Фундаментальные принципы и законы
Физика как фундаментальная отрасль естествознания. Концепция атомизма и универсальность физических законов. Проблема создания единой фундаментальной теории. Концепции материи, движения, пространства и времени. Принцип относительности и инвариантности.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 29.12.2009 |
Размер файла | 445,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
78
Содержание
- 1. Фундаментальные принципы и законы
- 1.1 Физика - фундаментальная отрасль естествознания
- 1.1.1 Физика - основа естественных наук
- 2. Основные этапы развития физики
- 2. Концепция атомизма и универсальность физических законов
- 3. Фундаментальные взаимодействия
- 3.1 Виды фундаментальных взаимодействий
- 3.2 Иерархия структур
- 3.3 Принцип тождественности
- 3.4 Проблема создания единой фундаментальной теории
- 4. Концепции материи, движения, пространства и времени
- 5. Принцип относительности и инвариантность
- 6. Свойства пространства, времени и законы сохранения
- 7.1 Законы динамики
- 7.2 Классическая механика и лапласовский детерминизм
- 8. Статистические и термодинамические свойства макросистем
- 8.1 Развитие представлений в природе тепловых явлений
- 8.2 Термодинамическое и статистическое описание свойств макросистем
- 8.3 Основные положения молекулярно-кинетическик представлений
- 9. Термодинамические законы
- 10. Электромагнитная концепция
- 10.1 Развитие полевой концепции описания свойства материи
- 10.2 Концепции дальнодействия и близкодействия
- 10.3 Дискретность и непрерывность материи
- 10.4 Сущность электромагнитной теории Максвелла
- 11. Корпускулярно-волновые свойства света
- 11.1 Развитие представлений о свете
- 11.2 Волновые свойства
- 11.3 Квантовые свойства света
- Список литературы
1. Фундаментальные принципы и законы
1.1 Физика - фундаментальная отрасль естествознания
1.1.1 Физика - основа естественных наук
Огромное ветвистое древо естествознания выросло не сразу - оно медленно произрастало из натурфилософии - философии природы, представляющей собой умозрительное истолкование природы, рассматриваемой в ее целостности. Ранняя древнегреческая натурфилософия досократовского периода активно развивалась в ионийской школе и явилась по существу первой исторической формой философии вообще. Ионийская школа древнегреческой философии, отличающаяся стихийно-материалистическими взглядами, возникла в VI-V вв. до н.э. в ионийских колониях Греции. Ее представители - крупные мыслители древности: Фалес, Анаксимандр, Анаксимен (Милетская школа), Гераклит Эфесский, Диоген Аполлонийский - руководствовались основной идеей о единстве сущего, происхождении всех вещей из некоторого первоначала (воды, воздуха, огня), а также о всеобщей одушевленности материи.
Интерес к природе как объекту познания вызвал новый расцвет натурфилософии в эпоху Возрождения. Этот расцвет связан с Дж. Бруно, Б. Телезио, Т. Кампанеллой и другими известными мыслителями. Особое развитие натурфилософия получила в немецкой классической философии Фридриха Шеллинга (1775 - 1854), взгляды которого основывались на принципах объективно-идеалистической диалектики природы как живого организма.
Наряду с умозрительными и в определенной степени фантастическими представлениями натурфилософия содержала глубокие идеи диалектической трактовки природных явлений. Поступательное развитие экспериментального естествознания, и прежде всего физики, привело к постепенному вытеснению натурфилософии естественно-научными знаниями, базирующимися на опытах, на экспериментальных данных. Так в недрах натурфилософии зарождалась физика - наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира. Вследствие такой общности физика и ее законы лежат в основе всего естествознания. На стыке физики и других естественных наук возникли биофизика, астрофизика, геофизика, физическая химия и др. В соответствии с многообразием исследуемых форм материи и ее движения физика подразделяется на физику элементарных частиц, атомных ядер, атомов, молекул, твердого тела, плазмы и т.д.
Слово "физика" появилось еще в древние времена. В переводе с греческого оно означает "природа". Одно из основных сочинений древнегреческого философа и ученого Аристотеля (384-322 до н. э), ученика Платона, так и называлось "физика". Физика тех времен, конечно, носила натурфилософский характер. Тем не менее, предвидя развитие физики, Аристотель писал: "Наука о природе изучает преимущественно тела и величины, их свойства и виды движений, а кроме того, начала такого рода бытия".
Разнообразные формы движения материи изучаются различными науками, в том числе и физикой. Предмет физики, как, впрочем, и любой науки, может быть раскрыт по мере его детального изложения. Дать строгое определение предмета физики довольно сложно: границы между физикой и смежными дисциплинами весьма условны. На современной стадии развития определение физики как науки о природе должно дополняться более конкретным содержанием. В частности, советский физик академик А.Ф. Иоффе (1880 - 1960) определил физику как науку, изучающую общие свойства и законы движения вещества и поля. Действительно, в настоящее время общепризнано, что все взаимодействия обусловливаются посредством полей, например гравитационных, электромагнитных, полей ядерных сил. Поле наряду с веществом - одна из форм существования материи.
"Высшая задача физики состоит в открытии наиболее общих элементарных законов, из которых можно было бы логически вывести картину мира", - так считал Эйнштейн.
Одна из задач физики - выявление самого простого и самого общего в природе. В современном представлении самое простое - так называемые первичные элементы: молекулы, атомы, элементарные частицы, поля и т.п. А наиболее общими свойствами материи принято считать движение, пространство и время, массу, энергию и др. Конечно, физика изучает и очень сложные явления и объекты. Однако при изучении сложное сводится к простому, конкретное - к общему. При этом устанавливаются универсальные законы, справедливость которых подтверждается не только в земных условиях и в околоземном пространстве, но и во всей Вселенной. В этом заключается один из существенных признаков физики как фундаментальной науки.
Учитывая определяющую роль физики и ее значение в науке, ее называют основой и лидером современного естествознания. Физика занимает особое место среди естественных наук.
Вопросами классификации и иерархии многочисленных естественных наук занимались ученые разных времен. Так, одна из первых попыток классификации естественных наук была сделана выдающимся французским физиком Андре Мари Ампером (1775-1836). Уже к тому времени общее число естественных наук превышало 200. Общую картину наук о природе Ампер представил в виде единой системы, состоящей из различных по характеру и глубине идей, а также из разных экспериментальных сведений. В такой классификации физика располагалась на первом уровне как наука наиболее фундаментальная, а химия - на втором, как бы вытекающая из физики.
Гораздо позднее - в середине XIX в. - на основе тщательного изучения истории развития наук немецкий химик Фридрих Кекуле (1829-1896) предложил иерархию естественных наук в форме четырех ее последовательных основных ступеней: механика, физика, химия, биология. В такой иерархии можно рассматривать молекулярную физику, термодинамику (учение о теплоте) как механику молекул, химию - физикой атомов, а биологию - химией белков или белковых тел.
Вопросы классификации и взаимосвязи естественных наук обсуждаются и по сей день. При этом существуют разные точки зрения. Одна из них - все химические явления, строение вещества и его превращение можно объяснить на основании физических знаний; ничего специфического в химии нет. Другая точка зрения - каждый вид материи и каждая форма материальной организации (физическая, химическая, биологическая) настолько обособлены, что между ними нет прямых связей. Конечно, такие разные точки зрения далеки от истинного решения сложнейшего вопроса классификации и иерархии естественных наук. Вполне очевидно одно - несмотря на то, что физика - фундаментальная отрасль естествознания, каждая из естественных наук (при одной и той же общей задаче изучения природы) характеризуется своим предметом исследования, своей методикой исследования и базируется на своих законах, не сводимых к законам других отраслей науки. И серьезные достижения в современном естествознании наиболее вероятны при успешном сочетании всесторонних знаний, накопленных в течение продолжительного времени и в физике, и в химии, и в биологии, и во многих других естественных науках.
Возвращаясь к мысли, изложенной в начале этого параграфа, можно сказать: натурфилософия породила физику. Однако также определенно можно утверждать и другое: физика выросла из потребностей механики (развитие механики у древних греков, например, было вызвано запросами строительной и военной техники того времени). Техника в свою очередь определяет направление физических исследований (например, в свое время задача создания наиболее экономичных тепловых двигателей вызвала бурное развитие термодинамики). С другой стороны, от развития физики зависит технический уровень производства. Физика - база для создания новых отраслей техники (электронной техники, ядерной техники и др.).
Физика тесно связана и с философией, из недр которой она вышла. Такие крупные открытия в области физики, как закон сохранения и превращения энергии, второе начало термодинамики, соотношение неопределенностей и другие, являлись и являются ареной острой борьбы между сторонниками разных философских течений. Научные открытия служат реальной почвой для многих философских мыслей. Изучение открытий и их философское обобщение играют большую роль в формировании научного мировоззрения.
2. Основные этапы развития физики
Всю историю физики можно условно разделить на три основных этапа:
древний и средневековый,
классической физики,
современной физики.
Первый этап развития физики иногда называют донаучным. Однако такое название нельзя считать полностью оправданным: фундаментальные зерна физики и естествознания в целом были посеяны еще в глубокой древности. Это самый длительный этап. Он охватывает период от времен Аристотеля до начала XVII в., поэтому и называется древним и средневековым этапом.
Начало второго этапа - этапа классической физики - связывают с одним из основателей точного естествознания - итальянским ученым Галилео Галилеем и основоположником классической физики, английским математиком, механиком, астрономом и физиком Исааком Ньютоном. Второй этап продолжался до конца XIX в.
К началу XX столетия появились экспериментальные результаты, которые трудно было объяснить в рамках классических представлений. В этой связи был предложен совершенно новый подход - квантовый, основанный на дискретной концепции. Квантовый подход впервые ввел в 1900 г. немецкий физик Макс Планк (1858-1947), вошедший в историю развития физики как один из основоположников квантовой теории. Его трудами открывается третий этап развития физики - этап современной физики, включающий не только квантовые, но и классические представления.
Дадим краткую характеристику каждого из этапов. Принято считать, что первый этап открывает геоцентрическая система мировых сфер, разработанная Аристотелем. Учение о геоцентрической системе мира начиналось с геоцентрической системы кольцевых мироустроений еще гораздо раньше - в VI в. до н.э. Ее предложил Анаксимандр (ок.610 - после 547 до н. э), древнегреческий философ, представитель Милетской школы. Данное учение было развито Евдоксом Книдским (ок.406 - ок.355 до н. э), древнегреческим математиком и астрономом. Геоцентрическая система Аристотеля родилась, таким образом, на подготовленной его предшественниками идейной почве.
Переход от эгоцентризма - отношения к миру, которое характеризуется сосредоточенностью на своем индивидуальном "я", к геоцентризму - первый и, пожалуй, самый трудный шаг на пути зарождения ростков естествознания. Непосредственно видимая полусфера неба, ограниченная местным горизонтом, была дополнена аналогичной невидимой полусферой до полной небесной сферы. Мир стал как бы более завершенным - специфическим, но оставаясь ограниченным небесной сферой. Соответственно и сама Земля, противопоставленная остальной (небесной) сферической Вселенной как постоянно занимающая в ней особое, центральное положение и абсолютно неподвижная, стала считаться сферической. Пришлось признать не только возможность существования антиподов - обитателей диаметрально противоположных частей земного шара, но и принципиальную равноправность всех земных обитателей мира. Такие представления, носившие в основном умозрительный характер, подтверждались гораздо позднее - в эпоху первых кругосветных путешествий и великих географических открытий, т.е. на рубеже XV и XVI вв., когда само геоцентрическое учение Аристотеля с канонической системой идеальных равномерно вращающихся небесных сфер, сочлененных друг с другом своими осями вращения, с принципиально различной физикой или механикой для земных и небесных тел уже доживало свои последние годы.
Почти полторы тысячи лет отделяет завершенную геоцентрическую систему греческого астронома Клавдия Птоломея (ок.90 - ок.160) от достаточно совершенной гелиоцентрической системы (рис.1) польского математика и астронома Николая Коперника (1473-1543). Вершиной гелиоцентрической системы можно считать законы движения планет, открытые немецким астрономом Иоганном Кеплером (1571-1630), одним из творцов астрономии нового времени.
Рис.1. Система мира по Копернику (в центре Солнце)
Астрономические открытия Галилео Галилея и его физические эксперименты, а также общие динамические законы механики вместе с универсальным законом всемирного тяготения, сформулированные Исааком Ньютоном, положили начало классическому этапу развития физики.
Между названными этапами нет четких границ. Для физики и естествознания в целом характерно в большей степени поступательное развитие: законы Кеплера - венец гелиоцентрической системы с весьма длительной историей, начавшейся еще в древние времена; законам Ньютона предшествовали законы Кеплера и труды Галилея; Кеплер открыл законы движения планет в итоге логически и исторически естественного перехода от геоцентризма к гелиоцентризму, но не без эвристических идей аристотелевской механики.
Механика Аристотеля разделялась на земную и небесную, т.е. не обладала надлежащим принципиальным единством: аристотелевское взаимное противопоставление Земли и Неба сопровождалось принципиальной противоположностью относящихся к ним законов его механики, которая тем самым оказалась в целом внутренне противоречивой, несовершенной.
Галилей опроверг аристотелевское противопоставление Земли и Неба. Он предложил применять закон инерции Аристотеля, характеризующий равномерное движение небесных тел вокруг Земли, для земных тел при их свободном движении в горизонтальном направлении. Мысленно расчленяя всевозможные земные тела на отдельные части, он установил для них закон одинаково быстрого (или одинаково равномерно ускоренного) свободного падения независимо от их массы, когда свободное падение в вертикальном направлении к центру Земли происходит в идеальных условиях, без какого бы то ни было сопротивления, т.е. в пустоте. Этот закон находится в противоречии с канонизированным аристотелевским учением, в соответствии с которым "природа не терпит пустоты", и весомые тела падают в реальных условиях под действием присущей им силы тяжести на самом деле тем быстрее, чем больше их массы.
Кеплер и Галилей, отталкиваясь таким образом от первоначальных представлений, радикально пересмотрели всю механику. В результате перехода от геоцентризма к гелиоцентризму они пришли к своим кинематическим законам, которые предопределили принципиально единую для земных и небесных тел механику Ньютона со всеми сформулированными им классическими динамическими законами, включая универсальный закон всемирного тяготения. При этом из "Математических начал натуральной философии" - фундаментального труда Исаака Ньютона - можно заключить, что его динамические законы не только следуют из соответствующих кинетических законов Кеплера и Галилея, но и сами могут быть положены в основу всех трех кинематических законов Кеплера и обоих кинематических законов Галилея, а также всевозможных теоретически ожидаемых отклонений от них из-за сложного строения и взаимных гравитационных возмущений взаимодействующих тел.
Законы Кеплера послужили основой для открытия новых планет. Так, по результатам наблюдений отклонений в движении планеты Уран, сделанных в 1781 г. английским астрономом и оптиком Уильямом Гершелем (1738-1822), английский астроном и математик Джон Кауч Адамс (1819-1892) и французский астроном Урбен Жан Жозеф Леверье (1811-1877) независимо друг от друга и почти одновременно теоретически предсказали существование еще одной - заурановой планеты, которую обнаружил на небе в 1846 г. немецкий астроном Иоганн Галле (1812-1910). Эта планета носит название Нептун. Затем американский астроном Персиваль Ловелл (1855-1916) аналогично предсказал в 1905 г. существование еще одной заурановой планеты и организовал в созданной им обсерватории ее систематические поиски, в результате которых молодой американский любитель астрономии открыл в 1930 г. искомую новую планету - Плутон.
Стремительными темпами развивалась не только классическая механика Ньютона. Этап классической физики характеризуется также крупными достижениями и в других отраслях физики: термодинамике, молекулярной физике, оптике, электричестве, магнетизме и т.п. Ограничимся перечислением некоторых наиболее важных достижений. Были установлены опытные газовые законы. Предложено уравнение кинетической теории газов. Сформулирован принцип равномерного распределения энергии по степеням свободы, первое и второе начала термодинамики. Открыты законы Кулона, Ома и электромагнитной индукции. Явления интерференции, дифракции и поляризации света получили волновое истолкование. Установлены законы поглощения и рассеивания света.
Конечно, можно было бы назвать и другие не менее важные достижения, среди которых особое место занимает электромагнитная теория, разработанная выдающимся английским физиком Джеймсом Клерком Максвеллом. Максвелл является не только создателем классической электродинамики, но и одним из основоположников статистической физики. Он установил статистическое распределение молекул по скоростям, названное его именем. Развивая идеи Майкла Фарадея (1791-1867), он создал теорию электромагнитного поля (уравнения Максвелла), которая не только объясняла многие известные к тому времени электромагнитные явления, но и предсказала электромагнитную природу света. С электромагнитной теорией Максвелла вряд ли можно поставить рядом другую более значительную в классической физике. Однако и теория Максвелла оказалась не всемогущей.
В конце прошлого столетия при изучении спектра излучения абсолютно черного тела была экспериментально установлена закономерность распределения энергии в спектре излучения. Экспериментальные кривые распределения имели характерный максимум, который по мере повышения температуры смещался в сторону более коротких волн. В рамках классической электродинамики Максвелла не удалось объяснить закономерность распределения энергии в спектре излучения абсолютно черного тела. Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости абсолютно черного тела было найдено в 1900 г. Максом Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т.е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомные осцилляторы излучают энергию не непрерывно, а определенными порциями - квантами, причем энергия кванта пропорциональна частоте колебания.
Характерная особенность третьего этапа развития физики - современного этапа - заключается в том, что наряду с классическими широко внедряются квантовые представления, на основании которых объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц, и в связи с которыми возникли новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.
3. Концепция атомизма и универсальность физических законов
В истории физики наиболее плодотворный и важный для понимания явлений природы была концепция атомизма, согласно которой материя имеет прерывистое, дискретное строение, т.е. состоит из мельчайших частиц - атомов. До конца XIX в. в соответствии с концепцией атомизма считалось, что материя состоит из отдельных неделимых частиц - атомов. С точки зрения современного атомизма, электроны - "атомы" электричества, фотоны - "атомы" света и т.д.
Концепция атомизма, впервые предложенная древнегреческим философом Левкиппом вV в. до н.э., развитая его учеником Демокритом и затем древнегреческим философом-материалистом Эпикуром (341- 270 до н. э) и запечатленная в замечательной поэме "О природе вещей" римского поэта и философа Лукреция Кара (I в. до н. э), вплоть до нашего столетия оставалось умозрительной гипотезой, хотя и подтверждаемой косвенно некоторыми экспериментальными доказательствами (например, броуновским движением, законом Авогадро и др.).
Концепция атомизма - концепция дискретного, квантованного строения материи - пронизывает естествознание на протяжении всей его истории - от античной натурфилософии Левкиппа и Демокрита до современных учений физики, химии, биологии и других наук.
Многие ведущие физики и химики даже в конце XIX в. не верили в реальность существования атомов. К тому же многие экспериментальные результаты химии и рассчитанные в соответствии с кинетической теорией газов данные утверждали другое понятие для мельчайших частиц - молекулы.
В каком соотношении находятся между собой атомы и молекулы? Насколько те и другие малы? Действительно ли они существуют? Только в начале XX в. были получены ответы на поставленные вопросы.
Реальное существование молекул было окончательно подтверждено в 1906 г. опытами французского физика Жана Перрена (1870-1942) по изучению закономерностей броуновского движения. В современном представлении молекула - наименьшая частица вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями. Число атомов в молекуле составляет от двух (Н2, О2, HF, НCl) до сотен и тысяч (некоторые витамины, гормоны и белки). Атомы инертных газов часто называют одноатомными молекулами. Если молекула состоит из тысяч и более повторяющихся единиц (одинаковых или близких по строению групп атомов), ее называют макромолекулой.
Атом - составная часть молекулы, в переводе с греческого означает "неделимый". Действительно, вплоть до конца XIX в. неделимость атома не вызывала серьезных возражений. Однако физические опыты конца XIX и начала XX столетий не только подвергли сомнению неделимость атома, но и доказали существование его структуры. В своих опытах в 1897 г. английский физик Джозеф Джон Томсон (1856-1940) открыл электрон, названный позднее атомом электричества. Электрон, как хорошо известно, входит в состав электронной оболочки атомов. В 1898 г. Томсон определил заряд электрона, а в 1903 г. предложил одну из первых моделей атома.
Так постепенно, шаг за шагом, современная физика открывала совершенно новый мир физических объектов - микромир или мир микроскопических частиц, для которых характерны преимущественно квантовые свойства. Поведение и свойства физических тел, состоящих из микрочастиц и составляющих макромир, описываются классической физикой.
К двум совершенно разным объектам - микромиру и макромиру можно добавить и мегамир - мир звезд, галактик и Вселенной, расположенный за пределами Земли.
При оценке грандиозности масштабов Вселенной всегда возникает классический философский вопрос: конечна или бесконечна Вселенная? Понятием бесконечности оперируют в основном математики и философы. Физики-экспериментаторы, владеющие экспериментальными методами и техникой измерений, получают всегда конечные значения измеренных величин. Огромное значение науки и в особенности современной физики заключается в том, что к настоящему времени уже получены многие количественные характеристики объектов не только макро - и микромира, но и мегамира.
Пространственные масштабы нашей Вселенной и размеры основных материальных образований, в том числе и микрообъектов, можно представить из следующей таблицы, где размеры даны в метрах (для простоты приведены лишь порядки чисел, т.е. приближенные числа в пределах одного порядка):
Радиус космологического горизонта
или видимой нами Вселенной1026
Диаметр нашей Галактики1021
Расстояние от Земли до Солнца1011
Диаметр Солнца109
Размер человека100
Длина волн видимого света10-6- 10-7
Размер вирусов10-6-10-8
Диаметр атома водорода10-10
Диаметр атомного ядра10-15
Минимальное расстояние,
доступное сегодня нашим измерениям10-18
Из этих данных видно, что отношение самого большого к самому малого размеру, доступному сегодняшнему эксперименту, составляет 44 порядка. С развитием науки данное отношение постоянно возрастало и будет возрастать по мере накопления новых знаний об окружающем нас мире. Ведь "мир наш - только школа, где мы учимся познавать", - так сказал французский философ-гуманист Мишель Монтень (1533- 1592).
На примере развития классической механики можно убедиться в том, насколько длинный и тернистый путь лежит между аристотелевским противопоставлением земных и небесных явлений и представлением об универсальности законов механики и, в частности, закона всемирного тяготения, в одинаковой мере применимого как для земных, так и для небесных тел.
Каждый фундаментальный физический закон описывает вполне определенные объекты окружающего мира вне зависимости от того, где они находятся. Универсальность физических законов заключается в том, что они применимы к объектам всего мира, доступным нашим наблюдениям с помощью самых совершенных и чувствительных приборов. Атомы везде одинаковы - на Земле и в космосе.
Это подтверждается результатами исследований в космосе и наблюдаемыми спектрами электромагнитного излучения различных космических объектов. Законы сохранения импульса и энергии применимы для описания не только для движения тел на Земле, но и взаимодействия элементарных частиц, а также движения планет и звезд. Универсальность физических законов подтверждает единство природы и Вселенной в целом.
4. Фундаментальные взаимодействия
4.1 Виды фундаментальных взаимодействий
Многие основополагающие концепции современного естествознания прямо или косвенно связаны с описанием фундаментальных взаимодействий. Взаимодействие и движение - важнейшие атрибуты материи, без которых невозможно ее существование. Взаимодействие обусловливает объединение различных материальных объектов в системы, т.е. системную организацию материи. Многие свойства материальных объектов производны от их взаимодействия, являются результатом их структурных связей между собой и взаимодействий с внешней средой.
К настоящему времени известны четыре вида основных фундаментальных взаимодействий:
гравитационное;
электромагнитное;
сильное;
слабое.
Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Оно заключается во взаимном притяжении тел и определяется фундаментальным законом всемирного тяготения: между двумя точечными телами действует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними. Гравитационным взаимодействием определяется падение тел в поле сил тяготения Земли. Законом всемирного тяготения описывается, например, движение планет Солнечной системы, а также других макрообъектов. Предполагается, что гравитационное взаимодействие обусловливается некими элементарными частицами - гравитонами, существование которых к настоящему времени экспериментально не подтверждено.
Электромагнитное взаимодействие связано с электрическими и магнитными полями. Электрическое поле возникает при наличии электрических зарядов, а магнитное поле - при их движении. В природе существуют как положительные, так и отрицательные заряды, что и определяет характер электромагнитного взаимодействия. Например, электростатическое взаимодействие между заряженными телами в зависимости от знака заряда сводится либо к притяжению, либо к отталкиванию. При движении зарядов в зависимости от их знака и направления движения между ними возникает либо притяжение, либо отталкивание. Различные агрегатные состояния вещества, явление трения, упругие и другие свойства вещества определяются преимущественно силами межмолекулярного взаимодействия, которое по своей природе является электростатическим. Электромагнитное взаимодействие описывается фундаментальными законами электростатики и электродинамики: законом Кулона, законом Ампера и др. Его наиболее общее описание дает электромагнитная теория Максвелла, основанная на фундаментальных уравнениях, связывающих электрическое и магнитное поля.
Сильное взаимодействие обеспечивает связь нуклонов в ядре и определяет ядерные силы. Предполагается, что ядерные силы возникают при обмене между нуклонами виртуальными частицами - мезонами.
Наконец, слабое взаимодействие описывает некоторые виды ядерных процессов. Оно короткодействующее и характеризует все виды бета-превращений.
Обычно для количественного анализа перечисленных взаимодействий используют две характеристики: безразмерную константу взаимодействия, определяющую величину взаимодействия, и радиус действия (табл.1).
Таблица.1
Пo данным табл.1 видно, что константа гравитационного взаимодействия самая малая. Радиус действия его, как и электромагнитного взаимодействия, неограничен. Гравитационное взаимодействие в классическом представлении в процессах микромира существенной роли не играет. Однако в макропроцессах ему принадлежит определяющая роль. Например, движение планет Солнечной системы происходит в строгом соответствии с законами гравитационного взаимодействия.
Сильное взаимодействие отвечает за устойчивость ядер и распространяется только в пределах размеров ядра. Чем сильнее взаимодействуют нуклоны в ядре, тем оно устойчивее, тем больше его энергия связи, определяемая работой, которую необходимо совершить, чтобы разделить нуклоны и удалить их друг от друга на такие расстояния, при которых взаимодействие становится равным нулю.
С возрастанием размера ядра энергия связи уменьшается. Так, ядра элементов, находящихся в конце таблицы Менделеева, неустойчивы и могут распадаться. Такой процесс часто называется радиоактивным распадом.
Взаимодействие между атомами и молекулами имеет преимущественно электромагнитную природу.
Таким взаимодействием объясняется образование различных агрегатных состояний вещества: твердого, жидкого и газообразного. Например, между молекулами вещества в твердом состоянии взаимодействие в виде притяжения проявляется гораздо сильнее, чем между теми же молекулами в газообразном состоянии.
4.2 Иерархия структур
Структурность и системная организация материи относятся к числу ее важнейших атрибутов. Они выражают упорядоченность существования материи и те конкретные формы, в которых она проявляется. Под структурой материи обычно понимается ее строение в микромире, существование в виде молекул, атомов, элементарных частиц и т.д. Однако, если рассматривать материю в целом, во всех доступных и потенциально возможных формах ее существования, то понятие структуры материи будет охватывать также различные макроскопические тела, все космические системы мегамира, причем в любых, сколь угодно больших пространственно-временных масштабах. С этой точки зрения структура материи проявляется в ее существовании в виде бесконечного многообразия целостных систем, тесно связанных между собой в закономерном движении и взаимодействии, в упорядоченном строении каждой из них. Эта структура неисчерпаема и бесконечна в количественном и качественном отношениях.
В доступных пространственно-временных масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимосвязанных систем, начиная от элементарных частиц и кончая Метагалактикой. Последнюю иногда отождествляют со всей Вселенной, но для этого нет никаких основании, ибо Вселенная в целом, понимаемая в предельно широком смысле этого слова тождественна всему материальному миру и движущейся материи которая может включать в себя бесконечное множество Метагалактик или других космических систем. Понятие "Вселенная", используемое в различных космологических моделях, обозначает наблюдаемую Вселенную (Метагалактику) либо же различные аспекты последней, как они представляются через содержание принятых моделей.
В неживой природе множество объектов будет представлять целостную систему лишь в том случае, если энергия связи между ними больше суммарной кинетической энергии и энергии внешних воздействий, направленных на разрушение системы. В противном случае система не возникает или распадается. Энергия внутренних связей - это общая энергия, которую нужно было бы приложить последовательно к каждому элементу, чтобы удалить его из системы на большое расстояние, т.е. "растащить" систему. Поскольку эта энергия не может возникнуть из ничего, и каждый из элементов существует в некоторой "потенциальной яме", то стабильность и целостность систем оказываются косвенно обусловленными действием закона сохранения энергии.
Энергия внутренних связей может иметь различное значение в зависимости от характера сил, объединяющих тела в системы. С переходом от космических систем к макроскопическим телам, молекулам и атомам к гравитационным силам добавляются электромагнитные силы, во много раз превышающие гравитационные. Чем меньше размеры материальных систем, тем более прочно связаны их элементы.
В случае элементарных частиц энергия внутренних связей сопоставима с их собственной энергией, что можно использовать для определения элементарных частиц: они представляют собой такие микрообъекты, у которых энергия внутренних связей сопоставима с их собственной энергией и которые взаимодействуют как единое целое во всех доступных измерениям микропроцессах.
4.3 Принцип тождественности
Особенности и специфика взаимодействий между компонентами сложных микро - и макросистем, а также внешних взаимодействий между ними приводят к громадному их многообразию. Для микро - и макросистем характерна индивидуальность: каждая система описывается присущей только ей совокупностью всевозможных свойств. Можно назвать существенные различия между ядрами водорода и урана, хотя оба они относятся к микросистемам. Не меньше различий между Землей и Марсом, хотя эти планеты принадлежат одной и той же Солнечной системе.
Однако можно говорить о тождественности элементарных частиц. Тождественные частицы обладают одинаковыми физическими свойствами: массой, электрическим зарядом, спином и другими внутренними характеристиками (квантовыми числами). Например, все электроны Вселенной считаются тождественными. Понятие о тождественных частицах как о принципиально неразличимых частицах - чисто квантовомеханическое. Тождественные частицы подчиняются принципу тождественности.
Принцип тождественности - фундаментальный принцип квантовой механики, согласно которому состояния системы частиц, получающиеся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте. Такие состояния должны рассматриваться как одно физическое состояние. Этот принцип - одно из основных различий между классической и квантовой механикой. В классической механике всегда можно проследить за движением отдельных частиц по траекториям и таким образом отличить частицы одну от другой. В квантовой механике тождественные частицы полностью лишены индивидуальности.
Состояние частицы в квантовой механике описывается волновой функцией, позволяющей определить лишь вероятность нахождения частицы в данной точке пространства. Если в пространстве волновые функции двух или более тождественных частиц не определяются, то нет смысла говорить о том, какая из них находится в данной точке. В данном случае имеет смысл говорить лишь о вероятности нахождения в этой точке одной из тождественных частиц.
Эмпирическим фактом, который и составляет сущность принципа тождественности, является то, что в природе различают лишь два класса волновых функций для систем тождественных частиц: симметричные волновые функции, у которых при перестановке пространственных и спиновых координат любой пары тождественных частиц волновая функция не изменяется, и антисимметричные волновые функции, при аналогичной перестановке изменяющие знак.
Принцип тождественности и вытекающие из него требования симметрии волновых функций для системы тождественных частиц приводят к важнейшему квантовому эффекту, не имеющему аналога в классической теории, - существованию обменного взаимодействия. Одним из первых успехов квантовой механики было объяснение немецким физиком В. Гей-зенбергом (1901-1976) наличия двух состояний атома гелия - орто - и парагелия, основанное на принципе тождественности.
4.4 Проблема создания единой фундаментальной теории
В классификации многочисленных известных к настоящему времени элементарных частиц гипотеза кварков оказалась довольно плодотворной. Она позволила не только систематизировать уже известные элементарные частицы, но и предсказать появление новых, а также объяснить многие их свойства. Естественно, были предприняты попытки обнаружения кварков. Появилось несколько сенсационных сообщений об экспериментальном наблюдении кварков, которые, однако, впоследствии не подтвердились.
По-видимому, кварковая модель будет в дальнейшем постоянно уточняться, и, возможно, на смену ей придет более совершенная теория структуры элементарных частиц. В пользу этого предположения свидетельствуют наделение кварков все более новыми свойствами, гипотеза о существовании восьми типов безмассовых глюонов, "склеивающих" кварки в частицы, а также проблема создания единой теории четырех видов фундаментальных взаимодействий, соединения физики микромира и космологии. На каждом более глубоком уровне структуры материи обнаруживаются ее новые необычные свойства и законы ее движения, обогащающие наше познание.
Положение, сложившееся в современной физике элементарных частиц, напоминает то, что создалось в физике атома после открытия в 1869г.Д.И. Менделеевым периодического закона. Хотя физическая сущность этого закона была выяснена лишь спустя примерно 60 лет, после создания квантовой механики, он позволил систематизировать известные к тому времени химические элементы и, кроме того, привел к предсказанию существования новых элементов и их свойств. Точно так же физики научились систематизировать элементарные частицы, причем систематика в ряде случаев позволила предсказать существование новых частиц и их свойств.
Крупным шагом в познании микропроцессов явилось создание единой теории электромагнитных и слабых взаимодействий американскими физиками С. Вайнбергом (1933-1996), Ш. Глэшоу (р. 1932) и пакистанским ученым А. Саламом (р. 1926), удостоенными Нобелевской премии 1979г.
Перед физикой стоит важнейшая задача создания единой теории взаимодействий, включающих в себя также сильные, а в перспективе и гравитационные взаимодействия. По-видимому, такое "великое объединение" потребует синтеза теории элементарных частиц, квантовой хромодинамики, научной космологии и релятивистской астрофизики. Разработка единой теории всех известных фундаментальных взаимодействий позволит обеспечить концептуальную интеграцию современных данных о природе, хотя на этом физическая наука не закончится, ибо материя неисчерпаема и бесконечна в своей структуре, как практически не обозримы пути технического применения физики и развития прикладных физических дисциплин.
5. Концепции материи, движения, пространства и времени
Важнейшая задача естествознания - создание естественно-научной картины мира, образующей в целом упорядоченную систему, которая по мере развития науки уточняется и дополняется. Научный язык во многом похож на повседневный язык общения людей, но отличается от него тем, что научные термины являются, во-первых, более общими и абстрактными и, во-вторых, они более сконцентрированны и точны. Наука стремится выявить общее в предметах и явлениях, которые она изучает.
Выделение общего ведет к абстракциям, т.е. отвлечению от единичного, конкретного, случайного.
Наиболее общие и абстрактные понятия, идеи и концепции естествознания выражают, с одной стороны, глубокие, а с другой - общие свойства природы. Такими понятиями и концепциями оперирует в первую очередь физика как фундаментальная основа естествознания. К наиболее общим, важным, фундаментальным концептам физического описания природы относятся материя, движение, пространство и время.
Эти понятия широко используются не только в естествознании, но и во многих гуманитарных сферах, например, в искусстве, в экономике, не говоря уже о философии.
Окружающий нас мир, все существующее вокруг нас и обнаруживаемое нами посредством ощущений представляет собой материю. Материя есть философская категория для обозначения объективной реальности, которая... отображается нашими ощущениями, существуя независимо от них. Кто знает, может быть, данное определение не является исчерпывающим - это покажет дальнейшее развитие науки. В классическом представлении в естествознании различают два вида материи: вещество и поле. В современном представлении к ним следует добавить третий вид материи - физический вакуум. Некоторые ученые в духе концепции корпускулярно-волнового дуализма объединяют вещество и поле в единый вид реальности, которая действует на наши органы чувств и взаимодействует сама с собой, проявляясь в одних условиях как вещество (физические тела, молекулы, атомы, частицы), а в других - как поле (свет, радиация, гравитация, радиоволны). Однако такое объединение в большей степени касается не макро-, а микромира, многие свойства которого носят квантово-механический характер.
В классической механике Ньютона в качестве вещественных образований выступают материальная частица малых размеров - корпускула, часто называемая материальной точкой, и физическое тело, или просто тело как единая система корпускул, каким-то образом связанных между собой. Вряд ли вызывает сомнение существование этих вещественных образований в различных конкретных формах: песчинка, камень, капля воды и т.п. Что касается проблемы делимости вещества или дилеммы "атомизм - безграничная делимость", то она в значительной степени решена физиками и химиками только в начале нашего столетия, когда было экспериментально подтверждено существование атомов и молекул - мельчайших частиц химического элемента и химических соединений.
Идеальными и предельно абстрактными физическими образами реально существующих частиц и тел в классической механике служат материальная точка и абсолютно твердое тело как система материальных точек.
Повседневный опыт показывает, что тела действуют друг на друга, порождая всевозможные изменения движения. Взаимодействие тел в макромире происходит под действием силы тяготения или электромагнитных сил. В классической механике понятие силы считается фундаментальным. Сила - физическая мера взаимодействия тел и причина изменения их механического движения, т.е. их перемещения друг относительно друга.
Источником силы в соответствии с законом всемирного тяготения является масса тел. Таким образом, понятие массы, введенное впервые Ньютоном, более фундаментально, чем понятие силы.
Согласно квантовой теории поля частицы, обладающие массой, могут рождаться из физического вакуума, представляющего собой совокупность частиц с соответствующими им античастицами, при достаточно высокой концентрации энергии, которая тем самым выступает как еще более фундаментальная и общая концепция, чем масса, поскольку энергия присуща не только веществу, но и безмассовым полям.
Развитие физики в XIX в. показало, что источником другой разновидности сил, действующих в макромире, - электрических и магнитных - является электрический заряд, что хорошо подтверждается законом Кулона, формулой для силы Лоренца и уравнениями электромагнитной теории Максвелла.
Хотя реальное существование электрического заряда доказано и теоретически, и экспериментально, многие вопросы, связанные с его происхождением, знаком, квантованностью и т.п., предстоит еще выяснить.
Возвращаясь к концепции массы, отметим, что в отличие от электрического заряда масса не квантируется. Однако, возможно, данное утверждение соответствует только современному представлению о микромире.
Масса выступает не только как мера гравитационного взаимодействия, но и как мера инертности тел, т.е. способности тел сопротивляться воздействию сил, стремящихся изменить состояние их движения, изменить их скорость. В этой связи часто говорят о массе тяжелой как мере гравитационного взаимодействия и о массе инертной как мере инертности.
Согласно закону Ньютона о противодействующих силах такое утверждение означает, что сила тяготения должна быть прямо пропорциональной не только массе притягиваемого тела m1, но и массе притягивающего тела m2, т.е. произведению масс обоих взаимодействующих тел.
Если взаимодействующие тела принять за материальные точки, расположенные на расстоянии r друг от друга, то для силы гравитационного взаимодействия F можно написать:
где G - гравитационная постоянная.
Данной формулой определяется закон всемирного тяготения, сформулированный Ньютоном.
Относительно точные измерения показывают, что массы тяжелая и инертная равны между собой. Этот факт, никак не объяснимый классической механикой, фигурирует в общей теории относительности, в которой понятие силы оказывается лишним - в поле тяготения тела движутся как бы "сами по себе" по кратчайшим путям - геодезическим линиям - в искривленном пространстве-времени. При этом поле тяготения и есть по существу искривленное физическое пространство, создаваемое массами вещества. В математическом смысле искривленность - это то, чем данное пространство отличается от хорошо нами представляемого Евклидова пространства.
Для количественного описания движения сформировались представления о пространстве и времени, которые за длительный период развития естествознания претерпели существенные изменения.
В физике движение рассматривается в общем виде как изменение состояния физической системы, и для описания состояния вводится набор измеряемых параметров, к которым со времен Декарта относятся пространственно-временные координаты, или точки пространственно-временного континуума, означающего непрерывное множество. В физике используются и другие параметры состояния систем: импульс, энергия, температура, спин и т.п.
Так что же такое время? Самый простой ответ таков: время - это то, что показывают часы. Принцип работы часов может быть основан на многих физических явлениях и процессах. Наиболее удобны периодические процессы, длительно повторяющиеся с высокой степенью точности, например вращение Земли вокруг своей оси, электромагнитное излучение возбужденных атомов и т.п. Для измерения времени могут быть использованы и непериодические процессы, происходящие по известному временному закону, например, радиоактивный распад атомов или свободное падение тел в поле тяготения. Многие крупные достижения в естествознании связаны с изображением и конструированием более точных часов.
В более строгом определении время выражает порядок смены физических состояний и является объективной характеристикой любого физического процесса или явления: оно универсально. Говорить о времени безотносительно к изменениям в каких-либо реальных телах или системах - с физической точки зрения бессмысленно.
Ньютон различал абсолютное и относительное время. В своих фундаментальных "Математических началах натуральной философии" он писал:
"Абсолютное, истинное математическое время само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью.
Относительное, кажущееся или обыденное время есть или точная, или изменчивая постигаемая чувствами внешняя, совершаемая при посредстве какого-либо движения, мера продолжительности, употребляемая в обыденной жизни вместо истинного математического времени, как то: час, день, месяц, год...
Течение абсолютного времени изменяться не может.д.лительность или продолжительность существования вещей одна и та же, быстры ли движения (по которым измеряется время), медленны ли, или их совсем нет... Время и пространство составляют как бы вместилища самих себя и всего существующего".
Аналогичные соображения Ньютон высказывал и в отношении пространства. В процессе развития физики с появлением специальной теории относительности возникло утверждение: абсолютное время не имеет физического смысла, оно - лишь идеальное математическое представление, ибо в природе нет такого реального физического процесса, пригодного для измерения абсолютного времени.
Во-первых, течение времени зависит от скорости движения системы отсчета. При достаточно большой скорости, близкой к скорости света, время замедляется, т.е. возникает релятивистское замедление времени. Во-вторых, поле тяготения приводит к гравитационному замедлению времени. Можно говорить только о локальном времени в некоторой системе отсчета. В этой связи время не есть сущность, не зависящая от материи. Оно течет с различной скоростью в различных физических условиях. Время всегда относительно.
Подобные документы
Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".
реферат [888,7 K], добавлен 07.01.2010Понятия пространства и времени являются философскими категориями и в этом смысле не определяются в естествознании. Для естественных же наук важно уметь определять их численные характеристики - расстояния между объектами и длительности процессов.
реферат [28,2 K], добавлен 05.06.2008Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.
реферат [35,2 K], добавлен 11.07.2013Естествознание как особая форма знания, предмет методы ее изучения, история становления и развития в человеческой культуре. Принцип относительности, соотношение пространства и времени. Принципы возрастания энергии. Место химии в современной цивилизации.
методичка [35,6 K], добавлен 16.01.2010Появление стехиометрии, ее развитие в конце XVIII – начале XIX вв. Законы сохранения вещества, постоянства состава веществ, простых кратных и объемных отношений, закон Авогадро. Значение стехиометрических законов в обосновании концепции атомизма.
реферат [22,7 K], добавлен 15.12.2013Основные черты и отличия науки от других отраслей культуры. Проблемы, решаемые отдельными естественными науками. Свойства пространства и времени. Главные выводы специальной и общей теории относительности. Естественнонаучные модели происхождения жизни.
контрольная работа [40,6 K], добавлен 18.11.2009Естественнонаучная и гуманитарная культура. Дифференциация, интеграция и математизация в современной науке. Культурный уровень организации материи. Квантовомеханическая концепция описания микромира. Пространство и время в общей теории относительности.
курс лекций [47,9 K], добавлен 16.11.2009Изучение понятий пространства (реального, концептуального, перцептуального) и времени как форм существования материи. Ознакомление с принципом относительности Галилея, законами Ньютона, космологической теорией Бруно и координационной системой Декарта.
контрольная работа [28,0 K], добавлен 25.04.2010Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.
реферат [30,5 K], добавлен 30.07.2010Концепции времени и пространства, этапы их зарождения и развития, направления исследования на сегодня. Эксперимент Майкельсона-Морли. Принцип относительности Галилея. Относительность одновременности событий. Общая и специальная теория Эйнштейна.
контрольная работа [27,7 K], добавлен 10.03.2013