Фундаментальные принципы и законы
Физика как фундаментальная отрасль естествознания. Концепция атомизма и универсальность физических законов. Проблема создания единой фундаментальной теории. Концепции материи, движения, пространства и времени. Принцип относительности и инвариантности.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 29.12.2009 |
Размер файла | 445,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Важная особенность времени выражена в постулате времени; одинаковые во всех отношениях явления происходят за одинаковое время. В частности, длительности повторяющихся периодов хороших часов при неизменных условиях совершенно одинаковы. Хотя этот постулат кажется естественным и очевидным, его истинность относительна, так как его нельзя проверить на опыте даже с помощью самых совершенных, но реальных часов, поскольку:
1) они все же не идеальны и характеризуются своей мерой точности;
2) нет абсолютной уверенности в возможности создания совершенно одинаковых условий в природе в разное время. Вместе с тем длительная практика естественно-научных исследований позволяет нам не сомневаться в справедливости данного постулата в пределах определенной точности, которая может быть сколь угодно высокой.
Концепция пространства, как и концепция времени, прошла длительный путь становления и развития. Первое представление о пространстве возникло из очевидного существования в природе и в первую очередь в микромире твердых физических тел, занимающих определенный объем. Из такого представления вытекало определение: пространство выражает порядок сосуществования физических тел. Первая законченная теория пространства - геометрия Евклида. Она была создана примерно 2000 лет назад и до сих пор считается образцом научной теории. Геометрия Евклида оперирует идеальными математическими объектами, которые существуют как бы вне времени, и в данном смысле пространство в этой геометрии - идеальное математическое пространство. Вплоть до середины XIX в., когда были созданы неевклидовы геометрии, никто из естествоиспытателей не сомневался в тождественности реального физического и Евклидова пространств.
По аналогии с абсолютным временем Ньютон ввел понятие абсолютного пространства, которое может быть совершенно пустым, существуя независимо от наличия в нем физических тел, и являясь как бы мировой сферой, где разыгрываются физические процессы. Свойства подобного пространства определяются Евклидовой геометрией. Такое представление о пространстве до сих пор лежит в основе многих экспериментов, позволивших сделать крупные открытия.
Конечно, пустое пространство - идеальное пространство. Реальный окружающий нас мир полон материальных вещей даже в безвоздушном космическом пространстве - его заполняют звезды, метеоритные образования, элементарные частицы и, как полагают астрономы, невидимая, скрытая материя. Идеальность пустого пространства подтверждает и относительный характер механического движения тел. Для описания движения тела нужно указать другое в качестве тела отсчета - рассмотрение одного единственного тела в пустом пространстве бессмысленно.
Специальная теория относительности объединила пространство и время в единый континуум пространство-время. Основанием для такого объединения послужили и постулат о предельной скорости передачи взаимодействий материальных тел - скорости света, равной в вакууме примерно 300 000 км/с, и принцип относительности. Из данной теории следует относительность одновременности двух событий, происшедших в разных точках пространства, а также относительность измерений длин и интервалов времени, произведенных в разных системах отсчета, движущихся относительно друг друга. Все это означает, что для реального мира пространство и время имеют не абсолютный, а относительный характер.
6. Принцип относительности и инвариантность
Важную роль в развитии естествознания сыграл принцип относительности, сформулированный впервые Галилеем для механического движения. Механическое движение относительно, и его характер зависит от системы отсчета. Та система, по отношению к которой выполняется первый закон Ньютона, называется инерциальной системой отсчета. Это такая система, которая либо покоится, либо движется прямолинейно и равномерно относительно какой-то другой неподвижной или движущейся прямолинейно и с постоянной скоростью системы. Первый закон Ньютона утверждает существование инерциальных систем отсчета.
Опытным путем установлено, что с большой степенью точности инерциальной можно считать гелиоцентрическую (звездную) систему отсчета, начало координат которой находится в центре Солнца, а оси проведены в направлении определенных звезд. Система отсчета, связанная с Землей, строго говоря, неинерциальная, однако эффекты, обусловленные ее неинерциальностью, связанные с вращением вокруг собственной оси и обращением вокруг Солнца, при решении многих задач пренебрежимо малы, и в этих случаях ее можно считать инерциальной.
Если системы отсчета движутся относительно друг друга равномерно и прямолинейно и в одной из них справедливы законы динамики Ньютона, то эти системы инерциальные.
Установлено, что во всех инерциальных системах отсчета законы классической динамики имеют одинаковую форму; в этом сущность механического принципа относительности -принципа относительности Галилея. Он означает, что уравнения динамики при переходе от одной инерциальной системы к другой не изменяются, т.е. инвариантны по отношению к преобразованию координат. Галилей обратил внимание на то, что никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится она или движется равномерно и прямолинейно. Например, сидя в каюте корабля, движущегося равномерно и прямолинейно, мы, не выглянув в окно, не можем определить, движется ли корабль.
А. Пуанкаре распространил принцип относительности на все электромагнитные процессы, а А. Эйнштейн использовал его для специальной теории относительности.
Современная формулировка принципа относительности такова:
все инерциальные системы отсчета равноправны между собой (неотличимы друг от друга) в отношении протекания физических процессов или, другими словами, физические процессы не зависят от равномерного и прямолинейного движения системы отсчета.
Вместе с принципом относительности в физике утвердились понятия инвариантности, инвариантов и симметрии, а также связь их с законом сохранения и вообще с законами природы.
Инвариантность означает неизменность физических величин или свойств природных объектов при переходе от одной системы отсчета к другой. В специальной теории относительности постулируется инвариантность законов природы и скорости света в вакууме. Они остаются неизменными относительно преобразований Лоренца, предложенных им в 1904 г., еще до появления теории относительности, как преобразования, относительно которых уравнения Максвелла инвариантны.
Специальная теория относительности, принципы которой сформулировал в 1905г.А. Эйнштейн, представляет собой современную физическую теорию пространства и времени, в которой, как и в классической ньютоновской механике, предполагается, что время однородно, а пространство однородно и изотропно. Специальная теория часто называется релятивистской теорией, а специфические явления, описываемые ею, - релятивистским эффектом.
В основе специальной теории относительности лежат постулаты Эйнштейна:
1) принцип относительности: никакие опыты (механические, электрические, оптические), проведенные в данной инерциальной системе отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы к другой;
2) принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источников света или наблюдателя и одинакова во всех инерциальных системах отсчета.
Первый постулат, являясь обобщением механического принципа относительности Галилея на любые физические процессы, утверждает таким образом, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета. Согласно данному постулату все инерциальные системы отсчета совершенно равноправны, т.е. явления механические, электродинамические, оптические и другие во всех инерциальных системах отсчета протекают одинаково.
Согласно второму постулату постоянство скорости света в вакууме - фундаментальное свойство природы. Специальная теория относительности потребовала отказа от привычных классических представлений о пространстве и времени, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.
Из специальной теории относительности следуют новые пространственно-временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий.
Общая теория относительности, называемая иногда теорией тяготения, - результат развития специальной теории относительности. Из нее вытекает, что свойства пространства-времени в данной области определяются действующими в ней полями тяготения. При переходе к космическим масштабам геометрия пространства-времени может изменяться от одной области к другой в зависимости от концентрации масс в этих областях и их движения.
7. Свойства пространства, времени и законы сохранения
Весьма важным для понимания законов природы является принцип инвариантности относительно сдвигов в пространстве и во времени, т.е. параллельных переносов начала координат и начала отсчета времени. Он формулируется так: смещение во времени и в пространстве не влияет на протекание физических процессов.
Инвариантность непосредственно связана с симметрией, представляющей собой неизменность структуры материального объекта относительно его преобразований, т.е. изменения ряда физических условий.
В широком смысле симметрия означает инвариантность как неизменность свойств системы при некотором изменении (преобразовании) ее параметров. Наглядным примером пространственных симметрии физических систем является кристаллическая структура твердых тел. Симметрия кристаллов - закономерность атомного строения, внешней формы и физических свойств кристаллов. Она заключается в том, что кристалл может быть совмещен с самим собой путем поворотов, отражений, параллельных переносов и других преобразований симметрии. Симметрия свойств кристалла обусловлена симметрией его строения.
Орнамент - наверное, самое древнее отображение идеи симметрии, лежащей в основе многих фундаментальных законов.
Из сформулированного принципа инвариантности относительно сдвигов в пространстве и во времени следует симметрия пространства и времени, называемая однородностью пространства и времени.
Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.
Из свойства симметрии пространства - его однородности следует закон сохранения импульса: импульс замкнутой системы сохраняется, т.е. не изменяется с течением времени. Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сил равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.
Однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.
Из однородности времени следует закон сохранения механической энергии: в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной (например сила трения).
Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных системах полная механическая энергия сохраняется.
В диссипативных системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии. Строго говоря, все реальные системы в природе диссипативные.
В консервативных системах полная механическая энергия остается постоянной, могут происходить лишь превращения кинетической энергии в потенциальную и обратно в эквивалентных количествах.
Закон сохранения и превращения энергии - фундаментальный закон природы; он справедлив как для систем макроскопических тел, так и для микросистем.
В системе, в которой действуют консервативные и диссипативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии - сущность неуничтожения материи и ее движения, поскольку энергия, по определению, - универсальная мера различных форм движения и взаимодействия.
Закон сохранения энергии - результат обобщения многих экспериментальных данных. Идея этого закона принадлежит М.В. Ломоносову (1711-1765), изложившему закон сохранения материи и движения, а количественная его формулировка дана немецкими учеными - врачом Ю. Майером (1814-1878) и естествоиспытателем Г. Гельмгольцем (1821-1894).
Обратимся еще к одному свойству симметрии пространства - его изотропности. Изотропность пространства означает инвариантность физических законов относительно выбора направлении осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).
Из изотропности пространства следует фундаментальный закон природы - закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т.е. не изменяется с течением времени.
Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нётер (1882-1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что из однородности пространства и времени вытекают законы сохранения соответственно импульса и энергии, и из изотропности пространства - закон сохранения момента импульса.
Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро-, макро - и мегамира. В связи с этим возросла роль весьма сложного и абстрактного математического аппарата - теории групп - наиболее адекватного и точного языка для описания симметрии. Теория групп - одно из основных направлений современной математики. Значительный вклад в ее развитие внес французский математик Эварист Галуа (1811-1832), жизнь которого рано оборвалась: в возрасте 21 года он был убит на дуэли.
С помощью теории групп русский минералог и кристаллограф Е.С. Федоров (1853-1919) решил задачу классификации правильных пространственных систем точек - одну из основных задач кристаллографии. Это исторически первый случай применения теории групп непосредственно в естествознании.
Существенное ограничение однородности и изотропности пространственного распределения материи во Вселенной, налагаемое на уравнения общей теории материи и составляющее основу космологического принципа, позволило российскому математику и геофизику А.А. Фридману (1888-1925) предсказать расширение Вселенной.
Анализируя роль принципов симметрии и инвариантности современный американский физик-теоретик Э. Вигнер (р. 1902), лауреат Нобелевской премии 1963 г., показавший эффективность применения теории групп в квантовой механике, выделил ряд ступеней в познании, поднимаясь на которые мы глубже и дальше обозреваем природу, лучше ее понимаем. Вначале в хаосе повседневных фактов человек замечает некоторые эмпирические закономерности. Затем, выделяя общие свойства природных явлений и анализируя их связи, он формулирует математические законы природы, учитывая при этом начальные условия, которые могут иметь любой, даже случайный характер. Например, в классической механике в качестве начальных условий могут выступать координаты и скорость тела в некоторый начальный момент времени. Наконец, синтезируя уже известные законы, находят ряд принципов, позволяющих дедуктивным путем определить уже известные и пока неизвестные утверждения, предсказывающие те или иные физические явления и процессы.
Функция, которую несут принципы симметрии, по утверждению Э. Вигнера состоит в наделении структурой законов природы или установлении между ними внутренней связи, так как законы природы устанавливают структуру или взаимосвязь в мире явлений. Так создаются теории, охватывающие широкий круг физических явлений и процессов. Следующая ступень - анализ самих принципов границ или условий и выявление тех, при которых они выполняются.
Идею выявления основополагающих принципов и их последовательное применение при описании и объяснении природных явлений впервые предложил и реализовал с применением математического аппарата Исаак Ньютон еще в начале развития классической физики и задолго до появления современных представлений об инвариантности и симметрии. В своем труде "Оптика" он писал: "Вывести из явлений два или три общих принципа движения и затем изложить, как из этих ясных принципов вытекают свойства и действия всех вещественных предметов, вот что было бы очень большим шагом в философии, хотя причины этих принципов и не были еще открыты". По своему содержанию и месту в теории познания такие принципы носят аксиоматический характер.
8. Фундаментальные законы Ньютона
8.1 Законы динамики
Классическая механика Ньютона сыграла и играет до сих пор огромную роль в развитии естествознания. Она объясняет множество физических явлений и процессов в земных и внеземных условиях, составляет основу для многих технических достижений в течение длительного времени. На ее фундаменте формировались многие методы научных исследований в различных отраслях естествознания. Во многом она определяла мышление и мировоззрение.
Вплоть до начала XX в. в науке господствовало механистическое мировоззрение, физическая сущность которого заключается в том, что все явления природы можно объяснить движениями частиц и тел. Примером большого успеха механистического представления физических процессов можно считать разработку молекулярно-кинетической теории вещества, позволившей понять тепловые процессы. В книге "Эволюция физики" А. Эйнштейн и Л. Инфельд (1898-1968) назвали развитие кинетической теории вещества одним из величайших достижений науки, непосредственно связанным с механистическим воззрением.
В основе классической механики лежит концепция Ньютона. Сущность ее наиболее кратко и отчетливо выразил А. Эйнштейн: "Согласно ньютоновской системе физическая реальность характеризуется понятиями пространства, времени, материальной точки и силы (взаимодействия материальных точек). В ньютоновской концепции под физическими событиями следует понимать движение материальных точек в пространстве, управляемое неизменными законами. Материальная точка есть единственный способ нашего представления реальности, поскольку реальное способно к изменению".
В 1667 г. Ньютон сформулировал три закона динамики, составляющие основной раздел классической механики. Законы Ньютона играют исключительную роль в механике и являются (как и большинство физических законов) обобщением результатов огромного человеческого опыта, о чем сам Ньютон образно сказал: "Если я видел дальше других, то потому, что стоял на плечах гигантов". Законы Ньютона рассматривают обычно как систему взаимосвязанных законов.
Первый закон Ньютона: всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит ее изменить это состояние.
Стремление тела сохранить состояние покоя или равномерного прямолинейного движения называется инертностью, или инерцией. Поэтому первый закон Ньютона называют также законом инерции.
Для количественной формулировки второго закона динамики вводятся понятия ускорения а, массы тела m и силы F. Ускорением характеризуется быстрота изменения скорости движения тела. Масса тела - физическая величина - одна из основных характеристик материи, определяющая ее инерционные (инертная масса) и гравитационные (тяжелая или гравитационная масса) свойства. Сила - это векторная величина, мера механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.
Второй закон Ньютона: ускорение, приобретаемое материальной точкой (телом), пропорционально вызывающей его силе и обратно пропорционально массе материальной точки (тела):
Второй закон Ньютона справедлив только в инерциальных системах отсчета. Первый закон Ньютона можно получить из второго. Действительно, в случае равенства нулю равнодействующих сил (при отсутствии воздействия на тело со стороны других тел) ускорение также равно нулю. Однако первый закон Ньютона рассматривается как самостоятельный закон, а не как следствие второго закона, поскольку именно он утверждает существование инерциальных систем отсчета.
Взаимодействие между материальными точками (телами) определяется третьим законом Ньютона: всякое действие материальных точек (тел) друг на друга носит характер взаимодействия; силы, с которыми действуют друг на друга материальные точки, всегда равны по модулю, противоположно направлены и действуют вдоль прямой, соединяющей эти точки:
где F12 - сила, действующая на первую материальную точку со стороны, второй; F21 - сила, действующая на вторую материальную точку со стороны первой. Эти силы приложены к разным материальным точкам (телам), всегда действуют парами и являются силами одной природы. Третий закон Ньютона позволяет осуществить переход от динамики отдельной материальной точки к динамике системы материальных точек, характеризующихся парным взаимодействием.
Законы Ньютона позволяют решить многие задачи механики - от простых до сложных. Спектр таких задач значительно расширился после разработки Ньютоном и его последователями нового для того времени математического аппарата - дифференциального и интегрального исчисления, весьма эффективного при решении многих динамических задач и особенно задач небесной механики.
8.2 Классическая механика и лапласовский детерминизм
Причинное объяснение многих физических явлений, т.е. реальное воплощение зародившегося еще в древности принципа причинности в естествознании, привело в конце XVIII - начале XIX вв. к неизбежной абсолютизации классической механики. Возникло философское учение - механистический детерминизм, классическим представителем которого был Пьер Симон Лаплас (1749-1827), французский математик, физик и философ. Лапласовский детерминизм выражает идею абсолютного детерминизма - уверенность в том, что все происходящее имеет причину в человеческом понятии и есть непознанная разумом необходимость. Суть его можно понять из высказывания Лапласа: "Современные события имеют с событиями предшествующими связь, основанную на очевидном принципе, что никакой предмет не может начать быть без причины, которая его произвела... Воля, сколь угодно свободная, не может без определенного мотива породить действия, даже такие, которые считаются нейтральными... Мы должны рассматривать современное состояние Вселенной как результат ее предшествующего состояния и причину последующего. Разум, который для какого-нибудь данного момента знал бы все силы, действующие в природе, и относительное расположение ее составных частей, если бы он, кроме того, был достаточно обширен, чтобы подвергнуть эти данные анализу, обнял бы в единой формуле движения самых огромных тел во Вселенной и самого легкого атома; для него не было бы ничего неясного, и будущее, как и прошлое, было бы у него перед глазами... Кривая, описываемая молекулой воздуха или пара, управляется столь же строго и определенно, как и планетные орбиты: между ними лишь та разница, что налагается нашим неведением". С этими словами перекликается убеждение А. Пуанкаре: "Наука детерминистична, она является таковой a priori (изначально), она постулирует детерминизм, так как она без него не могла бы существовать. Она является таковой и a posteriori (из опыта): если она постулировала его с самого начала как необходимое условие своего существования, то она затем строго доказывает его своим существованием, и каждая из ее побед является победой детерминизма".
Дальнейшее развитие физики показало, что в природе могут происходить процессы, причину которых трудно определить. Например, процесс радиоактивного распада происходит случайно. Подобные процессы происходят объективно случайно, а не потому, что мы не можем указать их причину из-за недостатка наших знаний. И наука при этом не перестала развиваться, а обогатилась новыми законами, принципами и концепциями, которые показывают ограниченность классического принципа - лапласовского детерминизма. Абсолютно точное описание всего прошедшего и предсказание будущего для колоссального многообразия материальных объектов, явлений и процессов - задача сложная и лишенная объективной необходимости. Даже в самом простейшем случае классической механики из-за неустранимой неточности измерительных приборов точное предсказание состояния даже простого объекта - материальной точки - также нереально.
Согласно современным представлениям, классическая механика имеет свою область применения: ее законы выполняются для относительно медленных движений тел, скорость которых много меньше скорости света в вакууме. В то же время практика показывает: классическая механика - безусловно истинная теория и таковой останется, пока будет существовать наука. Вместе с ней останутся и те общие и абстрактные классические концепции описания природы - пространство, время, масса, сила и т.д., которые лежат и в основе современной физики и всего естествознания, только они стали более четкими и объемными.
Непреходящее значение классической физики заключается в том, что эта отрасль естествознания всегда останется совершенно необходимым "мостом", соединяющим человека как макросубъекта познания со все более глубокими уровнями в микро - и мегамире. Эту роль классической физики неоднократно подчеркивал один из создателей квантовой механики Н. Бор:
"Как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. Обоснование этого состоит просто в констатации точного значения слова "эксперимент". Словом "эксперимент" мы указываем на такую ситуацию, когда мы можем сообщить другим, что именно мы сделали и что и именно мы узнали. Поэтому экспериментальная установка и результаты наблюдений должны описываться однозначным образом на языке классической физики".
9. Статистические и термодинамические свойства макросистем
9.1 Развитие представлений в природе тепловых явлений
Вокруг нас происходят явления, внешне весьма косвенно связанные с механическим движением. Это явления, наблюдаемые при изменении температуры тел, представляющих собой макросистемы, или при переходе их из одного состояния (например, жидкого) в другое (твердое либо газообразное). Такие явления называются тепловыми. Они играют огромную роль в жизни людей, животных и растений. Изменение температуры на 20-30°С при смене времени года меняет все вокруг нас. С наступлением весны природа преображается, леса и луга зеленеют. От температуры окружающей среды зависит возможность жизни па Земле. Люди добились относительной независимости от окружающей среды, после того как научились добывать и поддерживать огонь. Это было одним из величайших открытий, сделанных на заре развития человечества.
Эволюция представлений о природе тепловых явлений - пример того, каким сложным и противоречивым путем постигают научную истину. Многие философы древности рассматривали огонь и связанную с ним теплоту как одну из стихий, которая наряду с землей, водой и воздухом образует все тела. Одновременно предпринимались попытки связать теплоту с движением, ибо было замечено, что при соударении тел или трении их друг о друга они нагреваются.
Первые успехи на пути построения научной теории теплоты относятся к началу XVII в., когда был изобретен термометр и появилась возможность количественного исследования тепловых процессов и свойств макросистем.
Вновь перед наукой встал вопрос: что же такое теплота? Наметились две противоположные точки зрения. Согласно одной из них - вещественной теории тепла - теплота рассматривалась как особого рода невесомая "жидкость", способная перетекать от одного тела к другому. Эта жидкость была названа теплородом. Чем больше теплорода в теле, тем выше температура тела.
Приверженцы другой точки зрения полагали, что теплота - это вид внутреннего движения частиц тела. Чем быстрее движутся частицы тела, тем выше его температура.
Таким образом, представление о тепловых явлениях и свойствах связывалось с атомистическим учением древних философов о строении вещества. В рамках подобных представлений теорию тепла первоначально называли корпускулярной (от слова "корпускула" - частица). Ее придерживались Ньютон, Гук, Бойль, Бернулли.
Большой вклад в развитие корпускулярной теории тепла сделал великий русский ученый М.В. Ломоносов. Он рассматривал теплоту как вращательное движение частиц вещества. С помощью своей теории ученый объяснил в общем процессы плавления, испарения и теплопроводности, а также пришел к выводу о существовании "наибольшей или последней степени холода", когда движение частичек вещества прекращается. Благодаря работам Ломоносова среди русских ученых было очень мало сторонников вещественной теории теплоты.
И все же, несмотря на многие преимущества корпускулярной теории теплоты, к середине XVIII в. временную победу одержала теория теплорода. Это произошло после того, как экспериментально было доказано сохранение теплоты при теплообмене. Отсюда был сделан вывод о сохранении (неуничтожении) тепловой жидкости - теплорода. В вещественной теории было введено понятие теплоемкости тел и с ее помощью построена количественная теория теплопроводности. Многие термины, введенные в то время, сохранились и доныне. В середине XIX в. была доказана связь между механической работой и количеством теплоты. Подобно работе количество теплоты оказалось мерой изменения энергии. Нагревание тела связано не с увеличением в нем количества особой невесомой "жидкости", а с увеличением его энергии. Принцип теплорода был заменен гораздо более глубоким законом сохранения энергии. Было установлено, что теплота представляет собой форму энергии. Значительный вклад в развитие теорий тепловых явлений и свойств макросистем внесли немецкий физик Р. Клаузиус (1822-1888), английский физик-теоретик Дж. Максвелл, австрийский физик Л. Больцман (1844-1906) и другие ученые.
9.2 Термодинамическое и статистическое описание свойств макросистем
Открытие закона сохранения энергии способствовало развитию двух качественно различных, но взаимно дополняющих методов исследования тепловых явлений и свойств макросистем: термодинамического и статистического (молекулярно-кинетического). Первый из них лежит в основе термодинамики, второй - молекулярной физики.
Термодинамика представляет собой науку о тепловых явлениях, в которой не учитывается молекулярное строение тел. В термодинамике тепловые явления описываются с помощью величин, регистрируемых приборами, не реагирующими на воздействие отдельных молекул (термометр, манометр и др.). Все законы термодинамики относятся к телам, число молекул которых огромно. Такие тела называют макроскопическими. Они образуют макросистемы. Газ в баллоне, вода в стакане, песчинка, камень, стальной стержень и т.п. - все это примеры макросистем.
Основа термодинамического метода - определение состояния термодинамической системы, представляющей собой совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами (внешней средой). Состояние системы задается термодинамическими параметрами (параметрами системы), характеризующими ее свойства. Обычно в качестве термодинамических параметров состояния выбирают температуру, давление и удельный объем (объем единицы массы).
Температура - физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960 г) в настоящее время рекомендовано применять только две температурные шкалы - термодинамическую и Международную практическую, градуированные соответственно в Кельвинах (К) и градусах Цельсия (°С). Анализ показывает, что 0 К (абсолютный нуль) недостижим, хотя сколь угодно близкое приближение к нему возможно.
К концу XIX в. была создана последовательная теория поведения больших общностей атомов и молекул - молекулярно-кинетическая теория, или статистическая механика. Многочисленными опытами была доказана справедливость этой теории.
Процессы, изучаемые молекулярной физикой, являются результатом совокупного действия огромного числа молекул. Поведение громадного числа молекул анализируется с помощью статистического метода. Он основан на том, что свойства макроскопической системы в конечном результате определяются свойствами частиц системы, особенностями их движения и усредненными значениями кинетических и динамических характеристик таких частиц (скорости, энергии, давления и т.д.). Например, температура тела определяется скоростью беспорядочного движения его молекул, но так как в любой момент времени разные молекулы имеют различные скорости, она может быть выражена только через среднее значение скорости движения молекул. Нельзя говорить о температуре одной молекулы. Макроскопические характеристики тел имеют физический смысл лишь в случае большого числа молекул.
После создания молекулярной физики термодинамика не утратила своего значения. Она помогает понять многие явления и с успехом применяется при расчетах многих важных механических устройств. Общие законы термодинамики справедливы для всех веществ независимо от их внутреннего строения. Вместе с тем при расчете различных процессов с помощью термодинамики многие физические параметры, например теплоемкости тел, необходимо определять экспериментально. Статистические же методы позволяют на основе данных о строении вещества определить такие параметры. Однако количественная теория твердого и особенно жидкого состояния вещества очень сложна, поэтому в ряде случаев простые расчеты, основанные на законах термодинамики, оказываются незаменимыми.
В настоящее время в науке и технике широко используются как термодинамические, так и статистические методы описания свойств микросистемы.
9.3 Основные положения молекулярно-кинетическик представлений
В основе молекулярно-кинетических представлений о строении и свойствах макросистем лежат три положения:
любое тело - твердое, жидкое или газообразное - состоит из большого числа весьма малых частиц - молекул (атомы можно рассматривать как одноатомные молекулы);
молекулы всякого вещества находятся в беспорядочном, хаотическом, не имеющем какого-либо преимущественного направления движении;
интенсивность, определяемая скоростью движения молекул, зависит от температуры вещества.
Тепловые процессы связаны со строением вещества и его внутренней структурой. Например, нагревание кусочка парафина на несколько десятков градусов превращает его в жидкость, а подобное нагревание металлического стержня не оказывает на него заметного влияния. Такое различное действие нагревания связано с различием во внутреннем строении данных веществ. Поэтому исследование тепловых явлений можно использовать для выяснения общей картины строения вещества. И, наоборот, определенные представления о строении вещества помогают понять физическую сущность тепловых явлений, дать им глубокое наглядное истолкование. Количественным воплощением молекулярно-кинетических представлений служат опытные газовые законы (Бойля-Мариотта, Гей-Люссака, Авогадро, Дальтона), уравнение Клапейрона-Менделеева (уравнение состояния), основное уравнение кинетической теории идеальных газов, закон Максвелла для распределения молекул и др.
Из основного уравнения молекулярно-кинетической теории вытекает важный вывод: средняя кинетическая энергия поступательного движения одной молекулы идеального газа прямо пропорциональна его термодинамической температуре и зависит только от нее:
где k - постоянная Больцмана; Т - температура.
Из данного уравнения следует, что при Т = 0 средняя кинетическая энергия равна нулю, т.е. при абсолютном нуле прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Термодинамическая температура - мера кинетической энергии поступательного движения идеального газа, а приведенная формула раскрывает молекулярно-кинетическое толкование температуры.
Первое положение молекулярно-кинетических представлений - любое тело состоит из большого числа весьма малых частиц-молекул - доказано многочисленными опытами, одновременно подтвердившими реальное существование молекул и атомов. Приведем некоторые цифры, показывающие, насколько малы размеры молекул и атомов и как много их содержится в каком-либо макроскопическом теле. С помощью ионного микроскопа удалось показать, что диаметр атомов вольфрама составляет около 2 ангстрем (1 ангстрем равен 10-8 см). Размер молекулы водорода примерно того же порядка - примерно 2,3 ангстрема. Теперь понятно: при очень малых размерах молекул число их в любом макроскопическом теле огромно. Несложный расчет показывает, что число молекул в капле воды составляет около 3·1022. Такой маленький объект, а содержит такое колоссальное число молекул!
10. Термодинамические законы
Всякая термодинамическая система в любом состоянии обладает внутренней энергией - энергией теплового (поступательного, вращательного и колебательного) движения молекул и потенциальной энергией их взаимодействия.
Возможны два способа изменения внутренней энергии термодинамической системы при ее взаимодействии с внешними телами: путем совершения работы и путем теплообмена.
Известно, что в процессе превращения энергии действует закон сохранения энергии. Поскольку тепловое движение тоже механическое (только не направленное, а хаотическое), то при всех превращениях должен выполняться закон сохранения энергии не только внешних, но и внутренних движений. В этом заключается качественная формулировка закона сохранения энергии для термодинамической системы - первое начало термодинамики. Количественная его формулировка: количество теплоты ДQ, сообщенное телу, идет на увеличение его внутренней энергии ДU и на совершение телом работы ДА, т.е.
Д Q= ДU+ ДA.
Из первого начала термодинамики следует важный вывод: невозможен вечный двигатель первого рода, т.е. такой двигатель, который совершал бы работу "из ничего", без внешнего источника энергии. При наличии внешнего источника часть энергии неизбежно переходит в энергию теплового, хаотического движения молекул, что и является причиной невозможности полного превращения энергии внешнего источника в полезную работу.
Многочисленные опыты показывают, что все тепловые процессы в отличие от механического движения необратимы.
Если реализуется какой-либо термодинамический процесс, то обратный процесс, при котором проходятся те же тепловые состояния, но только в обратном направлении, практически невозможен. Другими словами, термодинамические процессы необратимы.
Приведем два характерных примера необратимых процессов. Если привести в соприкосновение два тела с различной температурой, то более нагретое тело будет отдавать тепло менее нагретому. Обратный процесс - самопроизвольный переход тепла от менее нагретого тела к более нагретому - никогда не произойдет. Столь же необратимым является и другой процесс - расширение газа в пустоту. Газ, находящийся в части сосуда, отдаленной от другой части перегородкой, после ее удаления заполняет весь сосуд. Без постороннего вмешательства газ никогда не соберется самопроизвольно в той же части сосуда, где он находился первоначально.
Всякая предоставленная самой себе система стремится перейти в состояние термодинамического равновесия, в котором тела находятся в состоянии покоя по отношению друг к другу, обладая одинаковыми температурами и давлением. Достигнув этого состояния, система сама по себе из него не выходит. Значит, все термодинамические процессы, приближающиеся к тепловому равновесию, необратимы.
Необратимы и все механические процессы, сопровождающиеся трением. Трение вызывает замедление движения тел, при котором кинетическая энергия переходит в тепло. Замедление эквивалентно приближению к состоянию равновесия, при котором движение тел отсутствует.
В системе тел, находящихся в термодинамическом равновесии, без внешнего вмешательства невозможны никакие реальные процессы. Следовательно, с помощью тел, находящихся в термодинамическом равновесии, невозможно совершить никакой работы, так как работа связана с механическим движением, т.е. с переходом тепловой энергии в кинетическую. Утверждение о невозможности получения работы за счет энергии тел, находящихся в термодинамическом равновесии, лежит в основе второго начала термодинамики.
Окружающая нас среда обладает значительными запасами тепловой энергии. Двигатель, работающий только за счет энергии находящихся в тепловом равновесии тел, был бы для практики вечным двигателем. Второе начало термодинамики исключает возможность создания такого вечного двигателя второго рода.
Необратимость тепловых процессов имеет вероятностный характер. Самопроизвольный переход тела из равновесного состояния в неравновесное не невозможен, а лишь весьма маловероятен. В конечном результате необратимость тепловых процессов обусловливается колоссальностью числа молекул, из которых состоит тело. Молекулы газа стремятся к наиболее вероятному состоянию, т.е. к состоянию с беспорядочным распределением молекул, при котором примерно одинаковое число молекул движется вверх и вниз, вправо и влево, причем в каждом объеме находятся примерно одинаковое число молекул, одинаковая доля быстрых и медленных молекул в верхней и нижней частях какого-либо сосуда. Любое отклонение от такого беспорядка, хаоса, т.е. от равномерного и беспорядочного перемешивания молекул по местам и скоростям, связано с уменьшением вероятности, или представляет собой менее вероятное событие. Напротив, явления, связанные с перемешиванием, с созданием хаоса из порядка, увеличивают вероятность состояния. Только при внешнем воздействии возможно рождение порядка из хаоса, при котором порядок вытесняет хаос. В качестве примеров, демонстрирующих порядок, можно привести созданные природой минералы, построенные человеком большие и малые сооружения или просто радующие глаз своеобразные фигуры. Количественной характеристикой теплового состояния тела является число микроскопических способов, с помощью которых это состояние может быть осуществлено. Это число называется статистическим весом состояния (обозначим его буквой Г). Тело, предоставленное самому себе, стремится перейти в состояние с большим статистическим весом. Принято пользоваться не самим числом Г, а его логарифмом, который еще умножается на постоянную Больцмана k.
S = k lnГ
Определенную таким образом величину: называют энтропией тела. Нетрудно убедиться в том, что энтропия сложной системы равна сумме энтропии ее частей.
Второе начало термодинамики, определяющее направление тепловых процессов, можно сформулировать как закон возрастания энтропии:
для всех происходящих в замкнутой системе тепловых процессов энтропия системы возрастает; максимально возможное значение энтропии замкнутой системы достигается в тепловом равновесии:
ДS0
Данное утверждение принято считать количественной формулировкой второго начала термодинамики (второго закона термодинамики), открытого немецким физиком Р.Ю. Клаузиусом (1822-1888). Молекулярно-кинетическое истолкование этого закона дано австрийским физиком Л. Больцманом (1804- 1906).
Идеальному случаю - полностью обратимому процессу замкнутой системы - соответствует неизменяющаяся энтропия. Все естественные процессы происходят так, что вероятность состояния возрастает, что означает переход от порядка к хаосу. Значит, энтропия характеризует меру хаоса, которая для всех естественных процессов возрастает. В этой связи закон о невозможности вечного двигателя второго рода, закон о стремлении тел к равновесному состоянию получают свое объяснение. Почему механическое движение переходит в тепловое? Да потому, что механическое движение упорядочено, а тепловое беспорядочно, хаотично.
В середине XIX в. активно обсуждалась проблема тепловой смерти Вселенной. Рассматривая Вселенную как замкнутую систему и применяя к ней второе начало термодинамики, Р.Ю. Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что все формы движения со временем должны перейти в тепловые. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т.е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся - наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной и бесконечно развивающейся системе, как Вселенная.
11. Электромагнитная концепция
11.1 Развитие полевой концепции описания свойства материи
В классическом представлении, как отмечалось выше, различают два вида материи: вещество и поле. К первому из них относятся атомы, молекулы и все построенные из них тела, структура и форма которых весьма разнообразны. Поле - особая форма материи (иногда его называют физическим полем). К настоящему времени известно несколько разновидностей полей: электромагнитное и гравитационное поля, поле ядерных сил, а также волновые (квантовые) поля, соответствующие различным элементарным частицам.
Ограничимся рассмотрением электромагнитного поля. Именно для описания электромагнитных явлений выдающийся английский физик-самоучка Майкл Фарадей (1791-1867) в 30-е годы XIX в. впервые ввел понятие поля. Наука о свойствах и закономерностях поведения особого вида материи - электромагнитного поля, посредством которого осуществляется взаимодействие между электрически заряженными телами, называется электродинамикой. Среди четырех видов фундаментальных взаимодействий - гравитационного, электромагнитного, сильного и слабого - электромагнитное взаимодействие занимает первое место по широте и разнообразию проявлений. В повседневной жизни и в технике мы чаще всего встречаемся с различными видами электромагнитных взаимодействий: силы упругости, трения, силы наших мышц и мышц различных животных и т.д.
Электромагнитное взаимодействие позволяет видеть окружающие нас многообразные предметы и тела, так как свет - одна из форм электромагнитного поля. Сама жизнь немыслима без сил электромагнитной природы. Живые существа и даже человек, как показывают полеты космонавтов, способны длительное время находиться в состоянии невесомости, когда силы всемирного тяготения заметно не проявляются. Но если бы на мгновение прекратилось действие электромагнитных сил, то сразу исчезла бы и жизнь. Строение атомной оболочки, сцепление атомов в молекулы (химическая связь) и образование из вещества тел различной формы определяются исключительно электромагнитным взаимодействием.
Подобные документы
Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".
реферат [888,7 K], добавлен 07.01.2010Понятия пространства и времени являются философскими категориями и в этом смысле не определяются в естествознании. Для естественных же наук важно уметь определять их численные характеристики - расстояния между объектами и длительности процессов.
реферат [28,2 K], добавлен 05.06.2008Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.
реферат [35,2 K], добавлен 11.07.2013Естествознание как особая форма знания, предмет методы ее изучения, история становления и развития в человеческой культуре. Принцип относительности, соотношение пространства и времени. Принципы возрастания энергии. Место химии в современной цивилизации.
методичка [35,6 K], добавлен 16.01.2010Появление стехиометрии, ее развитие в конце XVIII – начале XIX вв. Законы сохранения вещества, постоянства состава веществ, простых кратных и объемных отношений, закон Авогадро. Значение стехиометрических законов в обосновании концепции атомизма.
реферат [22,7 K], добавлен 15.12.2013Основные черты и отличия науки от других отраслей культуры. Проблемы, решаемые отдельными естественными науками. Свойства пространства и времени. Главные выводы специальной и общей теории относительности. Естественнонаучные модели происхождения жизни.
контрольная работа [40,6 K], добавлен 18.11.2009Естественнонаучная и гуманитарная культура. Дифференциация, интеграция и математизация в современной науке. Культурный уровень организации материи. Квантовомеханическая концепция описания микромира. Пространство и время в общей теории относительности.
курс лекций [47,9 K], добавлен 16.11.2009Изучение понятий пространства (реального, концептуального, перцептуального) и времени как форм существования материи. Ознакомление с принципом относительности Галилея, законами Ньютона, космологической теорией Бруно и координационной системой Декарта.
контрольная работа [28,0 K], добавлен 25.04.2010Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.
реферат [30,5 K], добавлен 30.07.2010Концепции времени и пространства, этапы их зарождения и развития, направления исследования на сегодня. Эксперимент Майкельсона-Морли. Принцип относительности Галилея. Относительность одновременности событий. Общая и специальная теория Эйнштейна.
контрольная работа [27,7 K], добавлен 10.03.2013