Роль открытия кислорода в развитии философских взглядов на сущность жизни
Физические и химические свойства кислорода, история открытия. История представлений о возникновении жизни, сущность научных взглядов. Применение и получение кислорода. Активные формы кислорода и их биологическая роль для живых организмов, круговорот.
Рубрика | Биология и естествознание |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 21.10.2009 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ЮЖНЫЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ
ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА АНАТОМИИ И ФИЗИОЛОГИИ ДЕТЕЙ И ПОДРОСТКОВ
Курсовая работа на тему:
«РОЛЬ ОТКРЫТИЯ КИСЛОРОДА В РАЗВИТИИ ФИЛОСОФСКИХ ВЗГЛЯДОВ НА СУЩНОСТЬ ЖИЗНИ»
Выполнила:
аспирантка
кафедры анатомии и физиологии
детей и подростков
Ивонина Кристина Олеговна
Проверил:д.б.н., профессор
Менджерицкий Александр Маркович
Ростов-на-Дону
2008 г.
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
1. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА
2. ИСТОРИЯ ОТКРЫТИЯ КИСЛОРОДА
3. ИСТОРИЯ ПРЕДСТАВЛЕНИЙ О ВОЗНИКНОВЕНИИ ЖИЗНИ
4. СУЩНОСТЬ НАУЧНЫХ ВЗГЛЯДОВ НА ПРОИСХОЖДЕНИЕ ЖИЗНИ НА ЗЕМЛЕ В ТЕОРИИ БИОПОЭЗА
5. ПРИМЕНЕНИЕ И ПОЛУЧЕНИЕ КИСЛОРОДА
6. АКТИВНЫЕ ФОРМЫ КИСЛОРОДА И ИХ БИОЛОГИЧЕСКАЯ РОЛЬ ДЛЯ ЖИВЫХ ОРГАНИЗМОВ
6.1 Озоновый слой Земли
6.2 Свободные радикалы и активные формы кислорода. Пути образования и механизмы
6.3 Биологическая роль АФК
6.4 Защита. Антиоксидантная система клеток
6.5 Свободнорадикальная теория старения
7. КРУГОВОРОТ КИСЛОРОДА
7.1 Фотосинтез
7.2 Дыхание
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ
ВВЕДЕНИЕ
На протяжении тысячелетий людям казалось очевидным, что живая природа была создана такой, какой мы ее знаем сейчас, и всегда оставалась неизменной. Но уже в глубокой древности высказывались догадки о постепенном изменении, развитии живой природы. Одним из предтеч эволюционных идей можно назвать древнегреческого философа Гераклита (VI-V вв. до н.э.), который сформулировал положение о постоянно происходящих в природе изменениях («все течет, все меняется»). Другой древнегреческий мыслитель - Эмпедокл - в V в. до н.э. выдвинул, вероятно, одну из древнейших теорий эволюции. Он считал, что вначале на свет появились разрозненные части различных организмов. Они соединялись между собой в самых невероятных сочетаниях. Так появились, в частности, кентавры. Позднее будто бы все нежизнеспособные комбинации погибли. Великий древнегреческий ученый Аристотель выстроил все известные ему организмы в ряд по мере их усложнения.
В конце XVI века и XVII век бурно развивается наука, прежде всего, экспериментально-математическое естествознание. Этот период именуют эпохой научной революции. Наука играет все более значительную роль в жизни общества. Возникает не только подлинное научное естествознание, основой которого является органическое соединение теории с планомерным экспериментальным исследованием природы, но и опирающаяся на науку и ее философское осмысление качественно новая картина мира.
Философия Нового времени развивалась в тесном взаимодействии с наукой, а ее важнейшим объектом стала природа научного знания, методы его получения и формы существования. Быстрое развитие точного естествознания и социальный прогресс общества породили в философии культ разума, который стал рассматриваться как: а) совокупное знание; б) инструмент борьбы с религиозными и иными предрассудками; в) предпосылка «рациональной» организации общества; г) непременное условие свободы человека.
Опытно-экспериментальное исследование природы и тематическое осмысление его результатов оказало решающее влияние на философскую мысль. Объектом особого внимания в Новое время становятся гносеология и методология исследования природы.
Своим развитием философия Нового времени обязана отчасти углубленному изучению природы, отчасти все более усиливающемуся соединению математики с естествознанием. Благодаря развитию этих наук принципы научного мышления распространились далеко за пределы отдельных отраслей и собственно философии.
Такой революционный скачок в философии науки позволил по-новому взглянуть на окружающий нас мир и совсем иначе, а именно с научной точки зрения, поставить вопрос о происхождении жизни.
В вопросе о путях возникновения жизни с древности существуют две противоположные точки зрения, одна из которых утверждает возможность происхождения живого из неживого - теория абиогенеза; другая - теория биогенеза - отрицает самопроизвольное зарождение жизни. Вокруг этих двух направлений и происходила борьба в вопросе о возникновении жизни на всем протяжении истории науки.
Современные воззрения позволяют только поставит этот спор на строго научную почву и тем самым обосновать правильность теории абиогенеза. Они дают возможность наметить те факты, которые привели к превращению неживой материи в живую, и те пути эволюции веществ, которые могли привести к возникновению живого.
Сегодня аргументы в пользу вечности и изначальности жизни кажутся менее серьезными, чем 50-80 лет назад. Концепция Большого взрыва ограничила возраст Вселенной 12-20 млрд лет. Постулат Ф. Реди «все живое от живого», справедливый для биосферного этапа развития Земли, оказался частным случаем всеобщего закона «все живое от неживого». Доказательство временной конечности Вселенной определило вероятностные хронологические рамки абиогенеза, но не решило вечную загадку мира: где, когда и как организовалась из отдельных элементов материя, способная эволюционно подойти к самопознанию. Попытки обнаружить признаки жизни во внеземных объектах оказались тщетными. Тем не менее, это не мешает ряду исследователей отстаивать неоаррениусовские и неорихтерианские представления о заносе на Землю жизни из космоса.
Одной из причин неудачи в области химической эволюции является отсутствие исходных данных о физико-химических условиях среды, существовавшей на Земле в период абиогенеза.
Наличие или отсутствие кислорода в первичной атмосфере Земли могло по-разному сказаться на ход эволюции живых существ.
То, что кислород невидим, безвкусен, лишен запаха, газообразен при обычных условиях - надолго задержало, его открытие. Многие ученые прошлого догадывались, что существует вещество со свойствами, которые, как мы теперь знаем присущи кислороду.
Природа воздушного кислорода и время его появления в атмосфере Земли -- проблема общенаучного масштаба, привлекающая внимание естествоиспытателей самого различного профиля, образно говоря, от астрофизиков до микробиологов. Однако реальное ее решение найдено в рамках наук о Земле с привлечением геологических данных.
Кислород - вездесущ, всемогущ и в то же время невидим. Кислород вездесущ, поскольку из него в значительной степени состоят не только воздух, вода и земля, но и мы с вами, наши еда, питье, одежда; в подавляющем большинстве окружающих нас веществ есть кислород. Могущество кислорода проявляется уже в том, что мы им дышим, а ведь дыхание это синоним жизни. Стихия всемогущего огня, как правило, сильно зависит от кислорода. Что касается третьего эпитета - «невидимый», то здесь, вероятно, нет нужды в доказательствах. При обычных условиях элементарный кислород не только бесцветен и потому невидим, но и не воспринимаем, не ощутим никакими органами чувств. Правда, недостаток, а тем более отсутствие кислорода мы ощутили бы моментально...
После возникновения и накопления кислорода в атмосфере с ним остаются быть связаны много загадок природы.
В природе царит закон целесообразности. И одной из ярких его иллюстраций служат «безотходные технологии», когда отработанные вещества одной живой системы автоматически становятся исходными соединениями для деятельности другой. Кругооборот кислорода непосредственно связан с кругооборотомуглерода (процессы фотосинтеза, дыхания и питания животных). Так при фотосинтезе растения для производства питательных веществ и кислорода используют не что иное, как «отходы» жизнедеятельности всех живых существ, а именно: воду и углекислый газ.
В последние 20-25 лет проблема патогенеза всевозможного рода заболеваний обогатилась раскрытием механизма повреждения клеточных структур. Основным фактором повреждения оказался кислород - тот самый кислород, из-за недостатка которого возникает гибель клеток. Выяснилось, что так называемые активные формы кислорода (АФК), имеющие неспаренный электрон, обладают биологическим эффектом, который в зависимости от концентрации АФК может быть регуляторным или токсическим.
Метаболизм клеток млекопитающих связан с неизбежной продукцией молекул реактивного кислорода (reactive oxygen species -- ROS) и оксида азота (reactive nitroxy species -- RNOS). Молекулы свободного радикала являются чрезвычайно реакционно-способными. Образование свободного радикала запускает каскад передачи электрона. Если данный каскадный процесс выходит из-под контроля развивается повреждение клеток. Свободный радикал может захватить электрон с незащищенных молекул-жертв, которые не приспособлены для отдачи электрона. Часто свободные радикалы атакуют ДНК, которая заключает в себе генетический код. Опасным является повреждение ненасыщенных жирных кислот -- процесс перекисного окисления липидов. Соответственно пробудился интерес и к соединениям, которые в обычных условиях предотвращают токсическое действие АФК и СР - антиоксидантам. Окислительный стресс играет важную, если не ключевую роль в патогенезе старения и широкого спектра заболеваний.
Так что же такое «кислород», и какую роль он сыграл в эволюции живых существ…?
1. ФИЗИЧЕСКИЕ И ХИМИЧЕСКИЕ СВОЙСТВА КИСЛОРОДА
Кислород - самый распространенный химический элемент на Земле. Окружающий нас воздух - земная атмосфера содержит кислорода 23% по массе и 21% по объему. Еще больше его содержится в земной коре - 47% по массе и 92% по объему. В гидросфере - водах океанов, морей и т.д. - его содержание составляет 89%. В состав живых организмов входит до 65 масс.% кислорода. В целом массовая доля кислорода составляет около 30% от массы Земли.
Химический элемент кислород образует два простых вещества - молекулярный кислород О2 и озон О3 различные по физическим свойствам.
Кислород -- газ, не имеющий цвета, вкуса и запаха, при низких температурах голубоватая жидкость. Атомный номер 8. Обычный атмосферный кислород состоит из смеси трех изотопов: 16О (99,7%), 17О (0,01%), 18О (0,2%). Ввиду того что содержание изотопов 17О и 18О в кислороде небольшое по сравнению с изотопом 16О, атомная масса (молярная масса) кислорода принята равной 15,9994 а.е.м. (г/моль). Радиус атома 60 (48) пм. Энергия ионизации (первый электрон) 1313,1 (13,61) кДж/моль (эВ). Электронная конфигурация 2s2 2p4. Ковалентный радиус 73 пм. Радиус иона 132 (-2e) пм. Электроотрицательность (по Полингу) 3,44. Электродный потенциал 0. Степени окисления -2, -1, +2, +1, -Ѕ. Плотность (при -183 °C) 1,42897 г/смі. Удельная теплоёмкость 0,916 (O-O) Дж/(K·моль). Теплопроводность 0,027 Вт/(м·K). Температура плавления 54,8 K. Теплота плавления 50,35 K (-222,8 °C) кДж/моль. Температура кипения 90,19 K. Теплота испарения 3,4099 кДж/моль. Молярный объём 14,0 смі/моль. Структура кристаллической решётки кубическая. Период решётки 6,830 Е.
Строение молекулы кислорода можно представить в виде следующей структурной формулы: О--О. Атмосферный кислород состоит из двухатомных молекул. Межатомное расстояние в молекуле О20,12074 нм. Энергия диссоциации молекулы О2 на атомы довольно высока и составляет493,57 кДж/моль.
Молекула О2 парамагнитна (притягивается магнитом), так как в ней содержатся два неспаренных электрона. Этот факт можно объяснить тем, что в молекуле на каждой из двух разрыхляющих орбиталей находится по одному неспаренному электрону.
Молекула кислорода О2 довольно инертна. Высокая прочность химической связи между атомами в молекуле О2 приводит к тому, что при комнатной температуре газообразный кислород химически довольно малоактивен. В природе он медленно вступает в превращения при процессах гниения. Кроме того, кислород при комнатной температуре способен реагировать с гемоглобином крови, что обеспечивает перенос кислорода от органов дыхания к другим органам. В большинстве реакций окисления с участием кислорода выделяется тепло и свет -- такие процессы называются горением. Устойчивость молекулы кислорода и высокая энергия активации большинства реакций окисления обусловливают то, что при низкой и комнатной температурах многие реакции с участием кислорода протекают с едва заметной скоростью. Только при создании условий для появления радикалов --О-- или R--О--О--, возбуждающих цепной процесс, окисление протекает быстро. В этом случае применяют, например, катализаторы, которые способны ускорить окислительные процессы. При нагревании, даже небольшом, химическая активность кислорода резко возрастает.
В зависимости от природных условий изотопный состав кислорода может изменяться, то обогащаясь тяжелыми изотопами, то обедняясь ими. Так, молекулы воды Н216О переходят в парообразное состояние относительно легче, чем молекулы Н217О и Н218О. Поэтому в состав водяных паров, испаряющихся из моря, входит кислород с относительно меньшим содержанием тяжелых изотопов, чем кислород, остающийся в морской воде.
Аллотропной модификацией кислорода является озон. Молекула его трехатомна -- О3. Строениеееможнопредставитьследующейструктурной формулой:
Всякое изменение числа или расположения одних и тех же атомов в молекуле влечет за собой появление качественно нового вещества с иными свойствами.
Озон по своим свойствам отличается от кислорода. В обычных условиях это газ синего цвета, с резким раздражающим запахом. Название его происходит от греческого слова «озейн», что означает «пахнущий». Он токсичен. Вотличиеот кислородамолекулаозонахарактеризуетсябольшоймолекулярной массой, поляризуемостью и полярностью. Поэтому озон имеет более высокую температуру кипения (- 111,9°С), чем кислород (-182,9°С), интенсивную окраску и лучшую растворимость в воде.
В естественных условиях озон образуется из кислорода при грозовых разрядах, чем объясняется специфический запах свежести после грозы, а на высоте 10--30 км -- при действии ультрафиолетовых солнечных лучей. Он задерживает вредное для жизни ультрафиолетовое излучение Солнца. Кроме этого, озон поглощает инфракрасные лучи Земли, препятствуя ее охлаждению. Следовательно, аллотропная форма кислорода -- озон -- играет большую роль в сохранении жизни на Земле.
Образование озона сопровождается выделением атомного кислорода. Это в основном цепные реакции, в которых появление активной частицы (она обозначается обычно знаком*) вызывает большое число (цепь)последовательных превращений неактивных молекул, например O2. Цепную реакцию образования озона из кислорода можно выразить следующей схемой:
О2 + hv > О2*,
O2* + O2 => O3 + O,
О + О2 <=> О3;
или суммарно:
3О2 <=> 2О3
В технике озон получают пропусканием электрические разряды через кислород в озонаторах. Молекула О3 неустойчива, и при большой концентрации озон распадается с взрывом:
2О2 <=> 3О2
Озон является еще более сильным окислителем, чем кислород. Как сильный окислитель, озон используется для очистки питьевой воды и для дезинфекция воздуха. Воздух хвойных лесов считается полезным, так как в нем содержится небольшое количество озона, который образуется при окислении смолы хвойных деревьев.
Имеется еще одна модификация кислорода - четырехатомная (О4):
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Эта модификация образуется при слабом взаимодействии двух молекул кислорода. Содержание четырехатомных молекул в газообразном кислороде в обычных условиях составляет всего лишь 0,1% от общего числа молекул, в жидком и твердом кислороде -- до 50%. Существует равновесие:
2О2 <=> О4
При низких температурах оно смещено вправо, т.е. в сторону образования молекул О4. Структурные изменения молекул вызывают различия в свойствах веществ. Так, жидкий и твердый кислород, в отличие от газообразного, окрашены в синий цвет.
2. ИСТОРИЯ ОТКРЫТИЯ КИСЛОРОДА
То, что кислород невидим, безвкусен, лишен запаха, газообразен при обычных условиях - надолго задержало, его открытие. Многие ученые прошлого догадывались, что существует вещество со свойствами, которые, как мы теперь знаем, присущи кислороду.
Удивительно, но кислород был открыт несколько раз. Первые сведения о нем встречаются уже в VIII веке в трактате китайского алхимика Мао Хоа. Китайцы представляли себе, что этот газ («йын») -- составная часть воздуха, и называли его «деятельным началом»! Жителям самой большой азиатской страны было известно и то, что кислород соединяется с древесным углем, горящей серой, некоторыми металлами. Китайцы могли и получать кислород, используя соединения типа селитры.
Все эти древние сведения постепенно забылись. Лишь в XV веке о кислороде мимоходом упоминает великий Леонардо да Винчи.
Открытие кислорода (англ. Oxygen, франц. Oxygene, нем. Sauerstoff) ознаменовало начало современного периода развития химии. Вновь его открывает в XVII веке голландец Дреббель. О нем известно очень мало. Вероятно, то был великий изобретатель и крупный ученый. Он сумел создать подводную лодку. Однако объем лодки ограничен, поэтому брать с собой воздух, состоящий в основном из азота, было невыгодно. Логичнее использовать кислород. И Дреббель получает его из селитры! Это произошло в 1620 году, более чем за сто пятьдесят лет до «официального» открытия кислорода Пристли и Шееле.
С глубокой древности было известно, что для горения необходим воздух, однако многие века процесс горения оставался непонятным. В XVII в. Майов и Бойль независимо друг от друга высказали мысль, что в воздухе содержится некоторая субстанция, которая поддерживает горение.
Нормальная наука не ставит своей целью нахождение нового факта или теории, и новые явления, о существовании которых никто не подозревал, вновь и вновь открываются научными исследователями, а радикально новые теории опять и опять создают исключительно мощную технику для того, чтобы преподносить сюрпризы подобного рода. Новые фундаментальные факты и теории создаются непреднамеренно в ходе правил. После того как они стали элементами научного знания, наука, по крайней мере, остается той же самой. Усвоение теорией нового вида фактов требует чего-то большего, нежели простого дополнительного приспособления теории. Чтобы увидеть, как тесно переплетаются фактическиеи теоретические новшества, по крайней мере, три человека имеют законное право претендоватьна это открытие.
Кто же был первым? Официально признанными претендентами на приоритет в открытии кислорода рассматриваются кандидатуры сразу трёх учёных второй половины XVIII в., имеющих законное право претендовать на это великое открытие. Это шведский химик Карл Вильгельм Шееле (C.W. Scheele, 1742-1786), английский священник Джозеф Пристли (Joseph Priestley, 1733-1804), и французский химик Антуан Лавуазье (Lavoisier, Antoine Laurent, 1743-1794). Возможно, наличие такого обилия претендентов связано с тем, что предшествующий открытию кислорода прогресс нормальной науки, в данном случае химии газов, весьма основательно подготовил почву для этого события.
Самым первым претендентом, получившим относительно чистую пробу кислорода, был шведский аптекарь Карл Вильгельм Шееле (C.W. Scheele, 1742-1786).
Карл Вильгельм Шееле родился 9 декабря 1742 г. в Штральзунде (Померания), принадлежавшем тогда Шведскому королевству, в семьепивовара и мелкого торговца зерном. В детстве посещал частный пансион, учился в гимназии. Поступив в ученичество в аптеку Бауха в Гётеборге (1756), освоил основы фармации и лабораторной практики, усердно изучал (главным образом по ночам) труды химиков И. Кункеля, Н. Лемери, Г. Шталя. Ученье, по обычаям того времени, должно было длиться около десяти лет. Карл Шееле уже через шесть лет успешно сдал экзамены и получил звание аптекаря. В совершенстве овладев профессией и, перебравшись в Стокгольм, Шееле приступает к самостоятельным научным изысканиям. Работал в аптеках Стокгольма (1768-1769), Упсалы (1770-1774), Чёпинга (1775-1786).
В университете Упсалы работали такие знаменитые ученые, как ботаник Карл Линней и химик Торберн Бергман. Шееле и Бергман вскоре стали друзьями, что немало способствовало успехам в научной деятельности обоих химиков.
Шееле был одним из тех ученых, которым сопутствовала удача в их работе. Его экспериментальные исследования существенно способствовали превращению химии в науку. Работы и открытия Шееле охватывают всю химию того времени: учение о газах, химический анализ, химию минералов, начала органической химии (еще не выделившейся в самостоятельную науку).
Первая его работа была посвящена винной кислоте C2H2(OH)2(COOH)2, выделенной им в 1769 г. из соли - «винного камня» (гидротартрата калия), и плавиковой (фтороводородной) HF, выделенной из плавикового шпата - фторида кальция CaF2. В 1774 г., исследуя пиролюзит («черную магнезию»), показал, что он является соединением неизвестного металла, впоследствии названного марганцем. В этом же исследовании им была открыта «тяжелая земля» - оксид бария. Действуя на «черную магнезию» соляной кислотой, Шееле открыл зеленоватый удушливый газ, названный им «дефлогистированной соляной кислотой». Его природа была установлена позднее другими учеными, и ему было присвоено название хлор.После переезда сначала в Упсалу, где Шееле тоже ждала большая аптека, а потом - в маленький и тихий городок Чёпинг, научные исследования пытливого аптекаря продолжались и дали поразительные результаты. Шведский химик оказался автором стольких открытий, что их хватило бы на добрый десяток ученых, и многие их этих открытий относились к получению и очистке кислот.
В 1775 г. Шееле приготовил мышьяковую кислоту H3AsO4, в 1782-1783 гг. - синильную (циановодородную) кислоту HCN, в период с 1776 по 1785 гг. - целый набор органических кислот: мочевую C5(NH)4O3, щавелевую H2C2O4, молочную C2H4(OH)COOH, лимонную C3H4(OH)(COOH)3, яблочную С2H3(OH)(СOOH)2, галловую C6H2(OH)3COOH, а также глицерин C3H5(OH)3...
Показал, что молочная кислота, выделенная из кислого молока, несколько отличается от аналогичной кислоты из других источников. Это различие нашло объяснение лишь спустя столетие, после открытия изомеров. Особый интерес представляет получение Шееле синильной кислоты из угольного ангидрида, угля и аммиака. Этот опыт некоторые авторы рассматривают как первый органический синтез, осуществленный за сорок лет до Вёлера. В ходе работ по получению синильной кислоты Шееле выделил краску, получившую название «берлинской сини».
Шееле первым получил и исследовал перманганат калия KMnO4 - всем известную "марганцовку", которая теперь широко применяется в химических экспериментах и в медицине, разработал способ получения фосфора P из костей, открыл сероводород H2S. Окислением минерала молибденита получил «молибденовую землю», т.е. молибденовый ангидрид. Обрабатывая кислотами минерал тунгстен, получил «тунгстеновую кислоту» - вольфрамовый ангидрид. Впоследствии минералоги назвали вольфрамит кальция в честь ученого шеелитом. Шееле также показал, что железо, медь и ртуть имеют различные степени окисления.
Наиболее значительный труд Карла Вильгельма Шееле - Химический трактат о воздухе и огне (Chemische Abhandlung von der Luft und dem Feuer, 1777 г.). Эта книга содержит результаты его многочисленных экспериментов 1768-1773 гг. по исследованию газов и процессов горения. Из Трактата видно, что Шееле - независимо от Пристли и Лавуазье и за два года до них - открыл кислород и подробно описал его свойства. При этом кислород был получен им многими способами: прокаливанием оксида ртути (как это сделали Пристли и Лавуазье), нагреванием карбоната ртути и карбоната серебра и нагреванием селитры, нитрата магния, перегонкой смеси селитры с серной кислотой. Несомненно, Шееле первым (1772) «держал в руках» чистый кислород.
Как это было? Проживая в Упсале, Шееле начал изучать природу огня, и ему скоро пришлось задуматься над тем, какое участие принимает в горении воздух. Он уже знал, что сто лет назад Роберт Бойль и другие учёные доказали, что свеча, уголь и всякое другое горючее тело могут гореть только там, где есть достаточно много воздуха. Никто в те времена не мог, однако, толком объяснить, отчего все так происходит и зачем, собственно, воздух нужен горящему телу.
Воздух тогда считали элементом - однородным веществом, которое никакими силами нельзя расщепить на еще более простые составные части. Шееле тоже сначала был такого мнения. Но скоро он должен был его изменить после того, как стал проводить опыты с различными химическими веществами в сосудах, плотно закрытых со всех сторон. Какие бы вещества ни пытался Шееле сжигать в закрытых сосудах, он всегда обнаруживал одно и то же любопытное явление: воздух, который находился в сосуде, обязательно уменьшался при горении на одну пятую часть, и по окончании опыта вода обязательно заполняла одну пятую часть объёма колбы, что хорошо видно на представленном рисунке из рукописи Шееле. И его озарила догадка, что воздух не является однородным.
Далее он стал изучать разложение нагреванием множества веществ (среди которых была и селитра KNO3) и получил газ, который поддерживал дыхание и горение. По некоторым данным уже в 1771 г. Карл Шееле при нагреве пиролюзита с концентрированной серной кислотой наблюдал выделение «виртольного воздуха», поддерживающего горение, т.е. кислорода. Карл Шееле хотел раскрыть загадку огня и при этом неожиданно обнаружил, что воздух - не элемент, а смесь двух газов, которые он называл воздухом «огненным» и воздухом «негодным». Это было величайшим из всех открытий Шееле.
Но в действительности тайна огня и полученного им «огненного» воздуха так и осталась для него тайной. Во всем была виновата господствовавшая в те времена теория флогистона, по которой считалось, что всякое вещество может гореть только в том случае, если в нем много особой горючей материи - флогистона, а горение представляет собой распад сложного горючего вещества на особый огненный элемент - флогистон - и другие составные части. Карл Шееле тоже был сторонником этой теории, поэтому он объяснял, что «огненный воздух» имеет большое сродство (влечение) к флогистону, поэтому и сгорает в нем так быстро, а «негодный» воздух не имеет влечения к флогистону, поэтому в нем и гаснет всякий огонь. Это было довольно правдоподобно, но оставалась одна большая загадка, которая казалась совершенно необъяснимой. Куда уходил во время горения «огненный» воздух во время горения из закрытого сосуда? Наконец, он придумал такое объяснение. Когда сгорает какое-нибудь тело, говорил он, то выделяющийся из него флогистон соединяется с «огненным» воздухом и это невидимое соединение настолько летуче, что оно незаметно просачивается сквозь стекло, как вода сквозь сито.
«Огненный воздух», -- писал Шееле, -- есть тот самый, посредством которого поддерживается циркуляция крови и соков у животных и растений... Я склонен думать, что «огненный воздух» состоит из кислой тонкой материи, соединенной с флогистоном, и, вероятно, что все кислоты получили свое начало от «огненного воздуха».
Шееле объяснял полученные им результаты предположением, что теплота -- соединение «огненного воздуха» (кислорода) и флогистона. Следовательно, он так же, как и М.В. Ломоносов, и Г. Кавендиш, отождествлял флогистон с водородом и думал, что при сжигании водорода в воздухе (при соединении водорода и «огненного воздуха») образуется теплота.
Шееле действительно был первым исследователем, получившим относительно чистую пробу кислорода (1772). Однако он опубликовал свои результаты в 1777 г., позже, чем это сделал Джозеф Пристли (Joseph Priestley, 1733-1804), поэтому формально он не может считаться первооткрывателем кислорода. Но во многих академических изданиях и справочниках по химии приоритет отдаётся именно Карлу Вильгельму Шееле.
В 1775 году Бергман опубликовал статью об открытии Шееле «огненного воздуха» и о его теории. «Мы уже раньше отмечали, -- писал Бергман, -- большую силу, с которой «чистый (огненный) воздух» удаляет флогистон из железа и меди. Азотная кислота имеет также большое сродство к этому элементу... Эти явления приписываются переселению флогистона из кислоты в воздух и легко объясняются тем, что так хорошо было доказано опытами Шееле, что теплота -- не что иное, как флогистон, тесно соединенный с чистым воздухом, в комбинации которых порождается полученное тело [и происходит] уменьшение прежде занимаемого объема».
Хотя обычно и говорят, что Шееле опоздал с публикацией своей статьи относительно Пристли примерно на два года, однако Бергман сообщил об открытии Шееле кислорода, по крайней мере, на три месяца раньше открытия Пристли.
Вот выдержка из предисловия Бергмана к книге Шееле: «Химия учит, что упругая среда, которая окружает Землю, во все времена и во всех местах имеет единый состав, включающий три различных вещества, а именно хороший воздух (кислород -- Прим авт.), испорченный «мефитический воздух» (азот -- Прим. авт.) и эфирную кислоту (углекислый газ -- Прим. авт.). Первый Пристли назвал, не то что не правильно, но с натяжкой, «дефлогистированным воздухом», Шееле -- «огненным воздухом», поскольку он один поддерживает огонь, в то время как два других гасят его... Я повторил, с различными изменениями, основные опыты, на которых он (Шееле) основывал свои заключения, и нашел их совершенно правильными. Тепло, огонь и свет имеют в основном одни и те же составные элементы: хороший воздух и флогистон... Из видов известных теперь веществ хороший воздух является наиболее эффективным для удаления флогистона, который, как видно, представляет собой настоящее элементарное вещество, входящее в состав многих материй. Поэтому я и поместил хороший воздух наверху, над флогистоном, в моей новой таблице сродства... В заключение я должен сказать, что этот замечательный труд был закончен два года тому назад, несмотря на то, что по различным причинам, о которых излишне упоминать здесь, опубликован только теперь. Следовательно, случилось так, что Пристли, не зная труда Шееле, ранее описал различные новые свойства, относящиеся к воздуху. Однако мы видим, что они отличного рода и представлены в иной связи».
Несмотря на то, что Шееле не имел высшего образования и был рядовым аптекарем, в возрасте 32 лет он был избран членом Стокгольмской академии наук. Ему предлагали кафедру в Упсальском университете, работу в центре шведской горнометаллургической промышленности в Фалуне, кафедру в Берлинском университете, однако ученый отклонял все предложения, предпочитая заниматься своими опытами.
Годы упорного самоотверженного труда, к сожалению, подорвали здоровье этого поразительно целеустремленного человека, и он прожил всего до 44 лет. В истории химии с открытием Шееле цианистого водорода связан ещё один миф: якобы его первооткрыватель погиб в момент открытия. Это, так сказать, полуправда. На самом деле Шееле впервые получил синильную кислоту из желтой кровяной соли в 1782 г., а умер в 1786 г., в возрасте 44 лет. Однако не подлежит сомнению, что Шееле погубили органолептические методы исследования. В XVIII веке было принято пробовать на вкус продукты реакции, а Шееле, помимо цианидов, работал с соединениями ртути и мышьяка... Умер К.В.Шееле в Чёпинге 21 мая 1786 г.
Вторым официально признанным претендентом на лавры первооткрывателя кислорода является английский священник и химик Джозеф Пристли (Joseph Priestley, 1733-1804).
Джозеф Пристли (Joseph Priestley, 1733-1804) - английский священник, химик, философ, общественный деятель, родился в Филдхеде, близ Лидса (графство Йоркшир, Англия) 13 марта 1733 г. Он был старшим из шести детей в семье суконщика Джонаса Пристли. С 1742 г. его воспитывала Сара Кигли (Sarah Keighley), тётя с материнской стороны. Будучи по вероисповеданию кальвинисткой, она довольно ретиво пыталась воспитывать своего племянника в том же духе, что, впрочем, не оправдало в дальнейшем её надежд.
Джозеф Пристли учился в школе Бэтли (Batley Grammar School), где углублённо изучал латинский и греческий языки. После небольшого перерыва в обучении, связанного с болезнью, Пристли решил посвятить свою жизнь служению церкви. К этому времени он уже достаточно преуспел в изучении других языков и знал французский, немецкий, итальянский, арабский и даже халдейский.
Пристли изучал теологию и даже читал проповеди в независимой от англиканской церкви протестантской общине. Это позволило ему в дальнейшем получить высшее теологическое образование в Академии в Девентри. Разочарование в кальвинизме стало причиной его поступления в либеральную Духовную академию Девентри. Он поступил в академию в 1751 г., в год её основания. Кроме теологии Пристли занимался в академии философией, естествознанием, иностранными языками, и к её окончанию в совершенстве изучил следующие языки - французский, итальянский, латинский, немецкий, древнегреческий, арабский, сирийский, халдейский, древнееврейский. Поэтому, когда в 1761 году Пристли был обвинен в свободомыслии и ему запретили читать проповеди, он стал преподавателем языков в Уоррингтонском университете. Там Пристли впервые прослушал курс химии. В академии Джозеф Пристли увлёкся изучением химии, в чём ему помогал Мэтью Тернер, специально приглашенный для чтения лекций покровителем академии Джоном Шеддоном. Эта наука произвела на Пристли такое большое впечатление, что он, в тридцатилетнем возрасте будучи человеком с определенным положением, решил приступить к изучению естествознания и проведению химических экспериментов.
В 1762 г. Джозеф Пристли был посвящен в духовный сан, и в тот же год он женился на Мэри Уилкинсон. С этого времени Пристли в каждый год старался один месяц проводить в Лондоне, где познакомился с Бенджамином Франклином (Benjamin Franklin), Джоном Кэнтоном (John Canton), Ричардом Прайсом (Richard Price) и другими выдающимися личностями.
По предложению Бенджамена Франклина, Пристли в 1767 году написал монографию «История учения об электричестве» («The History and Present State of Electricity»). За этот труд он был избран почетным доктором Эдинбургского университета, а позже членом Лондонского Королевского общества (1767) и иностранным почетным членом Петербургской Академии наук (1780).
Следует отметить, что глубокая вера в Бога и убеждённость в том, что именно провидение избрало его, Пристли, раскрывать людям «тайны мироздания», самым неожиданным образом сочетались в нём с истинным, горячим энтузиазмом подлинного научного исследователя.
В философских взглядах Пристли удивительно сочетались материализм и глубокая вера в Бога. В многолетней и страстной полемике со сторонниками различных идеалистических школ Пристли учил, что природа материальна, и, что дух (сознание) представляет свойство материи, движущейся по неотвратимым, изначально присущим ей законам. Вместе с тем, придерживаясь деизма, Пристли полагал, что сами эти законы созданы божественным разумом.
С 1774 по 1799 год Пристли открыл или впервые получил в чистом виде семь газообразных соединений: закись азота, хлористый водород, аммиак, фтористый кремний, диоксид серы, оксид углерода и кислород.Пристли удалось выделить и исследовать эти газы в чистом состоянии, поскольку он существенно улучшил прежнее лабораторное оборудование для собирания газов. Вместо воды в пневматической ванне, предложенной ранее английским ученым Стивеном Гейлсом (1727), Пристли стал использовать ртуть.
Джозеф Пристли, один из образованнейших людей своего времени, понимал, что его будущее в большей степени связано с наукой, чем с религиозной деятельностью, поэтому он с огромным интересом принял в 1773 г. предложение стать домашним библиотекарем государственного секретаря лорда Шелборна. Нет сомнения, что лорд, хорошо знакомый с работами Пристли, хотел лишь прослыть покровителем наук и доставить развлечение и удовольствие знатным гостям, навещавшим его в загородной вилле. Но для Джозефа Пристли это открывало замечательные возможности для развития своих научных исследований с помощью нового лабораторного оборудования, в покупке которого Шелборн ему никогда не отказывал. Занятый руководящей государственной работой, сам Шелборн редко приезжал в свое поместье и предоставлял полный простор для деятельности Пристли. Более того, он брал с собой Пристли в путешествия по Европе, и тем самым дал ему возможность познакомиться с наиболее знаменитыми химиками Франции, Германии и Голландии.
Именно покровительство Шелборна в течение семи лет, которые Пристли провел в его доме, обеспечило возможность завершить ему те замечательные открытия в химии газов, лёгшие впоследствии в основу современной научной химии.
Среди научных достижений Джозефа Пристли следует отметить такоекак открытие углекислого газа. Хотя углекислый газ уже был открыт в 1754 г. Джозефом Блэком, более подробно изучил его и выделил в чистом виде именно Пристли. Ему же принадлежит открытие в 1771 г. роли углекислого газа в дыхании растений. Пристли заметил, что зеленые растения на свету продолжают жить в атмосфере этого газа и даже делают его пригодным для дыхания. Классический опыт Пристли с живыми мышами под колпаком, где воздух «освежается» зелеными ветками, вошел во все элементарные учебники естествознания и лежит у истоков учения о фотосинтезе.
В наше время уже мало кто знает, что появлением столь популярных газированных напитков человечество обязано Джозефу Пристли. Сама по себе идея производства газированных безалкогольных напитков возникла давно. Своим происхождением она обязана обычной минеральной воде. Открытие способа газирования воды было сделано очень просто. В одной из пивоварен г.Лидса Пристли водрузил два контейнера с водой над варящимся пивом. Через некоторое время вода зарядилась пивным углекислым газом. Первая бутылка питьевой газированной воды была изготовлена им 1767 г.
С именем Пристли связано ещё одно чудесное изобретение - изобретение ластика. Пристли случайно обнаружил, что сырой натуральный каучук способен стирать следы графита (карандаша). Это преимущество каучука связано с тем, что его трение по бумаге производит электростатическое напряжение, которое позволяет частицам каучука притягивать частицы графита. Ему также принадлежат труды по электричеству, зрению и свету.
Анестезиологам всего мира имя Джозефа Пристли в первую очередь памятно и дорого, конечно же, в связи с открытием им в 1772 г. закиси азота, впоследствии ставшей широко применяемым и популярным анестетиком. Действуя разбавленной азотной кислотой на медь, он впервые получил «селитряный воздух» - окись азота (NO). Химическая реакция открытия этого газа выглядела следующим образом:
3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4H2O
На воздухе этот бесцветный газ бурел, превращаясь в диоксид азота (NO2). Однако, оставляя «селитряный воздух» на долгое время в соприкосновении с серой и железом, Пристли заметил, что свойства газа изменяются: в то время как в «селитряном воздухе» зажженная свеча гаснет, в измененном «селитряном воздухе» (который он назвал «дефлогистированным селитряным воздухом») она продолжает гореть. Кроме того, «дефлогистированный селитряный воздух» не обладает свойством приобретать бурый цвет при смешивании с атмосферным воздухом, то есть не дает реакции, обнаруженной Пристли для NO:
2NO + O2 = 2NO2
Следовательно, речь шла уже о новом газе. И действительно, в указанном Пристли опыте получается закись азота, образующаяся по реакции:
6NO + 2Fe + 3Н2О = 3N2O + 2Fе(ОН)3
вследствие процесса восстановления NO под действием увлажненного железа.
Следующим его открытием был «щелочной воздух» - аммиак. Джозеф Пристли смог впервые получить его в газообразном состоянии в 1774 г. Для этого он смешал порошки хлорида аммония NH4Cl (нашатырь) и гидроксида кальция Са(ОН)2 (гашеная известь), и внезапно ощутил резкий запах нового вещества. Этот запах усиливался при нагревании смеси. Когда Пристли попытался собрать летучий продукт реакции:
2NH4Cl + Са(ОН)2 = СаСl2 + 2NН3 + 2Н2О
вытесняя им воду из перевернутого сосуда, то выяснилось, что новый газ тотчас растворяется в ней. Это и был аммиак. С тех пор реакцию, открытую Пристли, используют во всех лабораториях мира для получения аммиака.
Крупнейшим вкладом Пристли в химию газов было открытие им кислорода (независимо от шведского химика Карла Вильгельма Шееле (1742-1786), аптекаря по профессии, но химика-экспериментатора по призванию).
Свои опыты по получению кислорода при нагревании оксида ртути Пристли впоследствии изложил в шеститомном труде «Опыты и наблюдения над различными видами воздуха». В этой работе Пристли писал: «Достав линзу с диаметром 2 дюйма, с фокусным расстоянием 20 дюймов, я начал исследовать с ее помощью, какой род воздуха выделяется из разнообразнейших веществ, естественных и искусственно приготовленных.
После того как с помощью этого прибора я проделал ряд опытов, я попытался 1 августа 1774 года выделить воздух из кальцинированной ртути.
1 августа 1774 г. Джозеф Пристли наблюдал выделение «нового воздуха» при нагревании с помощью двояковыпуклой линзы без доступа воздуха ртутной окалины, находящейся под стеклянным колпаком. Это твёрдое вещество было известно ещё алхимикам под названием «меркуриус кальцинатус пер се», или жжёная ртуть. На современном химическом языке это вещество называется оксидом ртути, а уравнение его разложения при нагревании выглядит следующим образом:
2HgO = 2Hg+O2
оксид ртутинагреваниертутькислород
Получаемый при нагревании оксида ртути неизвестный ему газ он выводил через трубку в сосуд, заполненный не водой, а ртутью, так как Пристли уже ранее убедился в том, что вода слишком хорошо растворяет газы. В собранный газ Пристли из любопытства внёс тлеющую свечу, и она вспыхнула необыкновенно ярко.
Во времена, когда химические формулы ещё не были изобретены изучать химию было трудно. То, что мы только что записали коротким химическим уравнением, Пристли описал в 1774 г. следующим образом: «Я поместил под перевернутой банкой, погруженной в ртуть, немного порошка «меркуриус кальцинатус пер се». Затем я взял небольшое зажигательное стекло и направил лучи Солнца прямо внутрь банки на порошок. Из порошка стал выделяться воздух, который вытеснил ртуть из банки. Я принялся изучать этот воздух. И меня удивило, даже взволновало до глубины моей души, что в этом воздухе свеча горит лучше и светлее, чем в обычной атмосфере».
Разумеется, такое описание реакции выглядит весьма поэтично по сравнению с обычным химическим уравнением, но, к сожалению, суть произошедшей химической реакции не отражает.
Сам Пристли, будучи сторонником теории флогистона, так и не смог объяснить суть процесса горения; он защищал свои представления даже после того, как Антуан Лавуазье (Lavoisier, Antoine Laurent, 1743-1794) обнародовал новую теорию горения.
Убежденный сторонник учения о флогистоне, он рассматривал оксид ртути как простое вещество, образованное при нагревании ртути в воздухе и, следовательно, лишенное флогистона. В те времена металлы, сера и другие простые вещества считались сложными и, наоборот, сложные вещества -- простыми (известь, кислоты и т. д.). Необходимость воздуха для горения сторонники флогистонной теории объясняли тем, что флогистон не просто исчезает при горении, а соединяется с воздухом или какой-либо, его частью. Если воздуха нет, то горение прекращается, потому что флогистону не с чем соединяться. Поэтому выделение «дефлогистированного воздуха» из оксида ртути при нагревании казалось ему просто невозможным. Вот почему он был «так далек от понимания того, что в действительности получил».
Прекрасный ученый-экспериментатор, Пристли сам недооценивал и даже не вполне понимал некоторые сделанные им величайшие открытия. И в годы своей высшей славы Пристли считал, что открытый им кислород есть «дефлогистированный воздух», тогда как азот - «флогистированный воздух». Он держался этой концепции и на склоне жизни, горячо отстаивая ее в немногих печатных памфлетах времён своего изгнания в Америку.
Но в своих работах Джозеф Пристли был пионером и подлинным образцом объективного экспериментатора. Его работы по открытию газов поистине являются классическими. И если сам он их до конца не понял и не развил, то ещё при жизни Пристли другие люди на этой основе развернули во всю ширь то, что стало подлинным фундаментом современной химической науки.
Через два месяца после получения кислорода Пристли, приехав в Париж, сообщил о своем открытии Лавуазье. Последний тотчас понял громадное значение открытия Пристли и использовал его при создании наиболее общей кислородной теории горения и опровержении теории флогистона.
Однако научные достижения Джозеф Пристли были замечены и оценены. В 1767 г. он был избран членом Лондонского королевского общества; в 1772 г. членом Парижской Академии наук; 11 сентября 1780 г. почетным членом Санкт-Петербургской Академии наук.
Джозеф Пристли был выдающимся представителем пневматологии, или пневматической химии - направления, которое создали химики того времени, изучавшие вещества в газообразном состоянии. В настоящее время пневматологию не рассматривают как отдельную ветвь естествознания, да и мало кто теперь знает, что была когда-то такая наука. Но совсем иное положение и отношение к ней было в XVII-XVIII веках. Основоположником пневматической химии считается Ян Гельмонт (Jean Baptiste van Helmont, 1577-1644), врач по профессии, который не только ввёл термин «газ», но и обнаружил непохожий на воздух «лесной газ» (gas silvestre), выделяющийся при действии кислот на известняк, при брожении молодого вина и приготовлении пива, а также при горении угля.
Пристли, развивая далее идеи Гельмонта, стал экспериментально изучать действие открываемых им газов на животных и человека. И, разумеется, в первую очередь был испробован эффект вдыхания им же открытого кислорода. В книге Эксперименты и наблюдения, касающиеся различных видов воздуха он так описывает опыты вдыхания кислорода: «Из большей силы и яркости пламени свечи в этом чистом воздухе можно заключить, что он (полученный Пристли газ) может быть особенно полезен для лёгких в некоторых болезненных случаях. Я имел возможность испытать его эффект на себе, вдыхая значительное количество его через трубку. Это дало мне замечательное ощущение свободы и лёгкости в груди. Кто бы мог отрицать, что когда-нибудь этот чистый воздух станет модным средством для развлечений? До сих пор, однако, только две мыши и я сам имели привилегию дышать им». Так родилась «пневматическая медицина». Бесспорным остается факт, что именно работы Джозефа Пристли породили всю эту в высшей степени важную область химических и медицинских исследований.
Претензии сторонников Джозефа Пристли по поводу открытия именно этим учёным кислорода основывались на его приоритете в получении газа, который позднее был признан особым, не известным до тех пор видом газа. Но проба газа, полученного Пристли, не была чистой, и если получение кислорода с примесями считать его открытием, тогда то же в принципе можно сказать обо всех тех, кто когда-либо заключал в сосуд атмосферный воздух. Кроме того, Пристли полагал, что полученный газ является дефлогистированным воздухом, но еще не кислородом. То есть, в 1775 г. Джозеф Пристли отождествил газ, полученный им при нагревании красной окиси ртути, с воздухом вообще, но имеющим меньшую, чем обычно, дозу флогистона.
Освобождение химии от теории флогистона произошло в результате введения в химию точных методов исследования, начало которым было положено трудами М. В. Ломоносова. В 1745--1748 гг. М. В. Ломоносов экспериментально доказал, что горение -- это реакция соединения веществ с частицами воздуха.
Десять лет (1771--1781) были потрачены французским химиком Антуаном Лавуазье на подтверждение справедливости теории горения как химического взаимодействия различных веществ с кислородом. Приступая к изучению явлений горения и «обжигания» металлов, он писал: «Я предполагаю повторить все сделанное предшественниками, принимая все возможные меры предосторожности, чтобы объединить уже известное о связанном или освобождающемся воздухе с другими фактами и дать новую теорию. Работы упомянутых авторов, если их рассматривать с этой точки зрения, дают мне отдельные звенья цепи... Но надо сделать очень многие опыты, чтобы получить полную последовательность».
Лавуазье, Антуан Лоран (Lavoisier, Antoine Laurent, 1743-1794), французский химик. Родился 26 августа 1743 в Париже в семье адвоката. Учился в лицее Мазарини и на юридическом факультете Парижского университета. Окончил юридический факультет в 1764 г. Однако юридическая практика его не привлекала, и по окончании университета он занялся геологией, физикой и химией.
Слушал курс лекций по химии в Ботаническом саду в Париже (1764-1766 гг.). И в 1765 он представил свою первую научную статью во Французскую академию. В 1766 его конкурсная работа получила золотую медаль Академии.
Среди научных достижений Антуана Лавуазье следует отметить составленную им геологическую карту страны.
Одним из важнейших следствий работ Лавуазье стало коренное преобразование химического языка, выразившееся в создании новой химической номенклатуры. Все вещества предлагалось разделить на химические элементы и соединения, а исходя из представления о кислороде как о главном химическом элементе выделить три класса соединений: кислоты, основания и соли. Построил таблицу простых веществ, включив в нее следующие группы: кислород, азот и водород, неметаллы (сера, фосфор, уголь и т. д.), металлы, солеобразующие вещества. К сложным веществам отнес главным образом соединения кислорода с "радикалами" - основаниями, распределив их по степеням окисления и дав им общее название "оксиды". На базе этой классификации создал "Начальный учебник химии" (1789 г.).
Лавуазье был одним из основоположников термохимии. В 1783 вместе с Лапласом он описал сконструированный ими ледяной калориметр и определил теплоту горения ряда веществ. Показал, что при дыхании поглощается кислород и образуется углекислый газ, т.е. что дыхание подобно горению. В 1783-1784 Лавуазье и Лаплас установили, что процесс дыхания служит источником теплоты для животных.
Лавуазье - первый ученый, систематически применявший физико-химические методы исследования к биологии.
Третий официальный претендент в первооткрыватели кислорода, французский химик Антуан Лавуазье (Lavoisier, Antoine Laurent, 1743-1794), начал свою работу, которая привела его к открытию, после эксперимента Джозефа Пристли в 1774 г., и, возможно, благодаря намеку со стороны Пристли. Из своих собственных опытов и предшествовавших опытов Пристли и Шееле Лавуазье уже знал, что с горючими веществами связывается лишь одна пятая часть воздуха, но природа этой части была ему неясна. Когда же Пристли сообщил ему в 1774 г. об обнаружении «дефлогистированного воздуха», он сразу понял, что это и есть та самая часть воздуха, которая при горении соединяется с горючими веществами. Повторив опыты Пристли, Лавуазье заключил, что атмосферный воздух состоит из смеси «жизненного» (кислород) и «удушливого» (азот) - означало безжизненный (впереводе с греч. «а» -- отрицание, «зое» -- жизнь) воздуха и объяснил процесс горения соединением веществ с кислородом.
Подобные документы
Высокая реакционная способность молекулярного кислорода в основном состоянии и образование его высокоактивных форм, способных убивать живую клетку. Механизмы возникновения активных форм кислорода. Действие, функции и основные способы защиты организма.
курсовая работа [1,7 M], добавлен 01.05.2012Диффузионные процессы в тканях. Математическая модель распределения кислорода и углекислоты в мозге Ю.Я. Кислякова, исследования с ее помощью транспорта кислорода в ткани скелетной мышцы. Влияние межкапиллярного расстояния на транспорт кислорода.
презентация [4,5 M], добавлен 02.04.2011История открытия фотосинтеза. Образование в листьях растений веществ, выделение кислорода и поглощение углекислого газа на свету и в присутствии воды. Роль хлоропластов в образовании органических веществ. Значение фотосинтеза в природе и жизни человека.
презентация [1,4 M], добавлен 23.10.2010Роль микроорганизмов в круговороте азота, водорода, кислорода, серы, углерода и фосфора в природе. Различные типы жизни бактерий, основанные на использовании соединений различных химических веществ. Роль микроорганизмов в эволюции жизни на Земле.
реферат [20,2 K], добавлен 28.01.2010Классификация и строение углеводов. Физические и химические свойства моносахаридов, их роль в природе и жизни человека. Биологическая роль дисахаридов, их получение, применение, химические и физические свойства. Место связи моносахаридов между собой.
презентация [666,2 K], добавлен 27.03.2014Характеристика живых организмов и особенности их свойств. Использование кислорода в процессе дыхания и питания для роста, развития и жизнедеятельности. Размножение как свойство создавать себе подобных. Смерть организмов, прекращение жизненных процессов.
презентация [895,7 K], добавлен 08.04.2011Тесная связь состава земной коры, атмосферы и океана, которая поддерживается процессами циклического массообмена химических элементов. Границы пояса бореальных лесов. Круговорот углерода, его циркуляция в биосфере. Роль бореальных и тропических лесов.
курсовая работа [4,0 M], добавлен 12.02.2015Ферменты: история их открытия, свойства, классификация. Сущность витаминов, их роль в жизни человека. Физиологическое значение витаминов в процессе обмена веществ. Гормоны - специфические вещества, которые регулируют развитие и функционирование организма.
реферат [44,4 K], добавлен 11.01.2013Регуляция клеточного редокс-статуса в норме и при патологии. Низкомолекулярные антиоксиданты. Роль глутатиона и глутатион-зависимых ферментов в редокс-зависимых механизмах формирования лекарственной устойчивости опухолевых клеток. Окисление липидов.
презентация [2,5 M], добавлен 25.10.2016Особенности развития, строения, химического состава, обмена веществ и функций эритроцитов, лейкоцитов и тромбоцитов. Существующие типы гемоглобина. Токсичные формы кислорода в крови человека. Основные составляющие антиоксидантной системы организма.
презентация [202,4 K], добавлен 18.05.2015