве молочных напитков и сыров используют раздельную гомогенизацию. Раздельная гомогенизация предназначена для получения гомогенизированного молока с требуемым содержанием жира, повышенной стабильностью жировой дисперсной фазы и белков. Раздельная гомогенизация отличается от полной тем, что при ней механическому воздействию подвергается лишь высококонцентрированная жировая эмульсия (сливки определенной жирности). Сущность раздельной гомогенизации заключается в том, что молоко вначале сепарируют, а полученные сливки гомогенизируют, после гомогенизации их смешивают с обезжиренным молоком, нормализуют, пастеризуют и охлаждают. При производстве раздельно гомогенизированного молока с использованием двухступенчатой гомогенизации массовая доля жира в сливках не должна превышать 25 %, а при одноступенчатой гомогенизации 16 %.

Раздельную гомогенизацию применяют для того, чтобы увеличить производительность гомогенизации и ограничить нежелательное механическое воздействие на молочный белок при выработке питьевого молока, кисломолочных продуктов и сыров. Полученное при раздельной гомогенизации молоко по своим физико-химическим и органолептическим свойствам не отличается от обычного гомогенизированного молока при условии, если массовая доля жира в сливках, используемых при гомогенизации, не превышает 12 %. В молоке, полученном из сливок с повышенным содержанием жира и гомогенизированном раздельным способом, наблюдается усиленное отстаивание жира.

Мембранные методы разделения и концентрирования молока

К мембранным методам обработки продукта относят баромембранные и электромембранные (например, электродиализ).

Баромембранным называют такой способ обработки, когда продукт проходит через полупроницаемую перегородку (мембрану) под действием избыточного давления. В зависимости от размера отделяемых частиц различают обратный осмос, ультрафильтрацию, нанофильтрацию, микрофильтрацию и др. Однако четкой границы между баромембранными методами провести нельзя, так как они часто перекрывают друг друга.

К мембранным методам разделения и концентрирования молока относятся ультрафильтрация, обратный осмос и электродиализ.

Ультрафильтрация -- это фильтрация под давлением с помощью полупроницаемых мембран, изготовляемых на основе синтеических полимерных (ацетат целлюлозы, полиамид, полисульфон) и керамических материалов.

Для ультрафильтрации применяют мембраны с порами размером 50... 100 нм. Такие мембраны задерживают молекулы с размерами большими, чем размеры пор, и пропускают мелкие молекулы. Схема распределения молекул при ультрафильтрации показана на рисунке 4. При ультрафильтрации приходится преодолевать осмотическое давление разделяемого раствора, так как растворитель переносится в направлении, противоположном возрастанию концентрации растворенного вещества, задерживаемого фильтром. Поэтому ультрафильтрацию проводят под давлением 0,1...0,5 МПа.

Рис. 5. Схема распределения молекул при ультрафильтрации

В молочной промышленности ультрафильтрацию используют для выделения белков из молока или молочной сыворотки. В процессе ультрафильтрации сыворотка под давлением движется между полупроницаемыми мембранами. Часть сыворотки (фильтрат) проходит через мембраны, оставляя при этом на фильтре сывороточные белки. Полученный фильтрат состоит в основном из воды, лактозы, минеральных солей. Другая часть сыворотки (концентрат) проходит между мембранами, унося при этом и выделившиеся белки. Таким образом, концентрат включает все сывороточные белки и ту часть воды, лактозы и минеральных солей, которая не прошла через мембраны. Отношение объемов концентрата и сыворотки, поступившей на ультрафильтрацию, составляет обычно 1:5.

Успешно применяют ультрафильтрацию для концентрации сывороточных белков творожной сыворотки. Сывороточно-белковые концентраты и фильтраты используют при выработке традиционных и новых видов продуктов питания, отличающихся повышенной биологической ценностью, в частности при производстве продуктов диетического, лечебного и детского питания.

Обратный осмос -- это разделение растворов через полупроницаемые мембраны с порами размером менее 50 нм при давлении 1...10 МПа. При обратном осмосе через мембраны проходит только вода, а все остальные части молочного сырья задерживаются мембраной. Происходит концентрирование молочного сырья.

Электродиализ -- это перенос ионов из одного раствора в другой, осуществляемый через мембрану под действием электрического поля, создаваемого электродами, расположенными по обе стороны мембраны. Электродиализу подвержены только те вещества, которые при растворении диссоциируют на ионы или образуют заряженные комплексы. Электронейтральные вещества, например лактоза, сахароза, молекулы которых при растворении не несут какого-либо заряда, в электродиализном процессе не участвуют.

В молочной промышленности электродиализной обработке подвергают молочную сыворотку с целью ее деминерализации. В молочной сыворотке кроме белков и лактозы содержится повышенное количество минеральных солей, что затрудняет ее переработку на продукты питания, особенно для детей. Освобождение сыворотки от минеральных солей при помощи электродиализа в 8... 10 раз дешевле, чем при использовании для этой цели ионообменных смол.

Достижения в технологии фракционирования и модификации компонентов молока путем ультрафильтрации, электродиализа, обратного осмоса обусловили более широкое применение молочных ингредиентов в различных отраслях промышленности (хлебопекарной, кондитерской, мясной). Применение мембранных процессов в молочной промышленности привело к созданию малоотходного производства, позволяющего повысить эффективность использования сырья на пищевые цели. В результате применения мембранных процессов все сухие вещества молока оказываются полностью переработанными в полноценные продукты питания. Это позволяет увеличить выработку товарной продукции из единицы сырья и снизить ее себестоимость. Продукты ультра фильтрации нашли применение в производстве молочных напитков, сыров и творога. Внедрение ультрафильтрации на сыродельных заводах позволяет увеличить выход сыров на 15...20 % путем использования сывороточных белков концентрата сыворотки, сократить расход сычужного фермента на 75...80 %, а также частично решить проблему очистки сточных вод.


Подобные документы

  • Проблемы безопасности пищевых продуктов. Модификация, денатурализация продуктов питания. Нитраты в сырье для пищевых продуктов. Характеристика токсичных элементов в сырье и готовых продуктах. Требования к санитарному состоянию сырья и пищевых производств.

    курсовая работа [87,0 K], добавлен 17.10.2014

  • Характеристика основных требований к безопасности пищевых продуктов: консервов, молочных, мучных, зерновых, мясных, рыбных, яичных продуктов. Санитарные и гигиенические требования к кулинарной обработке пищевых продуктов. Болезни пищевого происхождения.

    курсовая работа [193,6 K], добавлен 20.12.2010

  • Органолептические характеристики качества и безопасности продуктов: консервы, молоко, мясо, рыба, яйца, мука, хлеб. Санитарные требования к кулинарной обработке и хранению пищевых продуктов. Болезни пищевого происхождения, вызываемые микроорганизмами.

    реферат [39,6 K], добавлен 21.03.2010

  • Методы обогащения продуктов питания и готовых блюд витаминами. Стабильность витаминов в основных пищевых продуктах. Определение витаминов в продуктах питания, их безопасность. Рекомендуемые нормы потребления витаминов (рекомендуемая суточная потребность).

    реферат [752,0 K], добавлен 14.06.2010

  • Классификация пищевых продуктов и добавок. Этапы контроля продуктов питания: отбор пробы, приготовление смеси, выделение целевого компонента, анализ. Методы анализа пищевых продуктов: титриметрические, оптические, электрохимические и хроматометрические.

    курсовая работа [60,0 K], добавлен 21.12.2014

  • Понятие о микробиологических показателях безопасности пищевых продуктов. Микрофлора продуктов, воды, почвы и тела человека. Cроки и условия хранения сырья, готовых блюд и кондитерских изделий. Санитарный контроль на предприятиях общественного питания.

    контрольная работа [329,1 K], добавлен 14.05.2014

  • Роль консервантов в сохранении пищевого сырья и готовых продуктов, действие антиокислителей. Использование пряностей в пищевой промышленности и кулинарии. Причины слеживания и комкования порошкообразных продуктов. Безопасность применения пищевых добавок.

    реферат [461,7 K], добавлен 01.02.2011

  • Квалификационная характеристика повара 3-го разряда. Требования к приемке и хранению сырья, поступающего на предприятие. Способы кулинарной обработки пищевых продуктов. Схема механической обработки овощей и грибов и приготовление полуфабрикатов из них.

    отчет по практике [63,9 K], добавлен 25.05.2013

  • Правовое регулирование отношений в области обеспечения качества и безопасности сырья и пищевых продуктов. Нитрозоамины, полициклические ароматические углеводороды: источники их поступления и влияние на организм человека, яды пептидной формы (а-амантин).

    контрольная работа [21,5 K], добавлен 24.07.2010

  • Проблема безопасности продуктов питания. Политика в области качества. Методологические принципы создания биологически безопасных продуктов питания, основанные на выявлении критических контрольных точек. Оценка доброкачественности муки, хлеба, зерновых.

    презентация [993,8 K], добавлен 11.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.