Органическая химия

Предмет органической химии, электронные представления о природе химической связи. Особенности алифатических соединений, этиленовых, ацетиленовых и галогенпроизводные углеводородов, спиртов и карбонильные соединений. Реакции окисления и восстановления.

Рубрика Химия
Вид курс лекций
Язык русский
Дата добавления 02.09.2013
Размер файла 3,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Способы получения

1. Дегидрогенизация и крекинг предельных углеводородов (промышленные методы получения) см. свойства парафинов.

2. Отщепление галогеноводорода от моногалогенопроизводных предельных углеводородов.

Реакция идет при более мягких условиях, если действовать спиртовым раствором целочи

Реакция протекает согласно правила Зайцева: водород отщепляется от наменее гидрированного из двух соседних с галогеносодержащим атомов углерода, т.к. термодинамически более устойчивы олефины, у которых непредельные атомы углерода связаны с алкилами, а не с водородом.

3. Дегидратация спиртов протекает в присутствии сильных минеральных кислот (Н2S04, H3PO4).

3. Отщепление 2-х атомов галогена от вицинальных дигалогенопроизводных углеводородов.

4. Частичное гидрирование ацетиленовых углеводородов

Физические свойства олефинов

1. Температура кипения олефинов немного ниже (на 5-15оС) температуры кипения соответственных предельных углеводородов. Увеличивается с возрастанием молекулярного веса. Олефины с углеродной цепью С2 - С4 - газ; С5 - С16 - жидкости; С17 и более - твердые вещества.

а. Ткип нормальных изомеров выше, чем разветвленных;

б. Ткип цис-изомеров выше, чем транс-изомеров;

в. Ткип увеличивается при перемещении двойной связи ближе к центру.

2. Температура плавления также зависит от строения. Она выше у транс-изомеров и увеличивается при перемещении двой ной связи ближе к центру.

3. Плотность олефинов несколько выше, чем у парафинов (т.к. больше относительное содержание более тяжелого углерода).

d204C5H12 = 0,626 d204C5H10 = 0,641

4. Олефины растворяются в воде незначительно, но лучше, чем парафины. Растворимость увеличивается с увеличением полярности углеводорода. Олефины хорошо растворяются в растворах солей тяжелых металлов, например, в растворе CuCl (вследствие комплексообразования).

5. Оптические свойства. Олефины имеют более высокий показатель преломления, что говорит об их более высокой поляризуемости.

6. Олефины дают избирательное поглощение в инфракрасной области (1670 - 1560 см-1 и 100 - 830 см-1). В УФ-области олефины дают поглощение при 180-200 нм.

Химические свойства олефинов

Химические свойства олефинов обусловлены природой двойных связей.

1) Двойная связь состоит из неравноценных связей: -связи и -связи. -связь отличается от -связи меньшей прочностью и большей поляризуемостью. Благодаря малой прочности -связь легко разрывается. Этим обуславливается способность олефинов вступать в реакции присоединения.

2) В зависимости от характера реагента и условий проведения реакции могут идти или по гомолитическому, или по гетеролитическому механизму.

3) Благодаря легкой поляризуемости -электронов и их способности захватывать положительные частицы. большинство реакций олефинов протекают по гетеролитическому электрофильному механизму.

1. Реакции присоединения

1. Присоединение водорода происходит при действии молекулярного водорода

.

Эта реакция гетерогенного катализа протекает на поверхности твердого катализатора. включает в себя три этапа:

1) адсорбция молекул из газовой фазы на поверхности катализатора;

2) взаимодействие молекул в адсорбированном состоянии;

3) десорбция продуктов реакции с поверхности катализатора.

Катализаторы - металлы: Fe, Co, Ni, Pt, Pd, имеющие d-уровни, не полностью заполненные электронами. за счет чего могут обраховываться донорно-акцепторные связи с олефинами; происходит хемосорбция олефинов на поверхности катализатора. Молекулы водорода тоже хемосорбируются с металлами в виде свободных атомов.

Скорость реакций зависит от поверхности катализатора, величины его частиц, а также от количества активных центров на поверхности катализатора (которыми являются дефекты кристаллической решетки), на них начинаетя реакция. Скорость гидрирования олефинов зависит от разветвленности цепи. Чем больше заместителей. тем труднее протекает реакция (т.к. слабее адсорбция).

2. Присоединение галогенов.

F2 - присоединяется со взрывом;

Cl - на рассеянном свету или при низкой температуре в присутствии катализатора FeCl3;

Br2 - при комнатной температуре в полярных растворителях;

I - медленно в полярных растворителях.

Механизм реакций может быть и электрофильным, и свободнорадикальым.

Электрофильное присоединение происходит под действием полярных растворителей. Молекула галогена поляризуется Br+ Br- под действием Н2О. При взаимодействии ее с олефинами наблюдается последовательноеобразование -комплекса и -комплекса.

-комплекс образуется за счет захвата -электронами положительного конца диполя молекулы галогена, затем образуется -комплекс за счет обобщения атомом брома -электронной пары с образованием -связи. Одновременно происходит отщепление аниона брома. Затем карбокатион присоединяет анион брома. Таким образом, наблюдается ступенчатое присоединение двух атомов галогена.

Свободнорадикальное присоединение наблюдается при действии газообразного галогена в отсутствии растворителя на свету или при нагревании.

3. Присоединение галогеноводородов

Легкость присоединения возрастает от НСl HI, т.к. увеличивается поляризуемость молекул реагента. НF вызывает реакции полимеризации, его присоединение наблюдается только при назких темпратурах. Механизм реакций - электрофильный.

HCl H++ Cl-.

Молекула олефина легко захватывает электрофильный реагент Н+ -электронами (образуется -комплекс), затем происходит образование

-связи с Н+ за счет -электронов (образуется -комплекс),

который стабилизируется за счет присоединения аниона хлора.

Если молекула содержит при ненасыщенном углероде какой-либо заместитель СН2=СН-Х, то место присоединения Н+ определяется природой заместителя. Все заместители делятся на две группы: электронодонорные (несущие избыток электронов и подающие их в цепь) и электроноакцепторные (имеющие недостаток электронов и притягивающие к себе -электроны двойной связи).

Все углеводородные радикалы: СН3, С2Н5 и т.д. являются группами электронодонорными,

и отталкивают подвижные -электроны двойной связи.

Например:

В результате наиболее высокая электронная плотность создается у группы СН2; к ней и будет присоединяться протон.

Таким образом, присоединение галогеноводородов к олефинам идет по правилу Марковникова: водород присоединяется к наиболее гидрированному атому углерода.

Эффект Караша

Присоединение галогеноводородов в присутствии примесей перекисей происходит не по правилу Марковникова. Причина - свободнорадикальный механизм реакции.

Более устойчив (1) и образуется преимущественно, т.к. свободный электрон сопряжен с -электронами пяти С-Н связей.

СH2Br-CH.-CH3 + HBr CH2Br-CH2-CH3 + Br

Электрофильные реакции протекают через промежуточное образование карбкатионов, поэтому рассмотрим их свойства.

Свойства карбкатионов

1. Карбкатионы образуются в полярных средах под действием поляризованных реагентов по схемам:

2. Устойчивость карбкатионов увеличивается от первичного к третичному

Причина - увеличение количества элетродонорных групп, окружающих заряженный атом углерода.

3. Химические превращения карбкатионов.

а) соединение с анионом: R+ + A- RA

б) отщепление протона (от наименее гидрированного из 2-х соседних звеньев:

в) присоединение к непредельному углеводороду:

R+ + CH2=CH2 R-CH2-CH2+

Рассмотрим остальные химические свойства олефинов.

4. Присоединение Н2SO4 к олефинам происходит в соответствии с правило Марковникова, т.к. реагент очень полярный, и реакция всегда идет по ионному электрофильному механизму.

Реакция присоединения Н2SO4 идет тем легче, чем больше радикалов окружает остаток этилена, т.е. чем больше электронная плотность у ненасыщенных атомов углерода.

Так, СН2=СН2 (этилен) - присоединяет только концентрированную Н2SO4; СН2=СН-СН3 (пропилен) - присоединяет 78% кислоту; (изобутилен) - присоединяет 65% кислоту.

5. Присоединение воды требует катализатора и также происходит только в соответствии с правилом Марковникова.

6. Гипогалоидирование - присоединение гипогалогентных кислот НОГал. (Гал2 в присутствии щелочи).

2. Реакции окисления

Благодаря легкости разрыва -связи олефины хорошо окисляются. Различаются следующие виды реакций окисления:

1. С разрывом только -связи.

а) окисление по Вагнеру - действие разбавленного водного раствора KMnO4 при комнатной температуре - приводит к образованию гликолей

б) окисление надкислотами (реакция Прилежаева) приводит к образованию окисей.

2. Окисление с разрывом углеродной цепи происходит при действии сильных окислителей и при нагревании, например:

KMnO4 + H2SO4; продуктами реакций могут быть кетоны и карбоновые кислоты

3. Озонирование - окисление озоном О3.

При действии озона сначала происходит его присоединение по двойной связи с образованием озонидов.

Озониды разлагаются водой, давая альдегиды и кетоны, в зависимости от наличия заместителей

По строению образующихся соединений можно легко установить местоположение двойной связи в олефине.

3. Реакции полимеризации

Это соединение нескольких или многих молекул в одну без изменения состава, происходящее за счет разрыва двойных связей. Существует два вида полимеризации олефинов:

1. Ступенчатая полимеризация - происходит в присутствии катализаторов (H2SO4, AlCl3), приводит к образованию димеров, тримеров, тетрамеров и т.д., причем на каждой стадии полученный продукт выделяется как устойчивое соединение. Реакция идет по механизму электрофильного присоединения

Образовавшийся димер может снова реагировать с катализатором и затем с олефином, в результате чего образуется тример и т.д. Используется для получения жидких высокооктановых углеводородов.

2. Цепная полимеризация протекает под действием инициаторов или катализаторов по цепному механизму. Низкомолекулярные продукты полимеризации не могут быть выделены, т.к. не фвляются устойчивыми веществами. Реакция приводит к образованию высокомолекулярных соединений.

где n - степень полимеризации, которая составляет десятки и сотни тысяч. Исходное соединение носит название мономер. Высокомолекулярный продукт полимеризации - полимер. Полимеры низкого молекулярного веса (где n не более нескольких тысяч) называются олигомеры. Реакции цепной полимеризации могут протекать как по свободно-радикальному, так и по ионному механизму.

Примером свободно-радикальной полимеризации является получение оксиэтилена высокого давления (способ открыт в 1933 г.).

Кислород способствует инициированию реакции за счет образования перекисных радикалов. Если обозначить эти радикалы, инициирующие реакцию R, то механизм реакции будет выглядеть так:

R. + CH2=CH2 R-CH2-CH2. R-CH2-CH2-CH2-CH2.

и т.д. до обрыва цепи

Ионная цепная полимеризация наблюдается в присутствии металлов. металлических катализаторов. катализаторов системы Циглера*. Пример - получение полиэтилена низкого давления.

NCH2=CH2 (-CH2-CH2-)n

R=1-10 атм

T0=-70+150C

· Механизм действия катализатора Циглера. Полярная связь С-Al катализатора легко разрушается гетеролитически.

Полимеры, образованные в результате ионной полимеризации, отличаются правильным (регулярным) химическим и пространственным строением цепи и обладают большей кристалличностью, жесткостью и прочностью.

Все эти полимеры являются по существу предельными углеводородами чрезвычайного высокого молекулярного веса. Как и все предельные углеводороды, они устойчивы к окислителям. к действию концентрированных кислот и других агрессивных реагентов.

Теломеризация - разновидность цепной полимеризации, отличается тем, что процесс проводится с искусственным ранним обрывом цепи на стадии образования низкомолекулярных полимеров, содержащих 3-4 молекулы мономера. Состав продуктов теломеризации отличается от состава мономера, т.к. часть молекул растворителя, вызывающих обрыв цепи, входит в молекулу теломера. Например, теломеризация этилена в присутствии ССl4.

4. Реакции аллильного замещения

При высоких температурах в газовой фазе при условиях, способствующих свободно-радикальным реакциям) у олефинов происходят реакции замещения атомов водорода в -звене по отношению к ненасыщенному атому углерода с сохранением двойной связи.

1. Реакция Шешукова - высокотемпературное хлорирование.

CH2=CH-CH3 + Cl2 CH2=CH-CH2Cl

Механизм: инициирование Cl2 2Cl.

Промежуточно образующийся радикал аллил очень устойчив, т.к. электронное облако неспаренного электрона перекрывается с -орбиталью и происходит выравнивание электронной плотности.

2. Окисление кислородом при высоких температурах.

3. Окислительный аминолиз (действие кислорода и аммиака)

СH2-CH-CH3 + 1,5 O2 + NH3 3H2O + CH2=CH-CN

акрилонитрил

Эти реакции очень ценны, т.к. позволяют осуществить прямой синтез сложных и технически важных органических соединений.

Отдельные представители

Этилен. Получают из природного газа или в процессе нефтепереработки дегидрированием этана. Применяется как сырье в органическом синтезе.

Пропилен.

1. Получение полипропилена

Проведение полимеризации пропилена в присутствии катализатора Циглера обеспечивает получение полимеров синдиотактического и изотактического типа стереорегулярной структуры.

2. Получение изопропилового спирта и ацетона.

3. Получение изопропилбензола

4. Получение моющих средств (сульфонол)

бензол + (С3Н6)4 додецилбензол + H2SO4

5. Получение глицерина

Бутилены дивинил СК бутиловые спирты

Изобутилен полиизобутилен бутилкаучук получение изооктана

Лекция 4. Диеновые углеводороды

Диеновыми углеводородами называются углеводороды открытого строения с двумя двойными связями. Общая формула СnH2n-2. В зависимости от расположения двойных связей они подразделяются на 3 вида:

1. Углеводороды с кумулированными связями (две двойные связи рядом).

CH2=C=CH2

аллен

1, 2-пропадиен

CH3-CH=C=CH2

метилаллен

1, 2-бутадиен

Эти соединения мало устойчивы и не имеют большого распространения.

2. Углеводороды с изолированными связями (две двойные связи, разделенные более чем одной простой), например:

CH2=CH-CH2-CH=CH2

1, 4-пентадиен

3. Углеводороды с сопряженными связями (две двойные связи, расположенные через одну простую):

CH2=CH-CH=CH2

дивинил

1,3-пентадиен

CH2=C-CH=CH2

CH3

изопрен

2-метил-1,3-бутадиен

Наибольшее значение имеет 3-я группа. Их мы и будем рассматривать.

Способы получения

Применяются общие методы введения двойной связи. Рассмотрим эти методы на примере получения наиболее важных диенов с использованием доступного сырья.

1. Дегидрирование предельных углеводородов или олефинов:

2. Получение бутадиена из этилового спирта (метод Лебедева):

3. Получение изопрена по методу Фаворского:

4. Получение дивинила по реакции Реппе:

Особенности электронного строения диенов с сопряженными связями

При наличии в молекуле двух двойных связей, расположенных через одну простую, наблюдается эффект сопряжения, который вызван взаимодействием -электронных облаков: образуется единое -электронное облако, охватывающее все 4 атома углерода. В результате этого:

1. выравнивается электронная плотность по всей системе связей: простые связи укорачиваютя, двойные - удлинняются;

2. возрастает способность к поляризации, т.к. под действием поляризующих агентов смещается все единое -электронное облако;

3. поляризующее воздействие реагентов или заместителей передается по всей цепочке сопряженных связей без затухания с образованием чередующихся положительных и отрицательных зарядов. Например, в бутадиене под действием поляризующего реагента Н+ происходит следующая поляризация:

4. вследствие более равномерного распределения электронной плотности молекула бутадиена обладает высокой термодинамической стойкостью.

1,34 и 1,54 А0 у олефинов и парафинов

Физические свойства

1. Диеновые углеводороды обладают более высокой температурой кипения, чем олефины:

1,3-бутадиен - +4,5оС; 1-бутен - 6,3оС.

2. Плотность их также выше, чем у олефинов, т.к. растет % содержания С: у пентена - 0,64, у пентадиена - 0,70.

3. Также выше показатель преломления (1,4 - 1,47 вместо 1,36 - 1,38 у этиленовых) - экзальтация МR.

Химические свойства

Сопряженные диены дают все химические реакции, характерные для двойных связей. Отличительные особенности:

1. Более высокая термодинамическая стойкость.

2. Более высокая реакционная способность из-за очень большой поляризуемости.

3. Способность к присоединению по концам цепочки сопряженных связей.

1. Реакции присоединения

1. Присоединение водорода, галогенов, галогеноводородов может идти в положении 1,2 и в положении 1,4. Например, присоединение НCl, происходящее по электрофильному (ионному) механизму:

Наблюдается резонанс 1 и 2 структур карбкатиона.

Выход продукта возрастает при повышении температуры, полярности и поляризуемости реагента.

2. Реакция диенового синтеза (реакция Дильса-Адлера) - реакция присоединения, характерная только для сопряженных диенов. Эта реакция используется для качественного и количественного определения сопряженных диенов под действием непредельных соединений (диенофилов), у которых двойная связь активирована электроноакцепторными заместителями благодаря сопряжению с электроотрицательными атомами.

Например:

Роль диенофила могут выполнять и сами диеновые углеводороды (реакция Лебедева):

2. Реакции окисления

Диены легко окисляются за счет активных двойных связей. Реакции идут так же, как у олефинов, за счет разрыва двойной связи.

1. Под действием озона:

2. Окисление молекулярным кислородом протекает:

а) с образованием перекисных олигомеров

б) могут образовываться циклоперекисные продукты, здесь молекула кислорода работает как диенофил.

в) при высоких температурах и при наличии насыщенных звеньев может идти реакция окисления в -звене.

3. Реакции полимеризации

Полимеризация диеновых углеводородов происходит в основном за счет 1,4-присоединения, хотя известны и 1,2-полимеры. Механизм реакций может быть ионным (металлические, металлорганические катализаторы) или свободно-радикальлным (в присутствии перекисного индикатора)

III тип полимеризации наблюдается при использовании щелочных металлов в качестве катализатора. I и II тип полимеризации наблюдается при использовании катализатора Циглера.

Пространственная структура полимеров, полученная в присутствии катализатора Циглера, отличается регулярностью повторения однотипных звеньев, такие полимеры называются стереорегулярными. При этом наблюдается несколько видов стереоизомерии. 1,4-стереорегулярные полимеры могут иметь цис- или транс-строение.

1,2-стереорегулярные полимеры могут быть изотактическими или синдиотактическими.

Нестереорегулярные полимеры - атактические с беспорядочным расположением ответвлений.

Полимеры диеновых углеводородов представляют собой очень эластичные каучукообразные вещества и применяются как заменители или синтетические аналоги натурального каучука в производстве резиновых изделий.

Натуральный и синтетический каучук

Натуральный каучук (НК)

НК получают из млечного сока некоторых растений, таких как тропическое дерево гевея, где он находится в виде водных эмульсий - латексов. По химическому строению НК представляет собой цис-1,4-полиизопрен.

Транс-1,4-полиизопрен - гуттаперча.

Синтетические каучуки (СК)

Впервые производство СК было освоено в СССР по работам Лебедева в 1932 году. Этот каучук был получен из спирта через бутадиен путем полимеризации в присутствии натрия и получил название натрий-бутадиеновый СК.

1. Стереорегулярные каучуки.

а) изопреновый (СКИ) цис-1,4-полиизопрен, аналог НК

б) дивиниловый (СКД) цис-1,4-полидивинил

2. Сополимерные каучуки.

а) бутадиен-стирольный (СКС)

б) бутадиен--метилстирольный (СКМС)

в) бутадиен-нитрильный (СКН)

3. Каучуки специального назначения.

а) СК хлорпреновый (найрит)

б) Бутилкаучук (БК)

Лекция 5. Ацетиленовые углеводороды

Это углеводороды открытого строения с одной тройной связью, о бщая формула ряда - СnH2n-2 (такая же, как у диеновых углеводородов), т.е. они изомерны диеновым углеводородам.

Гомологический ряд

Изомерия

Номенклатура

Рациональная

Систематическая

С2Н2

СНСН

ацетилен

этин

С3Н4

СН3-ССН

метилацетилен

пропин

СН3-СН2-ССН

этилацетилен

1-бутин

С4Н6

СН3-СС-СН3

диметилацетилен

2-бутин

2. Получение.

Промышленное получение ацетилена.

1) Из карбида кальция (исходное сырье - кокс, известняк).

Метод очень энергоемкий.

2) Пиролиз углеводородов.

CH4 + CH4 CHCH + 3H2

Ацетилен в зоне высокой температуры может пробыть лишь доли секунды, так как очень быстро вступает в дальнейшие превращения. Поэтому очень важно быстро охладить реакционную смесь. Этого достигают впрыскиванием воды.

Пиролиз осуществляется двумя способами.

а) Электролиз метана - пропускание газа через пламя вольтовой дуги.

б) Термоокислительный пиролиз метана.

Процесс ведется при сгорании метана в присутствии кислорода, взятого в недостатке. Часть метана при этом сгорает, тепло, выделившееся при сгорании, вызывает дегидрирование избытка углеводорода. Способ наиболее выгоден экономически.

Лабораторные методы получения ацетиленовых углеводородов

1. Алкилирование ацетилена, т.е. замена водорода на алкил.

Можно получить алкилированный ацетилен с помощью магнийорганических соединений (реакция Иоцича)

2. Дегидрогалогенирование геминальных и вицинальных дигалогенопроизводных.

3. Электронное строение ацетиленовых углеводородов (см. электронное представление о природе химической связи)

В молекуле ацетилена каждый атом углерода соединяется только с двумя другими атомами: Н-СС-Н. Поэтому в гибридизации участвуют 2 электрона, один - s и один р - электрон, образуя в результате две гибридные орбитали. Происходит sp_гибридизация. Наиболее устойчивое состояние молекулы достигается при наиболее симметричном расположении этих двух sp-орбиталей, т.е. под углом 180о друг к другу, образуя -связи С-С и С-Н.

В двух взаимно перпендикулярных плоскостях к оси -связей располагаются электронные орбитали 2-х негибридизированных р-электронов, за счет бокового перекрывания которых образуются 2 -связи.

4 атома расположены на прямой, т.е. молекула ацетилена имеет линейное строение. Наблюдается значительное укорочение СС связи, длина которой составляет 1,20 А0.

Благодаря наличию двух пар подвижных -электронов тройная связь легко поляризуется за счет влияния заместителей. Например, для метилацетилена

Энергия тройной связи СС составляет 199,6 ккал/моль, т.е. намного меньше, чем у трех простых связей С-С (3.79=237).

4. Физические свойства.

1) Ацетиленовые углеводороды имеют несколько более высокие Ткип. и d204, чем олефины.

Название

Ткип. , 0С

d204

1-бутин

8,5

0,678

1-бутен

6,3

0,630

2) Агрегатное состояние: С23 - газы

С416 - жидкости

С17 и более - твердые вещества

3) Заметно растворимы в воде (1 объем С2Н2 на 1 объем воды)

4) Смесь ацетилена с воздухом взрывоопасна в широких пределах

5. Химические свойства

Благодаря малой прочности -связей ацетиленовые углеводороды легко вступают в реакции присоединения, окисления, полимеризации, идущие с разрывом -связей. Механизм этих реакций чаще всего ионный: электрофильный или нуклеофильный, благодаря легкой поляризуемости тройной связи. Ацетилены, имеющие незамещенный Н у ненасыщенного атома углерода, способны замещать его на и некоторые другие металлы, т.е. проявляют кислотные свойства. Наличие кислотных свойств обусловлено природой тройной связи, у которой большая часть электронной плотности валентных электронов углерода сосредоточена между ядрами углерода, а внешние области обеднены электронами, поэтому углерод сильнее притягивает к себе электронную пару от водорода.

НС - С Н

I. Реакции присоединения:

1) Гидрирование.

СНСН + Н2 СН2=СН2 СН3-СН3

Сначала идет гидрирование с разрывом 1 -связи до образования этилена, а затем уже образуется метан. Ацетиленовые углеводороды легче адсорбируются на поверхности катализатора, поэтому реакция идет избирательно: сначала I стадия, затем II стадия.

2) Реакции электрофильного присоединения галогенов и галогеноводородов происходят также ступенчато.

Присоединение ННаl протекает в соответствии с правилом Марковникова. Если возьмем метилацетилен, то -связь поляризована:

4) Реакции нуклеофильного присоединения:

а) присоединение спиртов:

СН3ОН + КОН СН3ОК + Н2О

Спирт в присутствии твердого КОН образует алкоголят, который диссоциирует с образованием аниона

СН3ОК СН3О- + К+

СН3О- - нуклеофильный реагент, вызывает протекание реакции по нуклеофильному механизму

СНСН + СН3О- СН=СН-ОСН3 СН2-СН-О-СН3 + ОН-

б) присоединение HCN

также протекает по нуклеофильному механизму

СНСН + CN- СН=СН-СN CН2=СН-CN + CN-

Протеканию реакции способствует наличие ионов СN- (источником которых является катализатор). Реакции нуклеофильного присоединения протекают труднее при наличии электроно-донорных заместителей.

в) присоединение уксусной кислоты

4) Гидратация ацетиленовых углеводородов (реакция Кучерова)

II. Реакции окисления

Хорошо окисляются сильными окислителями за счет разрыва тройной связи с образованием двух молекул карбоновых кислот

Если тройная связь у конца цепи, то образуется одна молекула карбоновой кислоты и СО2.

III. Реакции полимеризации и конденсации

Ацетилен легко образует низкомолекулярные полимеры. В зависимости от условий реакция полимеризации может привести к образованию различных продуктов.

1. Образование ароматических углеводородов.

2. Циклическая полимеризация 4-х молекул происходит в присутствии карбонила никеля:

3. Линейная ступенчатая полимеризация.

Конденсация с альдегидами или кетонами

а) реакция Фаворского

б) реакция Реппе

Реакции замещения водорода металлом - образование ацетиленидов

1. Образование ацетиленидов щелочных и щелочно-земельных металлов.

а) взаимодействие с металлическим натрием;

б) взаимодействие с Мg-органическими соединениями:

2. Взаимодействие с гидроокисями или солями тяжелых металлов:

Ацетилениды тяжелых металлов водой не разлагаются, мало химически активны, но в сухом виде взрывчаты (ацетилен нельзя пропускать через медные трубы). Реакции образования ацетиленидов металлов применяются для качественного и количественного определения углеводородов с концевой тройной связью.

Отдельные представители: ацетилен, винилацетилен.

Лекция 6. Галогенпроизводные алифатических углеводородов (алкил- и алкенилгалогениды и др.)

Это производные углеводородов, у которых один или несколько атомов водорода замещены на атом галогена. Они имеют огромное значение в науке и технике, т.к. они гораздо активнее углеводородов, с их помощью легко осуществляются переходы к другим классам органических соединений.

Классификация

1. По строению углеродной цепи (предельные и непредельные);

2. По количеству атомов галогена (моно- и полигалогенопроизводные);

3. По положению галогена (первичные, вторичные, третичные);

4. По природе галогена (фтор-, хлор-, бром- и йодпроизводные).

Моно- и полигалогенопроизводные предельных углеводородов (кроме полифторпроизводных)

Моногалогенпроизводные

СН3Cl хлористый метил

СН3I йодистый метил

С2Н5Br бромистый этил

(СН3)3СI йодистый третбутил и т.д.

Полигалогенопроизводные

СН2Cl2 хлористый метилен

CHCl3 хлороформ (хлористый метин)

CCl4 четыреххлористый углерод

CH3-CHCl2 хлористый этилиден

CH2Cl-CH2Cl хлористый этилен и т.д.

Изомерия

На примере монохлорпроизводных бутана

СН3-СН2-СН2-СН2-Cl хлористый бутил (1)

хлористый вторбутил (2)

хлористый изобутил (3)

хлористый третбутил (4)

(1,3) - изомерия цепи

(1,2), (3,4) - изомерия положения

Номенклатура

Названия перечисленных моно- и полигалогенопроизводных составлены по радикально-функциональной номенклатуре (IUPAC), согласно которой к названию радикала добавляется название функции. Исключение представляют тригалогензамещенные метана (хлороформ). Более сложные соединения следует называть, пользуясь заместительной номенклатурой (IUPAC). Согласно ее правилам соединение называется как производное соответствующего углеводорода, пронумерованного со стороны галогена, который в названии обозначается приставкой (непредельные нумеруют со стороны двойной связи).

1 2 3 4 5

СН3- СН- СН2- СН- СН3 2-бром-4-метилпентан

Br СН3

Способы получения

1. Действие галогенов на углеводороды (см. свойства углеводородов). Применяется, в основном, для получения полигалогенопроизводных.

2. Присоединение Нhal к непредельным углеводородам (см. свойства непредельных УВ).

3. Замещение группы ОН в спиртах на Hal (препаративный метод получения моногалогеналкилов):

а) взаимодействие с галогенводородными кислотами

СН3ОН + HCl Н2О + СН3Cl

б) взаимодействие спиртов с галоидными соединениями фосфора

Надо иметь в виду, что первичные спирты взаимодействуют с PCl3 с образованием сложных эфиров фосфористой кислоты, например,

в) взаимодействие с хлористым тионилом:

4. Замещение на галоген кислорода в альдегидах и кетонах

5. Из серебряных солей карбоновых кислот под действием галогена

6. Получение тригалогензамещенных метана из альдегидов или кетонов, имеющих в -положении метильную группу:

Действие галогена в присутствии щелочи приводит к максимальному галоидированию в -положение.

7. Действие галоидных солей на галоидные алкилы (реакция Финкельштейна)

Применяется для получения труднодоступных йодистых и фтористых алкилов. Фтор слишком активен, а йод недостаточно активен для прямого галоидирования.

Электронное строение

Галогенопроизводные отличаются по электронному строению от углеводородов наличием очень полярной связи C-Hal. Полярность связей С-Hal увеличивается от I к F, а поляризуемость, наоборот, уменьшается, т.к. F обладает очень высокой электроотрицательностью и прочно удерживает свои электронные оболочки, а I исключительно сильно поляризуется, что подтверждается высокими показателями преломления у йод-производных и низким показателем преломления у фторпроизводных.

Наличие в молекулах галогенопроизводных полярной связи С-Hal приводит к появлению индукционного эффекта.

Рассмотрим на примере хлористого этила.

Электронная плотность смещается под действием электроотрицательного атома галогена по цепочке -связей.

У последующих атомов углерода возникают постепенно уменьшающиеся положительные заряды.

+/>+//>+///

Более полярными становятся также связи С-Н, особенно соседние с галогеном. Индукционный эффект, передаваемый по цепочке простых связей, быстро затухает, т.к. -электроны прочно связаны с ядрами и слабо поляризуются. Индукционный эффект передается по цепочке ближайших 4-5 связей.

Физические свойства

1. Галогенопроизводные предельных углеводородов - бесцветные вещества, в воде не растворяются, легко растворяются в спирте и эфире, низшие представители обладают сладковатым наркотическим запахом.

Агрегатное состояние: газообразные

Монофторпроизводные С14 СН3F-C4H9F

Монохлорпроизводные С12 СН3Сl-C2H5Cl

Монобромпроизводные С1 СН3Br

а также полифторпроизводные С12

Большая часть галогенопроизводных - жидкости. Йодиды - только жидкие и твердые.

2. Температуры плавления, кипения, плотность галогенопроизводных возрастают от фтор-производных к йод=производным (т.е. по мере увеличения атомного веса галогена и молекулярного веса галогенопроизводных). Очень большой плотностью обладают полийодпроизводные, например, йодоформ имеет плотность СНI3 - 4,0, четырехйодистый углерод СI4 - 4,3.

3. Жидкие галогенопроизводные являются прекрасными растворителями различных органических веществ.

4. Важное свойство галогенпроизводных - высокая летучесть, более высокая, чем у спиртов и углеводородов, имеющих близкую молекулярную массу.

Формула

М

Ткип.,0С

С2Н5Br

109

38

n-C7H16

100

98

C2H5OH

46

78

Исходя из этого, галогенопроизводные применяются как:

а) анестезирующие вещества (хлороформ, хлористый этил);

б) хладоагенты в холодильниках (фреон 12 - ССl2F2, фреон 22 - СHClF2).

Химические свойства

Вещества очень реакционноспособные, благодаря наличию полярной связи С-Hal. Наиболее высокой реакционной способностью обладают легко поляризующиеся йодистые алкилы. Наименьшей активностью - фтористые алкилы.

Атом углерода в связи. имеет частичный положительный заряд, поэтому подвергается атаке нуклеофильных (отрицательно заряженных) реагентов.

I.Реакции нуклеофильного замещения

1. Гидролиз под действием воды или водной щелочи

При гидролизе полигалогенопроизводных могут образовываться многоатомные спирты, альдегиды, кетоны, кислоты.

2. Аммонолиз (взаимодействие с аммиаком)

3. Взаимодействие со спиртами и алкоголятами

4. Взаимодействие с солями органических и неорганических кислот

В зависимости от того, через какие промежуточные стадии идет реакция гидролиза галогенопроизводных, различают мономолекулярные реакции нуклеофильного замещения SN1 и биомолекулярные SN2 (substitution замещение). Реакции SN1 типичны для третичных галоидных алкилов. Они протекают через промежуточную стадию расщепления галоидного алкила на ионы.

Суммарная скорость реакции определяется медленной стадией (1), т.е. зависит только от способности галоидного алкила ионизироваться. Поэтому скорость реакции прямо пропорциональна концентрации галоидного алкила и не зависит от природы и концентрации нуклеофильного реагента.

Реакции SN2 наиболее часто наблюдаются у первичных галоидных алкилов. Протекают через стадию так называемого “переходного комплекса” без предварительного расщепления галоидного алкила на ионы.

Скорость такой реакции зависит как от концентрации галоидного алкила, так и от концентрации нуклеофильного реагента ОН- (это реакция второго порядка), реакция бимолекулярного нуклеофильного замещения.

Вторичные галогенопроизводные могут реагировать как по механизму SN1 (но медленнее, чем третичные галоидные алкилы), так и по механизму SN2 (но медленнее, чем первичные галоидные алкилы).

a. Реакции отщепления галогена

1. Отщепление галогена атомарным водородом по методу Степанова

Метод используется для количественного определения галогенов в органических соединениях.

2.Отщепление галогенов под действием металлов:

а) реакция Вюрца

СH3Br + 2Na + Br-CH3 2NaBr + CH3-CH3

б) получение этиленовых углеводородов

в) получение циклических углеводородов

г) под действием магния

III. Реакции отщепления галогеноводорода

1. При нагревании

СH3-CH2Cl HCl + CH2=CH2

2. Под действием спиртового раствора щелочи

Реакция нуклеофильного отщепления протекает по механизму ЕN2.

У третичных галоидных алкилов идет, в основном, по механизму ЕN1.

Такие реакции обычно сопутствуют реакциям нуклеофильного замещения.

Лекция 7. Галогенопроизводные непредельных углеводородов

Подразделяются на три типа.

I. Галогенопроизводные винилового типа: атом галогена находится у непредельного атома углерода.

СН2=СНCl хлористый винил

СН2=ССl2 хлористый винилиден

хлорпрен

II. Галогенпроизводные аллильного типа (галоген в -положении к двойной связи).

СН2=СН-СН2-Сl хлористый аллил

СН3-СН=СН-СН2Cl хлористый кротил

III. Галогенпроизводные с изолированным расположением двойной связи и Hal.

СН2=СН-СН2-СН2-Cl 4-хлор-1-бутен

В этом случае галоген не подвергается влиянию -связи и ведет себя так же, как в предельных галогеноводородах.

I. Галогенопроизводные винильного типа.

Получение

1) Присоединение одной молекулы ННal к ацетиленовым углеводородам.

2) Пиролиз полигалогенопроизводных

3) Действие недостатка спиртового раствора КОН на полигалогенопроизводные

Особенности свойств

1. Соединения винильного типа проявляют инертность в реакциях нуклеофильного замещения. Причина заключается в особенности электронного строения. Графически это можно показать следующим образом:

Хлор расположен через одну простую связь от двойной и имеет 3 неподеленных пары электронов. Наблюдается эффект p--сопряжения, т.е. перекрытие р-электронной орбитали хлора с -орбиталями атома углерода. В результате часть электронного облака хлора оттягивается в сторону двойной связи и дипольный момент связи C-Сl уменьшается.

2. Реакции присоединения по двойной связи идут в соответствии с правилом Марковникова, т.к.

Более устойчив катион (1), т.к. электродонорная метильная группа частично компенсирует положительный заряд.

3. Очень легко полимеризуются.

Полимеры на основе винилхлорида находят широчайшее применение для изготовления пленок, пластмассовых изделий. Они устойчивы к действию влаги, кислот, щелочей, нефтепродуктов, обладают хорошими электроизоляционными свойствами.

II. Соединения аллильного типа

Получение

1) Реакция Шешукова - высокотемпературное хлорирование

Особенности свойств

1. Обладают высокой активностью в реакциях нуклеофильного замещения. Реагируют только по механизму SN1. Объясняется это исключительно большой устойчивостью образующегося промежуточного аллильного катиона.

т.е. в этом катионе положительный заряд распределен равномерно между крайними атомами углерода.

Фактическое строение мезомерного аллильного катиона следующее:

+

2-СН-СН2

Это подтверждено исследованием строения продуктов реакции замещения хлора в хлористом аллиле методом меченых атомов,

присоединение реагента происходит в равной мере по обоим концам катиона.

2. Способны к реакциям электрофильного присоединения.

Реакции присоединения ННal к хлористому аллилу происходят в соответствии с правилом Марковникова.

Перечисленные реакции используются в промышленном органическом синтезе, в частности, для получения глицерина из хлористого аллила.

Фторпроизводные предельных углеводородов

Получение

Обычные методы непригодны из-за большой активности фтора.

1) Замещение других галогенов в галогенопроизводных углеводородов на фтор при действии различных соединений фтора. Реакция Финкельштейна.

(практически расходуется HF, а SbF3 играет роль переносчика фтора)

2) Прямое фторирование предельных углеводородов, разбавленных азотом или СCl4, действием фтора в присутствии катализаторов - переносчиков фтора. Образование продуктов полного фторирования - перфторуглеводородов.

3) электрохимическое фторирование (Саймонс) - электролиз органических соединений, растворенных в безводной плавиковой кислоте.

С7Н16 + 16HF C7F16 + 16H2

С4Н9COOH + 10HF C4F10 + CO2 + 10H2

Условия электролиза - угольный анод, стальная ванна. На аноде происходит образование свободных атомов фтора

F- - F.,

которые действуют далее на углеродный радикал или углеводород.

4) Получение ненасыщенных полифторпроизводных путем отщепления HHal от фреонов.

Это соединение легко полимеризуется, образуя полимерные перфторуглеводороды.

Отличие в физических и химических свойствах фторуглеводородов

Монофторуглеводороды токсичны и сравнительно малоустойчивы, легко отщепляют HF, могут давать реакции замещения фтора, если же ввести два или более атома фтора к одному углеродному атому, то в результате понижается токсичность и резко повышается их устойчивость. Особенно это относится к полностью фторированным углеводородам, которые обладают следующими особенностями:

1) совершенно не токсичны;

2) не изменяются при нагревании до 400-5000С и только при красном пламени разлагаются на CF4 и C;

3) не изменяют своих свойств при низких температурах -50 - +700С;

4) не подвергаются действию концентрированных кислот, щелочей и даже царской водки;

5) не подвергаются инициированному окислению кислородом (т.е.не старятся);

6) не подвергаются разрушительному действию бактерий;

7) обладают очень малой адгезией, т.к. имеют незначительные силы межмолекулярного взаимодействия.

Все эти особенности свойств обуславливаются очень высокой электроотрицательностью фтора и малым объемом атома фтора. Связь C-F сильно поляризована, энергия связи очень велика, а межатомные расстояния малы. Поэтому атомы фтора очень близко расположены друг к другу и полностью экранируют атомы углерода, защищая их от химических воздействий.

Лекция 8. Спирты (оксисоединения)

Производные углеводородов, получаемые замещением одного или нескольких атомов водорода на группу ОН (окси-группа).

Классификация

1. По строению цепи (предельные, непредельные).

2. По атомности - одноатомные (одна группа ОН), многоатомные (2 и более групп ОН).

3. По положению группы ОН (первичные, вторичные, третичные).

Предельные одноатомные спирты

Общая формула СnH2n+1OH

Гомологический ряд

Радикально-функциональная номенклатура, карбинальная

СН3ОН

Метиловый спирт, карбинол, метанол

С2Н5ОН

Этиловый спирт, метилкарбинол, этанол

С3Н7ОН

Пропиловый спирт, этилкарбинол,

1-пропанол

Изопропиловый спирт, диметилкарбинол,

2-пропанол

С4Н9ОН

СН3-СН2-СН2-СН2ОН

Бутиловый спирт, пропилкарбонат,

1-бутанол

Вторичный бутиловый спирт, метилэтилкарбинол, 2-бутанол

Изобутиловый спирт, изопропилкарбинол,

2-метил-1-пропанол

Третичный бутиловый спирт, триметилкарбинол, диметилэтанол

По систематической номенклатуре (IUPAC) спирты называют по углеводородам, соответствующим самой длинной цепочке углеродных атомов с добавлением окончания “ол”,

Нумерацию начинают с того конца, ближе к которому расположена группа ОН.

Изомерия

1. Структурная - изомерия цепи

изомерия положения окси-группы

2. Пространственная - оптическая, если все три группы у углерода, связанного с группой ОН, разные, например:

Получение

1. Гидролиз галоидных алкилов (см. свойства галогенопроизводных).

2. Металлорганический синтез (реакции Гриньяра):

а) первичные спирты получают действием металлорганических соединений на формальдегид:

СН3-MgBr + CH2=O CH3-CH2-O-MgBr CH3-CH2OH + MgBr (OH)

б) вторичные спирты получают действием металлорганических соединений на другие альдегиды:

в) третичные спирты - действием металлорганических соединений на кетоны:

3. Восстановление альдегидов, кетонов:

4. Гидратация олефинов (см. свойства олефинов)

Электронное и пространственное строение

Рассмотрим на примере метилового спирта

Угол должен быть 900, на деле он 110028/. Причина в высокой электроотрицательности кислорода, который притягивает к себе электронные облака связей С-Н и О-С орбиталей.

Так как у водорода гидроксильной группы его единственный электрон оттянут кислородом, ядро водорода приобретает способность притягиваться к другим электроотрицательным атомам, имеющим неподеленные электроны (атомам кислорода).

Физические свойства

С110 - жидкости, С11 и больше - твердые вещества.

Температура кипения спиртов значительно выше, чем у соответствующих углеводородов, галогенопроизводных и простых эфиров. Это явление объясняется тем, что молекулы спиртов ассоциированы за счет образования водородных связей.

Образуются ассоциаты из 3-8- молекул.

При переходе в парообразное состояние водородные связи разрушаются, на то тратится дополнительная энергия. Температура кипения из-за этого повышается.

Ткип: у первичных > у вторичных > у третичных

Тпл - наоборот: у третичных > у вторичных > у первичных

Растворимость. Спирты растворяются в воде, образуя при этом водородные связи с водой.

С13 - смешиваются неограниченно;

C4-C5 - ограниченно;

высшие - нерастворимы в воде.

Плотность спиртов <1.

Спектральная характеристика спиртов

Дают характерные полосы поглощения в ИК-области. 3600 см-1 (поглощает неассоциированная ОН-группа) и 3200 см-1 (при образовании водородных связей - ассоциированная ОН-группа).

Химические свойства

Обуславливаются наличием группы ОН. Она определяет важнейшие свойства спиртов. Можно выделить 3 группы химических превращений с участием группы ОН.

I. Реакции замещения водорода в окси-группе.

1) Образование алкоголятов

а) действие щелочных металлов и некоторых других активных металлов (Mg, Ca, Al)

Алкоголяты нацело разлагаются водой с образованием спиртов и щелочи.

C2H5Ona + HOH C2H5OH + NaOH

б) Реакция Чугаева-Церевитинова - действие магнийорганических соединений.

C2H5OH + CH3MgBr C2H5OmgBr + CH4

Реакция применяется в анализе спиртов для определения количества “подвижного водорода”. В этих реакциях спирты проявляют очень слабые кислотные свойства.


Подобные документы

  • Окисление органических соединений и органический синтез. Превращение, протекающее с увеличением степени окисления атома. Соединения переходных металлов. Реакции окисления алкенов с сохранением углеродного скелета. Окисление циклических соединений.

    лекция [2,2 M], добавлен 01.06.2012

  • Основные операции при работе в лаборатории органической химии. Важнейшие физические константы. Методы установления строения органических соединений. Основы строения, свойства и идентификация органических соединений. Синтезы органических соединений.

    методичка [2,1 M], добавлен 24.06.2015

  • Использование магнийорганических соединений и химия элементоорганических соединений. Получение соединений различных классов: спиртов, альдегидов, кетонов, эфиров. История открытия, строение, получение, реакции и применение магнийорганических соединений.

    курсовая работа [34,4 K], добавлен 12.12.2009

  • Период зарождения и развития химических теорий. Пути развития научных и технологических разработок в области создания лекарственных средств. Предмет медицинской химии. Фундаментальные проблемы органической химии. Органические соединения мышьяка.

    презентация [69,8 K], добавлен 23.10.2013

  • Общая характеристика углерода как химического элемента, его основные свойства, особенности строения. Типы химических связей: ковалентная, ионная и водородная. Способы разрыва химической связи. Электронные эффекты. Кислоты и основания, их сравнение.

    контрольная работа [180,4 K], добавлен 05.08.2013

  • Краткий исторический обзор развития органической химии. Первые теоретические воззрения. Теория строения А.М. Бутлерова. Способы изображения органических молекул. Типы углеродного скелета. Изомерия, гомология, изология. Классы органических соединений.

    контрольная работа [216,8 K], добавлен 05.08.2013

  • Общая характеристика, краткие сведения об истории открытия элементов и их распространённости в природе. Физико-химические свойства железа, кобальта и никеля. Свойства соединений железа в степенях окисления. Цис-, транс-изомерия соединений платины.

    реферат [36,7 K], добавлен 21.09.2019

  • Химия как наука о веществах, их строении, свойствах и превращениях. Основные понятия химии. Химическая связь как взаимодействие двух атомов, осуществляемое путем обмена электронами. Сущность химических реакций, реакции окисления и восстановления.

    реферат [95,3 K], добавлен 05.03.2012

  • Степени окисления, электронные конфигурации, координационные числа и геометрия соединений хрома. Характеристика комплексных соединений. Многоядерные комплексы хрома, их электронные соединения. Фосфоресцирующие комплексы, высшие состояния окисления хрома.

    курсовая работа [1,1 M], добавлен 06.06.2010

  • Определение типа химической связи в соединениях. Особенности изменения электроотрицательности. Смещение электронной плотности химической связи. Понятие мезомерного эффекта. Устойчивость сопряженных систем, их виды. Возникновение циклических соединений.

    презентация [1,8 M], добавлен 10.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.