Фундаментальные принципы и законы
Физика как фундаментальная отрасль естествознания. Концепция атомизма и универсальность физических законов. Проблема создания единой фундаментальной теории. Концепции материи, движения, пространства и времени. Принцип относительности и инвариантности.
Рубрика | Биология и естествознание |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 29.12.2009 |
Размер файла | 445,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
К созданию электромагнитной теории поля привела длинная цепь случайных открытий и планомерных кропотливых исследований, начиная с обнаружения способности янтаря, потертого о шелк, притягивать легкие предметы и кончая предложенной великим английским ученым Джеймсом Клерком Максвеллом идеи о порождении магнитного поля переменным электрическим полем.
Лишь после создания Максвеллом электромагнитной теории поля, во второй половине XIX в., началось широкое практическое использование электромагнитных явлений. Изобретение радио русским физиком и электромехаником А.С. Поповым (1859-1906) - одно из первых важнейших применений принципов новой, электромагнитной, теории. При развитии электромагнитной теории поля впервые научные исследования предшествовали техническим применениям. Если паровая машина была построена задолго до создания теории тепловых процессов, то сконструировать электродвигатель или радиоприемник оказалось возможным лишь после открытия и изучения законов электродинамики.
Многочисленное практическое применение электромагнитных явлений несомненно способствовало существенному преобразованию сферы деятельности человека и развитию цивилизации.
11.2 Концепции дальнодействия и близкодействия
Утверждению понятия поля в значительной мере способствовало стремление осознать дальнодействующий характер электрических сил и сил тяготения. Сразу же после открытия И. Ньютоном закона всемирного тяготения, а затем, примерно через сто лет, и закона Кулона, описывающего взаимодействие заряженных тел, возникли вопросы в большей степени философского содержания: почему физические тела, обладающие массой, действуют друг на друга на расстояниях, даже на огромных, через пустое пространство, и почему заряженные тела взаимодействуют даже через электрически нейтральную среду? До введения понятия поля не было удовлетворительных ответов на данные вопросы.
Долгое время считалось, что взаимодействие между телами может осуществляться непосредственно через пустое пространство, которое не принимает участия в данном процессе. Передача взаимодействия происходит мгновенно. Такое предположение составляет сущность концепции дальнодействия. Сам И. Ньютон считал невероятным и даже невозможным подобного рода взаимодействие тел. Основоположником концепции дальнодействия является французский математик, физик и философ Рене Декарт. Многие ученые придерживались этой концепции вплоть до конца XIX в. Экспериментальные исследования электромагнитных явлений показали несоответствие концепции дальнодействия физическому опыту. Кроме того, данная концепция находится в противоречии с постулатом специальной теории относительности, в соответствии с которым скорость передачи взаимодействий тел ограничена и не должна превышать скорость света в вакууме.
Было доказано, что взаимодействие электрически заряженных тел осуществляется не мгновенно и перемещение одной заряженной частицы приводит к изменению сил, действующих на другие частицы, не в тот же момент, а лишь спустя конечное время. Каждая электрически заряженная частица создает электромагнитное поле, действующее на другие заряженные частицы, т.е. взаимодействие передается через "посредника" - электромагнитное поле. Скорость распространения электромагнитного поля равна скорости света в пустоте - примерно 300 000 км/с. Это и составляет сущность новой концепции - концепции близкодействия, которая распространяется не только на электромагнитное, но и на другие виды взаимодействий. Согласно концепции близкодействия взаимодействие между телами осуществляется посредством тех или иных полей (например, тяготение - посредством гравитационного поля), непрерывно распределенных в пространстве.
11.3 Дискретность и непрерывность материи
Самое простое представление о поле дает сплошная среда, например вода, заполняющая некоторую область пространства (или же вообще все пространство). Эта среда может иметь в разных точках, например, различную плотность или температуру, по-разному двигаться. Именно конкретное физическое свойство среды, разное в разных точках и доступное для измерений, физически определяет поле. В связи с этим различают поле температур, поле скоростей, силовое поле и т.д.
В философском плане разделение мира на тела и частицы, с одной стороны, и сплошную среду, поле и пустое пространство - с другой, соответствует выделению двух крайних свойств мира - его дискретности и непрерывности.
Дискретность (или прерывность) означает - "зернистость", конечную делимость пространственно-временного строения и состояния предмета или объекта, его свойств и форм движения (скачки), тогда как непрерывность выражает единство, целостность и неделимость объекта, сам факт его устойчивого существования. Для непрерывного нет границ делимого.
В математике этим философским категориям соответствуют дискретное множество натуральных чисел и непрерывное множество (континуум) действительных чисел. Для точного пространственно-временного описания свойств сплошной среды (и поля) был разработан специальный раздел математики.
Дискретные и непрерывные свойства мира в рамках классической физики первоначально выступают как противоположные друг другу, отдельные и независимые друг от друга, хотя в целом и дополняющие общее представление о мире. И только развитие концепции поля, главным образом для описания электромагнитных явлений, позволило понять их диалектическое единство. В современной квантовой теории это единство противоположностей дискретного и непрерывного нашло более глубокое физико-математическое обоснование в концепции корпускулярно-волнового дуализма.
После появления квантовой теории поля представление о взаимодействии существенно изменилось. Согласно данной теории, любое поле не является непрерывным, а имеет дискретную структуру. Например, электромагнитное взаимодействие в квантовой теории поля является результатом обмена частиц фотонами - квантами электромагнитного поля, т.е. фотоны - переносчики этого поля. Аналогично другие виды взаимодействия возникают в результате обмена частиц квантами соответствующих полей. Например, в гравитационном взаимодействии, как предполагается, принимают участие гравитоны (их существование пока экспериментально не подтверждено).
Согласно полевой концепции, участвующие во взаимодействии частицы создают в каждой точке окружающего их пространства особое состояние - поле сил, проявляющееся в силовом воздействии на другие, частицы, помещенные в какую-либо точку данного пространства. Первоначально выдвигалась механическая интерпретация поля как упругих напряжений гипотетической среды "эфира". Теория относительности, отвергнув "эфир" как особую упругую среду, вместе с тем придала фундаментальный смысл понятию поля как первичной физической реальности.
В современной квантовой физике на роль "эфира" может претендовать новый возможный вид материи - физический вакуум. Первые представления о нем дал один из создателей квантовой теории поля английский физик П. Дирак (так называемое "море Дирака"). Хотя вакуум мы непосредственно не видим (он прозрачен для электромагнитных излучений и не оказывает никакого сопротивления движению материальных частиц и тел), но все же он может проявляться при взаимодействии с ним тех же частиц или электромагнитных волн (гамма-квантов), обладающих достаточной энергией. Если эта энергия превышает удвоенную энергию покоя, например, электрона, то гамма-квант при наличии еще одной частицы (атомного ядра) может, сам исчезнув, породить пару электрон-позитрон, как бы "вырванную" из вакуума. Есть и другие свидетельства в пользу физического вакуума.
В истории физики за последние 300 лет предложены по крайней мере четыре разные концепции "эфира": абсолютное пространство Ньютона, светоносный эфир Гюйгенса, гравитационный эфир Эйнштейна и физический вакуум Дирака. Насколько оправдается интуиция физиков о существовании в природе особой среды - физического вакуума, покажет только будущее.
11.4 Сущность электромагнитной теории Максвелла
В 60-х годах XIX в. английский физик Максвелл развил теорию Фарадея об электромагнитном поле и создал теорию электромагнитного поля. Это была первая теория поля. Она касается только электрического и магнитного полей и весьма успешно объясняет многие электромагнитные явления. Полезно напомнить некоторые основные идеи, лежащие в основе данной теории, и вытекающие из нее выводы.
Из закона Фарадея следует, что любое изменение сцепленного с контуром магнитного потока приводит к возникновению электродвижущей силы (ЭДС) индукции, вследствие чего появляется индукционный ток. Следовательно, возникновение ЭДС электромагнитной индукции возможно и в неподвижном контуре, находящемся в переменном магнитном поле. Однако ЭДС в любой цепи возникает только тогда, когда в ней на носителей тока действуют сторонние силы, т.е. силы неэлектростатического происхождения. Поэтому закономерно возникает вопрос о природе сторонних сил в данном случае. Опыт показывает, что такие сторонние силы не связаны ни с тепловыми, ни с химическими процессами в контуре; их возникновение нельзя также объяснить силами Лоренца, так как они на неподвижные заряды не действуют. Максвелл высказал гипотезу, что всякое переменное магнитное поле возбуждает в окружающем пространстве электрическое поле, которое и является причиной возникновения индукционного тока в контуре. Согласно представлению Максвелла контур, в котором появляется ЭДС, играет второстепенную роль, являясь своего рода лишь "прибором", обнаруживающим это поле. Электрическое поле, возбуждаемое магнитным полем, как и само магнитное поле, является вихревым.
Согласно Максвеллу, если всякое переменное магнитное поле возбуждает в пространстве вихревое электрическое поле, то должно существовать обратное явление: всякое изменение электрического поля должно вызывать появление в окружающем пространстве вихревого магнитного поля. Для установления количественных соотношений между изменяющимся электрическим полем и вызываемым им магнитным полем Максвелл ввел в рассмотрение так называемый ток смещения, обладающий способностью создавать в окружающем пространстве магнитное поле. Ток смещения в вакууме не связан с движением зарядов, а обусловливается только изменением электрического поля во времени и вместе с тем возбуждает магнитное поле - в этом заключается принципиально новое утверждение Максвелла.
Из уравнений Максвелла следует, что источниками электрического поля могут быть либо электрические заряды, либо изменяющиеся во времени магнитные поля, а магнитные поля могут возбуждаться или движущимися электрическими зарядами (электрическими токами), или переменными электрическими полями. Уравнения Максвелла не симметричны относительно электрического и магнитного полей. Это связано с тем, что в природе существуют электрические заряды, но нет зарядов магнитных.
В стационарном случае, когда электрическое и магнитное поля не изменяются во времени, источниками электрического поля являются только электрические заряды, а источниками магнитного - только токи проводимости. В данном случае электрическое и магнитное поля независимы друг от друга, что и позволяет изучать отдельно постоянные электрические и магнитные поля.
Уравнения Максвелла - наиболее общие уравнения для электрических и магнитных полей в покоящихся средах. В электромагнетизме они играют такую же роль, как законы Ньютона в механике. Из уравнений Максвелла следует, что переменное магнитное поле всегда связано с порождаемым им электрическим полем, а переменное электрическое поле - с порождаемым им магнитным, т.е. электрическое и магнитное поля неразрывно взаимно связаны и образуют единое электромагнитное поле.
К электромагнитному полю применим только принцип относительности Эйнштейна, поскольку факт распространения электромагнитных волн в вакууме во всех системах отсчета с одинаковой скоростью не совместим с принципом относительности Галилея.
12. Корпускулярно-волновые свойства света
12.1 Развитие представлений о свете
Теория Максвелла, являясь обобщением основных законов электрических и магнитных явлений, не только смогла объяснить уже известные к тому времени экспериментальные факты, что также является важным ее следствием, но и предсказала новые явления. Так, было предсказано существование электромагнитньх волн - переменного электромагнитного поля, распространяющегося в пространстве с конечной скоростью. В дальнейшем было доказано, что скорость распространения свободного электромагнитного поля (не связанного с зарядами и токами) в вакууме равна скорости света. Данный вывод и теоретическое исследование свойств электромагнитных волн привели Максвелла к созданию электромагнитной теории света, в соответствии с которой свет представляет собой также электромагнитные волны. Электромагнитные волны были впервые обнаружены немецким физиком Г. Герцем (1857-1894), доказавшим, что законы их возбуждения и распространения полностью описываются уравнениями Максвелла.
Согласно современным представлениям, электромагнитная природа света - это лишь одна разновидность проявления света. Другая разновидность характеризуется его квантовой природой. Такое двойственное представление природы света сложилось в результате длительного развития теории света.
В конце XVII в. почти одновременно возникли две, казалось бы, взаимоисключающие теории света: И. Ньютон предложил теорию, согласно которой свет представляет собой поток световых частиц (корпускул), летящих от светящегося тела по прямолинейным траекториям; современник И. Ньютона, нидерландский физик X. Гюйгенс (1629-1695) выдвинул волновую теорию, рассматривающую свет как упругую волну, распространяющуюся в мировом эфире.
В течение ста с лишним лет корпускулярная теория имела гораздо больше приверженцев, чем волновая. Однако в начале XIX в. французскому физику О.Ж. Френелю (1788-1827) удалось на основе волновых представлений объяснить все известные в то время оптические явления. В результате волновая теория света получила всеобщее признание, а корпускулярная теория была забыта почти на столетие. В 1851 г. французский ученый Ж. Б.Л. Фуко (1819-1868), измерив скорость света в воде, получил еще одно экспериментальное доказательство справедливости волновой теории.
Первоначально считалось, что свет - это поперечная волна, распространяющаяся в гипотетической упругой среде, будто бы заполняющей все мировое пространство и получившей название мирового эфира. После создания электромагнитной теории на смену упругим световым волнам пришли электромагнитные волны.
В конце XIX- начале XX вв. ряд новых опытов заставил вновь вернуться к представлению об особых световых частицах - фотонах. Было установлено, что свет имеет двойственную природу, сочетая в себе как волновые свойства, так и свойства, присущие частицам. В одних явлениях, таких, как интерференция, дифракция и поляризация, свет ведет себя как волна, в других (фотоэффект, эффект Комптона) - как поток частиц (фотонов).
Теория Максвелла и ее экспериментальное подтверждение приводят к единой теории электрических, магнитных и оптических явлений, базирующейся на представлении об электромагнитном поле.
Согласно электромагнитной теории Максвелла:
где с и х - соответственно скорости распространения света в вакууме и в среде с диэлектрической проницаемостью е и магнитной проницаемостью м; n - показатель преломления среды.
Данное соотношение связывает оптические, электрические и магнитные, характеристики вещества. По Максвеллу, е и м - величины, не зависящие от длины волны света, поэтому электромагнитная теория не смогла объяснить явление дисперсии (зависимость показателя преломления от длины волны). Эта трудность была преодолена в конце XIX в. Х.А. Лоренцем (1853-1928), предложившим электронную теорию, согласно которой диэлектрическая проницаемость зависит от длины волны света. Теория Лоренца, основанная на предположении о колебаниях электронов внутри атома, позволила объяснить явления испускания и поглощения света веществом.
Световые волны занимают лишь небольшой интервал шкалы электромагнитных волн Они охватывают диапазон от 380 до 770 нм (1 нм = 10-9 м).
Все окружающее нас пространство пронизано электромагнитным излучением. Солнце, окружающие нас тела, антенны радиостанций и телевизионных передатчиков испускают электромагнитные волны, которые в зависимости от частоты носят разные названия: радиоволны (РВ); инфракрасное излучение (ИК); видимый свет (В); ультрафиолетовое излучение (УФ); рентгеновские лучи (РЛ); гамма-излучение (г).
В отличие от механических волн, которые распространяются в веществе - газе, жидкости или твердом теле, электромагнитные волны могут распространяться и в вакууме.
12.2 Волновые свойства
Родоначальник волновой теории Христиан Гюйгенс не отвергал существования корпускул, полагая, что они не излучаются светящимися телами, а заполняют все пространство. Процесс распространения света Гюйгенс представлял не как поступательное движение, а как последовательный процесс передачи удара одной корпускулой о другую. Сторонники Гюйгенса высказывали мнение, что свет есть распространяющееся колебание в особой среде - "эфире", заполняющем все мировое пространство и свободно проникающем во все тела. Световое возбуждение от источника света передается посредством эфира во все стороны.
Так возникли первые волновые представления о природе света. Основную ценность начальной волновой теории света представляет принцип, первоначально сформулированный Гюйгенсом, а затем развитый Френелем. Принцип Гюйгенса - Френеля состоит в том, что каждая точка, до которой дошло световое возбуждение, в свою очередь становится центром вторичных волн и передает их во все стороны соседним точкам. Наиболее наглядно волновые свойства света проявляются в явлениях интерференции и дифракции.
Интерференция света заключается в том, что при взаимном наложении двух волн может происходить усиление или ослабление колебаний. Принцип интерференции был открыт в 1801 г. английским ученым Томасом Юнгом (1773-1829), врачом по профессии. Юнг провел ставший теперь классическим опыт с двумя отверстиями. На экране кончиком булавки прокалывались два близко расположенных отверстия, которые освещались солнечным светом из небольшого отверстия в зашторенном окне. За экраном наблюдалась вместо двух ярких точек серия чередующихся темных и светлых колец. Необходимым условием наблюдения интерференционной картины является когерентность волн - согласованное протекание колебательных или волновых процессов.
Явление интерференции широко используется в приборах - интерферометрах, с помощью которых осуществляются различные точные измерения и производится контроль чистоты обработки поверхности деталей, а также многие другие операции контроля.
В 1818г. Френель представил обширный доклад по дифракции света на конкурс, проводимый Парижской академии наук. Рассматривая этот доклад, французский математик и физик Пуассон (1781-1840) пришел к выводу, что согласно предлагаемой Френелем теории при определенных условиях в центре дифракционной картины от непрозрачного круглого препятствия на пути света должно быть светлое пятно, а не тень. Это было ошеломляющее заключение. Д.Ф. Араго (1786- 1853), французский ученый тут же поставил опыт, и вывод Пуассона подтвердились. Так, на первый взгляд, противоречащее внешне теории Френеля заключение, сделанное Пуассоном, превратилось благодаря опыту Араго в одно из доказательств ее справедливости и положило начало признанию волновой природы света.
Явление отклонения света от прямолинейного направления распространения называется дифракцией. На явлении дифракции основаны многие оптические приборы. В частности, в кристаллографической аппаратуре используется дифракция рентгеновских лучей.
Волновую природу света и поперечность световых волн доказывает, кроме того, и явление поляризации. Сущность поляризации наглядно демонстрирует простой опыт: при пропускании света через два прозрачных кристалла его интенсивность зависит от взаимной ориентации кристаллов. При одинаковой ориентации свет проходит без ослабления. При повороте одного из кристаллов на 90° свет полностью гасится, т.е. не проходит через кристаллы. Явление поляризации можно объяснить, считая свет поперечной волной. При прохождении через первый кристалл происходит поляризация света, т.е. кристалл пропускает только волны, с колебаниями вектора напряженности электрического поля в одной плоскости. Если плоскости, в которой пропускаются колебания первым и вторым кристаллом, совпадают, свет проходит без ослабления. При повороте одного из кристаллов на 90° он гасится. Волновую природу света подтверждает и явление дисперсии света. Узкий параллельный пучок белого света при прохождении через стеклянную призму разлагается на пучки света разного цвета Цветную полоску называют сплошным спектром. Зависимость скорости распространения света в среде от длины волны называется дисперсией света. Дисперсия была открыта И. Ньютоном. Разложение белого света объясняется тем, что он состоит из электромагнитных волн с разной длиной волны и показатель преломления зависит от длины волны. Показатель преломления максимален для света с самой короткой длиной волны - фиолетового и минимален для самого длинноволнового света - красного. Опыты показывают, что в вакууме скорость света одинакова для любой длинной волны.
Изучение явлений дифракции, интерференции, поляризации и дисперсии света привело к окончательному утверждению волновой теории света.
12.3 Квантовые свойства света
В 1887 г. один из основоположников электродинамики Г. Герц при освещении цинковой пластины, соединенной со стержнем электрометра, обнаружил явление фотоэлектрического эффекта, который заключается в том, что с поверхности металлической пластины под действием света вырываются отрицательно заряженные частицы. Позденее было доказано, что заряженными частицами являются электроны. Испускание электронов веществом под действием электромагнитного излучения называется фотоэффектом. Закономерности фотоэффекта были установлены экспериментально в 1888-1889 гг. русским физиком А.Г. Столетовым (1839-1896). Попытка объяснить их в рамках электромагнитной теории света Максвелла не удалась.
Электромагнитная теория Максвелла и электронная теория Лоренца несмотря на огромные успехи были несколько противоречивы и при их применении возникали затруднения. Обе теории основывались на гипотезе об эфире, только "упругий эфир" был заменен "эфиром электромагнитным" (теория Максвелла) или "неподвижным эфиром" (теория Лоренца). Теория Максвелла не смогла объяснить не только фотоэффект, но и процессы испускания и поглощения света, комптоновского рассеяния и т.д. Теория Лоренца в свою очередь оказалось несостоятельной в объяснии многие явления, связанные с взаимодействием света с веществом, распределение энергии по длинам волн при тепловом излучении абсолютно черного тела и др.
Перечисленные затруднения и противоречия были преодолены благодаря смелой гипотезе, высказанной в 1900 г. немецким физиком М. Планком (1858-1947), согласно которой излучение света происходит не непрерывно, а дискретно, т.е. определенными порциями (квантами), энергия которых определяется частотой :
E=h,
где h - постоянная Планка.
Теория Планка не нуждалась в понятии об эфире и она объяснила тепловое излучение абсолютно черного тела.
А. Эйнштейн в 1905 г. обосновал квантовую природу света: не только излучение света, но и его распространение происходят в виде потока световых квантов - фотонов, энергия которых определяется приведенной выше формулой Планка, а импульс
где, с - скорость света, - длина волны.
Наиболее полно квантовые свойства электромагнитных волн проявляются в эффекте Комптона: при рассеянии монохроматического рентгеновского излучения веществом с легкими атомами в составе рассеянного излучения наряду с излучением, характеризующимся первоначальной длиной волны, наблюдается излучение с более длинной волной.
Квантовые представления о свете согласуются с законами излучения и поглощения света, законами взаимодействия излучения с веществом. Такие оптические явления, как интерференция, дифракция и поляризация света, хорошо объясняются в рамках волновых представлений. Все многообразие изученных свойств и законов распространения света, его взаимодействия с веществом показывает, что свет имеет сложную природу: он представляет собой единство противоположных свойств - корпускулярного (квантового) и волнового (электромагнитного). Длительный путь развития привел к современным представлениям о двойственной корпускулярно-волновой природе света. Приведенные выше выражения связывают корпускулярные характеристики излучения - энергию и импульс кванта - с волновыми - частотой и длиной волны. Таким образом, свет представляет собой единство дискретности и непрерывности.
Список литературы
1. Карпенков С.Х. Концепции современного естествознания: Учебник для вузов. - М.: Академический Проект, 2000. Изд.2-е, испр. и доп.
Подобные документы
Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".
реферат [888,7 K], добавлен 07.01.2010Понятия пространства и времени являются философскими категориями и в этом смысле не определяются в естествознании. Для естественных же наук важно уметь определять их численные характеристики - расстояния между объектами и длительности процессов.
реферат [28,2 K], добавлен 05.06.2008Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.
реферат [35,2 K], добавлен 11.07.2013Естествознание как особая форма знания, предмет методы ее изучения, история становления и развития в человеческой культуре. Принцип относительности, соотношение пространства и времени. Принципы возрастания энергии. Место химии в современной цивилизации.
методичка [35,6 K], добавлен 16.01.2010Появление стехиометрии, ее развитие в конце XVIII – начале XIX вв. Законы сохранения вещества, постоянства состава веществ, простых кратных и объемных отношений, закон Авогадро. Значение стехиометрических законов в обосновании концепции атомизма.
реферат [22,7 K], добавлен 15.12.2013Основные черты и отличия науки от других отраслей культуры. Проблемы, решаемые отдельными естественными науками. Свойства пространства и времени. Главные выводы специальной и общей теории относительности. Естественнонаучные модели происхождения жизни.
контрольная работа [40,6 K], добавлен 18.11.2009Естественнонаучная и гуманитарная культура. Дифференциация, интеграция и математизация в современной науке. Культурный уровень организации материи. Квантовомеханическая концепция описания микромира. Пространство и время в общей теории относительности.
курс лекций [47,9 K], добавлен 16.11.2009Изучение понятий пространства (реального, концептуального, перцептуального) и времени как форм существования материи. Ознакомление с принципом относительности Галилея, законами Ньютона, космологической теорией Бруно и координационной системой Декарта.
контрольная работа [28,0 K], добавлен 25.04.2010Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.
реферат [30,5 K], добавлен 30.07.2010Концепции времени и пространства, этапы их зарождения и развития, направления исследования на сегодня. Эксперимент Майкельсона-Морли. Принцип относительности Галилея. Относительность одновременности событий. Общая и специальная теория Эйнштейна.
контрольная работа [27,7 K], добавлен 10.03.2013