Ветеринарно–санитарная экспертиза молока

Требования ветеринарно-санитарной экспертизы к молоку и его переработке. Источники контаминации молока микроорганизмами. Изменение микрофлоры молока при хранении. Продукты, приготовляемые с использованием ацидофильных бактерий, термофильных стрептококков.

Рубрика Сельское, лесное хозяйство и землепользование
Вид лекция
Язык русский
Дата добавления 30.03.2015
Размер файла 115,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

КАФЕДРА МИКРОБИОЛОГИИ, ВИРУСОЛОГИИ, ЭПИЗООТОЛОГИИ, ВСЭ

Ульяновской государственной сельскохозяйственной академии

ЛЕКЦИЯ

Ветеринарно - санитарная экспертиза молока

Подготовил - д б н, профессор Васильев Д.А.

Ульяновск 2008

ТРЕБОВАНИЯ ВСЭ, СОГЛАСТНО НАЦИОНАЛЬНОГО СТАНДАРТА, К МОЛОКУ И ПЕРЕРАБОТКЕ МОЛОКА

Физико-химические и биологические свойства молока являются основными показателями стандартизации молока и молочных продуктов.

Физико-химические свойства молока обуславливаются концентрацией и степенью дисперсности его составных компонентов. Их можно разделить на свойства, на которые существенно влияют частицы всех дисперсных фаз и свойства, зависящие от истинно растворимых составных компонентов молока. Дисперсные фазы молока влияют на плотность, кислотность, окислительно-восстановительный потенциал. Вязкость и поверхностное натяжение определяются составными компонентами молока, находящихся в эмульгированном и коллоидном состояниях. Составные компоненты молока в виде молекулярной и ионной дисперсии обуславливают осмотическое давление, электропроводность, температуру замерзания.

Физико-химические свойства все больше используются для оценки качества молока. Знание этих величин необходимо для создания современного оборудования, приборов для контроля состава и свойств молока.

Физические свойства молока.

Плотность - это отношение массы вещества (в данном случае имеем в виду молока при 20° С) к занимаемому им объему г/см3.

Вязкость - это свойство среды оказывать сопротивление относительному смещению ее слоев. За единицу изменения динамической вязкости в Международной системе единиц принята паскаль-секунда секунда (Па/с).

Вязкость молока можно представить как сумму вязкости воды и приращений вязкости от дисперсной фазы (белки, жиры углеводы) и структурных связей. Структурная составляющая вязкости исчезает при температуре более 34°С в связи с плавлением молочного жира и интенсивным тепловым движением самих элементов структуры. На вязкость молока влияют эмульгированные и коллоидно растворимые частицы, в частности, жира, казеина, а также наличие агломератов жировых шариков, состояния казеина (гидратация, величина мицелл), сывороточных белков, режим и способ обработки молока. Вязкость гомогенизированного молока выше, чем негомогенизированного. Это обусловлено увеличением общей площади поверхности жировой фазы и адсорбцией белков на оболочках жировых шариков.

В среднем при 20°С вязкость сыворотки составляет 0,0012 Па/с, обезжиренного молока - 0,0015, цельного молока - 0,0018. Вязкость цельного молока может изменяться от 0,0013 до 0,0022 Па.с. Вязкость молока зависит от температуры. При 5°С - 2,96.103; 15°С - 2,1; 20°С - 1,79; 30°С - 1,33; 40°С - 1,04; 50°С - 0,85; 60°С - 0,71; 70°С - 0,62.103

Показатель преломления света - это изменение его направления при прохождении через границу раздела двух сред. Показатель преломления характеризуется отношением синуса угла падения светового луча к синусу угла преломления светового луча. Его величина зависит от температуры среды и длины волны.

Показатель преломления воды равен 1,33299, коровьего молока - 1,3440-1,3485, сыворотки - 1,34199-1,34275.

Связь между содержанием отдельных компонентов сухих веществ молока и показателем преломления аддитивная. В среднем приращение коэффициента преломления при увеличении массовой доли отдельных компонентов сухих веществ молока на 1% составляет: для казеинат-кальцийфосфатного комплекса - 0,00207; для сывороточных белков - 0,00187; для лактозы - 0,0014.

На основании разности показателя преломления луча света, проходящего через молоко, разработаны методы определения белка, жира, минеральных веществ.

Осмотическое давление и температура замерзания. Осмотическое давление - это избыточное гидростатическое давление молока, препятствующее диффузии воды через полупроницаемую перегородку (мембрану).

Температура замерзания - это температура, при которой молоко переходит из жидкого состояния в твердое или наоборот.

Обе характеристики взаимосвязаны и зависят в основном от концентрации лактозы и растворенных солей. На осмотическое давление и температуру замерзания оказывают влияние лишь вещества, находящиеся в молоке в виде истинного раствора, другие вещества, например жир, не влияют на эти характеристики. Не влияет на них и белок вследствие низкой молярной концентрации (молярная концентрация белка в молоке в 250 раз ниже молярной концентрации лактозы).

Температура замерзания молока с нормальным химическим составом постоянна и в среднем равна -0,55°С. Отклонение этой величины возможно при изменении химического состава молока (-0,525 - -0,565)

Температура замерзания существенно зависит от кислотности молока. При повышении кислотности из каждой молекулы молочного сахара получается 4 молекулы молочной кислоты, т.е. молярная концентрация раствора повышается, что приводит к снижению его замерзания. Понижение кислотности молока путем внесения в него химических реагентов не изменяет температуру его замерзания, так как концентрация электролитов при этом не изменяется.

Молозиво имеет точку замерзания от -0,570 до -0,580. При заболевании коров точка замерзания 0,8-0,9°С Точка кипения 100,2-100,5°С.

Заметно повышается температура замерзания молока при разбавлении его водой. В среднем при добавлении в молоко 1% воды температура замерзания изменяется на 0,005 °С. В некоторой степени температура замерзания молока зависит от применяемой технологии. Это обусловлено как изменением солевого состава молока при его пастеризации, так и попаданием в него воды, остающейся на поверхности технологического оборудования и тары после мойки.

При правильном ведении процессов пастеризации молока и мойки оборудования влияние технологической обработки молока на температуру его замерзания не велико (предел колебаний составляет около 0,001-0,005°С)

Четкая корреляция между содержанием основных компонентов молока и температурой замерзания в настоящее время не установлена.

Сезонные изменения температуры замерзания молока связаны в основном с кормовым рационом. При низком содержании легкоусвояемых углеводов в корме температура замерзания молока повышается, то ж е наблюдается при недостаточном или обильном кормлении коров зерновыми культурами. Температура замерзания молока повышается при увеличении температуры воздуха в помещении, где содержат коров, и снижается при ее уменьшении. Температура замерзания молока зависит также от породы коров, состояния пастбищ и других факторов, влияющих на химический состав молока.

Поверхностное натяжение молока на границе соприкосновения с воздухом обусловлено тем, что молекулы, находящиеся на границе раздела двух фаз газ-жидкость, испытывают притяжение со стороны жидкости и очень малое притяжение со стороны газовой фазы. Единицей измерения поверхностного натяжения в Международной системе единиц является ньютон на метр (Н/м-1). Поверхностное натяжение воды при 20°С равно 0,0727 Н/м-1, молока - 0,0439 Н/м-1. Более низкое поверхностное натяжение молока объясняется наличия в нем таких поверхностно-активных веществ, как белки и фосфолипиды. Поверхностное натяжение молока непостоянно и, оно зависит прежде всего от химического состава молока, его температуры, продолжительности хранения и ряда других факторов. Поверхностное натяжение свежевыдоенного молока несколько больше, чем после его хранения. Это объясняется изменением коллоидного состояния белков. Поверхностное натяжение имеет большое значение. В частности, концентрирование липопротеидов вокруг жировых шариков и их прочная связь с жиром затрудняет образование структуры масла. Пенообразование в аппаратах при сушке, сгущении молока и других технологических процессах в какой-то степени обусловлено поверхностными явлениями.

Температуропроводность определяет скорость изменения (выравнивания) температуры продукта в нестационарных процессах. Чем выше значение температуропроводности, тем быстрее происходит нагревание или охлаждение продукта.

Электрические свойства. Молоко обладает способностью проводить электричество. Электрическая проводимость молока обусловлена в основном концентрацией и активностью ионов водорода, калия, натрия, кальция, магния, хлора и др. Молекулы молочного сахара не распадаются на ионы и не проводят электрический ток. Частицы казеина и других белков молока имеют электрический заряд, поэтому должны были бы проводить электрический ток. Однако из-за больших размеров частицы белка обладают незначительной подвижностью, следовательно, электрическая проводимость понижается. Жировые шарики препятствуют движению ионов, поэтому электрическая проводимость молока с увеличением жира уменьшается. Проводимость цельного молока ниже, чем обезжиренного, примерно на 10%.

Минеральные соли способствуют электропроводимости молока. Электрическая проводимость молока изменяется в течение лактации. Молозиво имеет низкую проводимость. В конце лактации - повышается. С повышением температуры молока электрическая проводимость повышается.

Плотность - в Международной системе единиц (СИ) за единицу плотности принят килограмм на кубический метр (кг/м3 или г/см3). Плотность молока зависит от плотности его компонентов (табл. ) и изменяется от 1015 до 1033 кг/см3. Белки, углеводы и минеральные вещества повышают, а жир понижает плотность молока.

Плотность в кг/м3 компонентов молока.

Компонент

Предел колебаний

Среднее значение

Цельное молоко

1015-1033

1029

Молочный жир

918-927

923

Молочный сахар

1592-1628

1610

Белки

1333-1448

1391

Минеральные вещества

2617-3098

2857

Сухой остаток молока

1296-1450

1373

Сухой обезжиренный остаток молока

1598-1623

1610

Плотность обезжиренного молока выше плотности цельного молока и равна 1033-1038. Плотность молока изменяется под влиянием многих факторов: лактационного периода, породы коров, состояния здоровья. В первые дни после отела молоко (молозиво) характеризуется высоким содержанием белковых веществ, вследствие чего плотность его достигает 1040. Плотность молока, определенная сразу после доения, ниже плотности остывшего молока на 0,8-1,5 кг/м3. Это объясняется удалением растворенных в молоке газов. При попадании в молоко воды плотность его понижается примерно на 2,5-3°А на каждые 10% добавления воды. Истинную плотность обозначают буквой Д и пишется 1,030, 1,027. Иногда обозначают плотность молока в градусах ареометра (°А), что соответствует сотым и тысячным долям истинной плотности, соответственно нашему примеру будет 30, 27 градусов ареометра.

Так плотность воды при 4°С и 760 мм рт.столба составляет 1,000000 г/мл. Так как объем жидкости изменяется уже при незначительных колебаниях температуры, то плотность молока зависит от температуры, и она всегда приводится к 20°С. Плотность молока определяют при температуре в пределах от 15°С до 25°С. Если температура выше или ниже 20°, то вводят поправку на температуру, для чего пользуются следующими расчетами. На каждый градус отклонения от температуры 20°С берут поправку +0,2° ареометра, при температуре ниже 20° поправку берут со знаком минус на 0,2° ареометра. Расхождения между повторными определениями плотности молока в одной и той же пробе должно быть не более 0,5°А.

Показатель плотности используется для пересчета молока, выраженного в килограммах, в литры и наоборот. Пересчет производят по специальным таблицам. Если нет таблиц, то для пересчета пользуются показателем средней плотности молока, или фактической плотностью пересчитываемого молока. Литры переводят в килограммы путем умножения количества молока на плотность, а килограммы в литры - делением количества молока на плотность.

Пример: 90 кг перевести в литры. Плотность его равняется 1,030.

90:1,030=87,38 л

95 л молока перевести в килограммы:

95х1,30=97,85 кг.

Химические свойства молока

Кислотность. Кислотность молока выражают в единицах титруемой кислотности (в градусах Тернера) и величиной рН при 20°С.

Титруемая кислотность. Титруемая кислотность по ГОСТУ является критерием оценки качества заготовляемого молока. Титруемую кислотность молока и молочных продуктов, кроме масла, выражают в условных единицах - градусах Тернера (°Т).

Под градусами Тернера понимают количество миллилитров 0,1 н. раствора едкого натра (калия), необходимого для нейтрализации 100 мл (100 г), разбавленного вдвое дистиллированной водой (10 мл молока + 20 мл дистиллированной воды).

Британским стандартом предусматривается брать 10 мл не разбавленного водой молока, 1 мл 0,5%-ного спиртового раствора фенолфталеина и титровать 1/9 н. раствором NaOH. В стандарте США указывается, что для титрования надо брать 20 мл молока, добавлять 40 мл воды, 2 мл 1%-ного спиртового раствора фенолфталеина и титровать 1/10 н. раствором NaOH.

Кислотность свежевыдоенного молока составляет 16-18°Т. Она обуславливается кислыми солями - дигидрофосфатами и дигидроцитратами (около 9-13°Т), белками - казеином и сывороточными белками (4-6°Т), углекислотой, кислотами (молочной, лимонной, аскорбиновой, свободными жирными и др.) и другими компонентами молока (в сумме они дают 1-3°Т).

При хранении сырого молока титруемая кислотность повышается по мере развития в нем микроорганизмов, сбраживающих молочный сахар с образованием молочной кислоты. Повышение кислотности вызывает нежелательные изменения свойств молока, например, снижение устойчивости белков к нагреванию. Поэтому молоко с кислотностью 21°Т принимают как несортовое, а молоко кислотностью выше 22°Т не подлежит сдаче на молочные заводы, так как при нагревании молока кислотностью 25-27°Т оно свертывается.

Знание кислотного характера молока и его изменений имеет большое значение для оценки качества и выбора направления использования молока и вырабатываемых из него продуктов.

Первым количественным методом измерения концентрации кислых составных частей в молоке был использованный Сокслетом и Хенкелем в 1884 г. - метод определения кислотности. Результаты его в настоящее время называют числом Сокслета-Хенкеля, или кислотным числом.

Определение кислотного числа основано на титровании кислот щелочами.

Биохимические изменения в молоке приводят к повышению содержания в нем кислоты. Молочнокислые бактерии превращают лактозу в молочную кислоту C12H220II + H2O 4CH(OH)COOH.

Однако кислый характер молока обуславливают только ионы водорода, которые образуются в результате электролитической диссоциации содержащихся в молоке кислот и кислых солей. Так как значение активности ионов водорода было обнаружено значительно позднее, кислотное действие приписывали молекулам молочной кислоты.

В настоящее время в литературе по молочной промышленности концентрацию составных частей, имеющих кислотный характер, называют потенциальной или титруемой кислотностью, фактическую активность ионов водорода - активной кислотностью.

Активность ионов водорода в молоке остается примерно постоянной вследствие связи ее с равновесием диссоциации присутствующих в молоке буферных веществ.

Титрование молока едким натром, наряду с молочной кислотой, нейтрализуются гидрофосфаты и кислотные группы казеина, поэтому на практике отказались от установления количества молочной кислоты, которое все равно очень трудно поддается определению, а находят общую тируемую кислотность, измеряя количество щелочи определенной концентрации, которое идет на нейтрализацию кислых составных частей в данном количестве молока.

В разных странах определяют титруемую кислотность не по единой методике. Наряду с методом Сокслета-Хенкеля, применяют методы Тернера (титрование 0,1 н. р-ра NaOH) и Дорника (титрование 1/9 н. NaOH). Выбор концентрации щелочи порядка 1/9 н. р-ра делает возможным простой пересчет на свободную молочную кислоту, так как 1°Д соответствует 0,01% молочной кислоты. Между результатами различных методов существует определенная связь: 1 SH единица=2,25°, Д=2,5°Т.

Определение титруемой кислотности служит, прежде всего, для установления роста кислотности в результате обмена молочнокислых бактерий. Вскоре эмпирическим путем выяснили связь между потенциальной кислотностью и определенными свойствами молока и вырабатываемых из него молочных продуктов. Число Тернера или др. позволяет делать выводы относительно качества сырого молока. На основании этого, число Тернера, стали использовать как показатель качества молочных продуктов и фактор управления производственным процессом.

Во время переработки кислого молока с повышенными градусами Тернера возникает ряд затруднений, главным образом при нагревании, поэтому ГОСТом установлено, что молочные предприятия должны принимать молоко с кислотностью 16-18°Т - 1 сорт; 16-20°Т - 2 сорт; 21-22 °Т - несортовое; молоко, имеющее 25-27°Т свертывается при нагревании. Свыше 22°Т - не принимается молочными заводами.

Кислотность молока и кисломолочных продуктов

Продукт

Кислот-

ность, °Т

Содержание, %

мол. кисл

лактоза

спирт

углекислота

Простокваша

80-100

0,97

4-4,1

Ацидофилин

75-120

1

3,8

Йогурт

80-140

1

3,5

Кефир жирн.

85-120

0,98

4,1

0,01-0,03

0,05-0,07

Кумыс коров.

100-120

1

3,8

0,2-1

0,1-0,3

Кумыс кобыл.

100-120

0,87

5

1,2-1,9

0,1-0,3

Курунга

180-220

1,8

1-3

0,55-1

0,07-0,08

Творог жирн.

200-225

1

2,8

Сметана 30%

65-100

0,7

3,1

Кислотность молока отдельных животных может изменяться в довольно широких пределах. Она зависит от состояния обмена веществ в организме животных, который определяется кормовыми рационами, породой, возрастом, физиологическим состоянием, индивидуальными особенностями животного и т.д. Особенно сильно изменяется кислотность молока в течение лактационного периода и при заболевании животных.

Так, в первые дни после отела кислотность молока повышена за счет большого содержания белков и солей, затем, через определенное время (40-45 дней), она снижается до физиологической нормы. Молоко перед концом лактации коров имеет пониженную кислотность.

При заболевании животных кислотность молока, как правило, снижается. Особенно резко она изменяется у животных, больных маститом.

Хотя титруемая кислотность является критерием оценки свежести и натуральности молока, следует помнить, что молоко может иметь повышенную (до 26°Т) или пониженную (менее 16°Т) кислотность, но тем не менее его нельзя считать недоброкачественным или фальсифицированным, так как оно термостойко и выдерживает кипячение или дает отрицательную реакцию на наличие соды, аммиака и примеси ингибирующих веществ. Отклонение естественной (нативной) кислотности молока от физиологической нормы в этом случае связано с нарушением рационов кормления. Такое молоко принимается как сортовое на основании показаний стойловой пробы, подтверждающей его натуральность. Более точно кислотность молока можно контролировать, используя рН-метод.

Наблюдаемое повышение (до 23-26°Т) кислотности молока, полученного от отдельных животных и даже целого стада, является следствием серьезного нарушения минерального обмена в организме животных. Оно обусловлено, как правило, недостаточным количеством солей кальция в кормах. Такие случаи возникают при скармливании животным больших количеств кислых кормов (зеленой массы злаков, кукурузы, кукурузного силоса, свекловичного жома, барды) бедных солями кальция. Свежее молоко с повышенной естественной кислотностью пригодно для производства кисломолочных продуктов, сыра и масла.

Понижение кислотности молока в основном обусловлено повышенным содержанием мочевины, что может быть вызвано избыточным потреблениям белков с зеленым кормом, использованием значительных количеств азотных добавок в рационе животных или азотных удобрений на пастбищах. Молоко с пониженной кислотностью нецелесообразно перерабатывать в сыры - оно медленно свертывается сычужным ферментом, а образующийся сгусток плохо обрабатывается.

Активная кислотность (рН).

Активная кислотность выражается величиной рН. Она характеризует концентрацию свободных водородных ионов (активность) в молоке и числено равна отрицательному десятичному логарифму концентрации водородных ионов (H+), выраженной в моль на 1 л.

Величина рН цельного молока составляет в среднем 6,7-6,5 и колеблется в пределах от 6,3 до 6,9, что свидетельствует о слабокислой реакции молока.

Так как в действующих ГОСТах и технологических инструкциях кислотность выражается в единицах титруемой кислотности, для сопоставления с ними показаний рН для молока и основных кисломолочных продуктов имеются установленные усредненные соотношения. Например, для заготовляемого молока эти соотношения следующие:

Сред. знач. рН

6,73

6,69

6,64

6,58

6,52

6,46

6,41

6,36

6,31

Титруемая кисл-ть,°Т

16

17

18

19

20

21

22

23

24

Между активной и титруемой кислотностью нет полного соответствия, так как титруемая кислотность указывает не на содержание в молоке каких-либо щелочей, а на перемещение рН с 6,3 до 8,2-8,5. Это устанавливают по появлению красной окраски фенолфталеина, вносимого в молоко. Свежевыдоенное молоко может иметь высокую титруемую кислотность, но малую активную, и наоборот. При повышении титруемой кислотности в результате образования кислоты при развитии микроорганизмов показатель рН некоторое время не изменяется по причине буферных свойств молока, характеризующихся наличием в нем белков, фосфатов, нитритов. Если вместо кислоты добавить в молоко некоторое количество щелочи, то показатель рН не изменится, а титруемая кислотность изменится. Только при нейтрализации кислотных и амидных групп аминокислот белков наступает резкое изменение активной кислотности.

Показатель рН имеет большое значение, так как от него зависят стабильность полидисперсной системы молока, условия роста микрофлоры и ее влияние на процессы созревания сыра, быстрота образования компонентов, от которых зависят вкус и запах молочных продуктов, термо-устойчивость белков молока, активность ферментов. По величине рН оценивается качество сырого молока и молочных продуктов.

Кислотная диссоциация белков незначительна, поэтому концентрация ионов водорода остается постоянной, в то время как титруемая кислотность повышается, так как при ее определении в реакцию со щелочью вступают как активные, так и связанные ионы водорода.

Буферная емкость. Наличие буферных систем в биологических жидкостях имеет большое значение - это своего рода защита живого организма от возможно резкого изменения рН, которое может неблагоприятно или губительно повлиять на него.

Буферные растворы, или буферные системы, бывают кислотные и основные. Первые бывают при растворении в воде слабых кислот и их солей, образованных сильными основаниями, а вторые состоят из слабых оснований и их солей, образованных сильными кислотами. В молоке имеется ряд буферных систем - белковая, фосфатная, цитратная, бикарбоновая и т.д. Например, бикарбонатный буфер, состоящий из угольной кислоты (H2CO3) и соли этой кислоты - бикарбоната натрия NaHCO3. Буферная способность белков молока объясняется наличием аминных и карбоксильных групп.

Изменение рН молока при добавлении к нему кислоты или щелочи произойдет в том случае, если будет превышена буферная емкость системы молока. Под буферной емкостью молока понимают количество кислоты или щелочи, которое необходимо добавить к 100 мл молока, чтобы изменить величину рН на единицу. Максимальная буферная емкость молока находится при рН 4,5-6,5. Низкая буферная емкость при рН 8,3.

Буферная емкость имеет большое значение в молочной промышленности, Так, молочнокислые бактерии чувствительны к низким значениям рН среды. Минимальное значение рН для развития термофильных молочнокислых палочек составляет 3,5-4,25, для стрептококков - 4,75. рН среды также влияет на характер образующихся продуктов брожения, в том числе у ароматобразующих бактерий - на выход диацетила.

Бактерицидные свойства молока. Свойство молока не давать возможности развиваться попавшим в него бактериям называется бактерицидным, а продолжительность действия этих свойств - бактерицидной фазой. Это обусловлено наличием в молоке различных защитных веществ (антибактериальных факторов), вырабатываемых организмом животного и поступающих из крови в молочную железу.

К антибактериальным факторам молозива и молока млекопитающих относятся иммуноглобулины (антитела), лейкоциты, лизоцим, лактоферрин, система лактопероксидаза-тиоциана -H2O2 и некоторые другие компоненты. Их количество зависит от вида, индивидуальных особенностей, физиологического состояния животных, стадии лактации и других фактор, Так, особенно высокой антибактериальной активностью обладает молозиво, которое защищает организм новорожденного от внедрения бактерий других чужеродных клеток и токсинов, а также способствует выработке им иммунитета.

Иммуноглобулины. Иммуноглобулины молозива (молока) большинства млекопитающих имеют большое значение для невосприимчивости их детенышей к инфекционным болезням. Так, новорожденные телята (ягнята, поросята) фактически лишены защиты от микроорганизмов, так как в отличие от плаценты человека их плацента непроницаема для антител крови матери. В первые дни после рождения они получают антитела в виде иммуноглобулинов молозива, которые в неизменном виде могут проходить через стенки их кишечника в кровь.

Состав иммуноглобулинов молозива различных млекопитающих неодинаков. В молозиве жвачных преобладают иммуноглобулины класса G, в молозиве человека - иммуноглобулины класса А.

Лейкоциты. Защитная функция лейкоцитов заключается, как известно, в их способности к фагоцитозу бактерий, и других клеток. Высокой фагоцитарной активностью обладают макрофаги, или моноциты, нейтрофилы и лимфоциты.

Лейкоциты наряду с другими соматическими клетками (греч. - тело) всегда содержатся в молоке. Нормальное молоко, полученное от здоровых животных, содержит в 1 мл 100-300 тыс. соматических клеток. Из них 80-90% приходится на эпителиальные клетки, около 8% - на гранулоциты и лимфоциты, а 1% на моноциты (Б.Рейтер).

Количество соматических клеток, в том числе лейкоцитов, увеличивается в молоке в начале и конце лактации, а также при заболеваниях животных (мастит, лейкоз и др.).

Так, при мастите количество соматических клеток повышается до 1-10 млн. в 1 мл, причем большая часть клеток (около 95%) представлена лейкоцитами-нейтрофилами.

Лизоцим (фермент мурамидаза). Он содержится в качестве защитного агента в выделениях организма - молоке, слюне, кишечном соке, а также в лейкоцитах. Лизоцим обладает свойством не только задерживать рост, но и растворять бактерии путем расщепления полисахаридных цепей их клеточных стенок. Лизоцим молозива является важным фактором неспецифического иммунитета. Он вызывает лизис многих грамположительных и грамотрицательных бактерий. Количество лизоцима в молозиве в 30 раз больше, чем в сыворотке крови.

Коровье молоко содержит лизоцима во много раз меньше, чем женское и его бактерицидная активность в 10 раз ниже.

Лактоферин. Он относится к железосвязывающим белкам, находящимся в крови и обеспечивающим транспорт Fe3+. Лактоферин молока обладает бактериостатическим действием по отношению к E.coli и другим бактериям, так как связывает ионы железа и делает их недоступными для бактериальных клеток.

Коровье молоко содержит лактоферина мало, в молозиве его больше. Система лактопероксидаза-тиоцианат-H2O2. Данная система обладает бактерицидным и бактериостатическим действием по отношению к E.coli, сальмонеллам и др.

Длительность бактерицидной фазы зависит от бактериального обсеменения молока, режимов охлаждения и хранения.

Температура, ОС

37

30

25

10

5

0

Продолжитель - ть бактер. фазы, ч

2

3

6

24

36

48

Чтобы ограничить или приостановить размножение бактерий, сырое молоко на фермах рекомендуется очищать и сразу охлаждать до температуры 8-1 °С (продолжительность хранения 6-12 ч); до температуры не выше 8-6°С (12-18 ч); до 6-4°С (18-24 ч); летом молоко следует охлаждать до температуры не выше 6-8°С, а зимой - до 8-10°С. При нагревании молока до 70°С и более бактерицидные вещества разрушаются.

ИСТОЧНИКИ КОНТАМИНАЦИИ МОЛОКА МИКРООРГАНИЗМАМИ

Содержание микроорганизмов в сыром молоке отражает уровень гигиены получения молока, особенно степень чистоты доильных установок, условия его хранения и транспортирования. Известны два пути обсеменения молока микроорганизмами: эндогенный и экзогенный. При эндогенном пути молоко обсеменяется микроорганизмами непосредственно в вымени животного. Экзогенное обсеменение происходит из внешних источников: кожи животного, подстилочных материалов, кормов, воздуха, воды, доильной аппаратуры и посуды, рук и одежды работников молочной фермы.

Эндогенное обсеменение. В молоке вымени всегда содержится определенное количество микроорганизмов. В железистой части вымени микроорганизмы могут находиться непостоянно и в единичном количестве клеток. В выводных протоках и молочной цистерне количество бактерий может достигать нескольких десятков или сотен клеток в 1 см. Это микроорганизмы -- комменсалы вымени. К ним относятся энтерококки, микрококки, иногда маститные стрептококки, коринебактерии и др.

Молоко вымени, получаемое стерильно не через сосковый канал, называют асептическим. Оно содержит незначительное количество микроорганизмов -- десятки-сотни клеток в 1 см3.

У старых коров больше содержится в вымени микробов, чем у молодых.

Здоровый сосковый канал защищает вымя от внешней среды благодаря его анатомическому строению. Кроме того, свободные жирные кислоты, синтезируемые слизистой оболочкой соскового канала, оказывают бактерицидное воздействие. Секрет соскового канала содержит также фосфолипиды, убивающие маститные стрептококки и другие микроорганизмы. При нарушении защитных функций соскового барьера микроорганизмы, постоянно находящиеся в сосковом канале, могут попадать в вымя и там размножаться.

У входа в сосковый канал, в каплях молока, оставшихся от предыдущей дойки, постоянно размножаются микроорганизмы, образуя так называемую бактериальную пробку, в которой количество бактерий достигает сотен тысяч клеток в 1 см3 молока. Поэтому перед дойкой первые струйки молока необходимо сдаивать в отдельную посуду, т. е. бактериальные пробки не должны попадать в общую массу молока.

Эндогенное обсеменение молока вымени может происходить также при маститах, септических инфекционных болезнях, травмах и воспалительных процессах соскового канала и вымени.

Экзогенное обсеменение. Важнейшим источником бактерий сырого молока является кожа животного и особенно кожа вымени и сосков, на которые надевают доильные стаканы. Молочная пленка, образующаяся в процессе доения между кожей сосков и доильными стаканами, наличие на коже грубых и мелких складок, а также относительно высокая температура создают благоприятные условия для развития микрофлоры. Она состоит из микрококков, энтерококков, кишечных палочек и других сапрофитов, а также патогенных и нежелательных для производства молока микроорганизмов.

Следует стремиться к тому, чтобы после обмывания и дезинфекции перед доением концентрация микробов на коже вымени была не выше 103 микробов на 1 см2.

Подстилочные материалы из соломы и сена являются существенным источником загрязнения кожного покрова животного, а затем и молока кишечными палочками, маслянокислыми бактериями, энтерококками, гнилостными спорообразующими дрожжами, плесенями, молочнокислыми бактериями и др. Нельзя использовать в качестве подстилки торфяную крошку. В кормах также содержится много разнообразных микроорганизмов. В свежескошенной траве больше молочнокислых бактерий, в грубых кормах -- гнилостных спорообразующих аэробных бацилл. В кормах содержатся пропионовокислые, уксуснокислые бактерии, актиномицеты, дрожжи и др. Кормление коров прокисшим или смешанным с землей кормом, плохим силосом или кислой бардой в сочетании с имеющимися недостатками в гигиене содержания животных ведет к загрязнению молока маслянокислыми и другими бактериями. Недоброкачественный корм вызывает у коров понос, а молоко загрязняется бактериями через содержимое кишечника, в 0,1 г которого содержится от 10 до 100 тыс. бактерий. В содержимом кишечника возможно наличие патогенных и нежелательных для молочного производства микроорганизмов.

Часто выделяющиеся у коров сальмонеллы имеются только в сыром молоке, так как энтеробактерии уничтожаются при пастеризации.

Поскольку молоко в настоящее время получают и хранят преимущественно в замкнутых системах, сырое молоко загрязняется в основном при ручном доении. Однако при смене молокопроводов всегда подсасывается наружный воздух. Общее количество микроорганизмов в воздухе составляет 300--1500 клеток в 1 м3. Содержание микробов в воздухе в течение одного дня сильно меняется. Во время операций раздачи и приема корма количество микробов воздуха достигает максимальной величины. Качественный состав микрофлоры воздуха представлен чаще микрококками, сарцинами, клетками дрожжей и спорами плесеней.

Вода, отвечающая требованием ГОСТа на питьевую воду и применяемая для мытья молочной посуды и аппаратуры, содержит незначительное количество микроорганизмов. Вода открытых водоемов или загрязненная вода содержит флюоресцирующие палочки, кокковую микрофлору, кишечные палочки, гнилостные бактерии и др.

Доильные установки и резервуары для хранения молока являются основным источником заражения молока психротрофными бактериями, преимущественно псевдомонадами. Психрофильные микробы размножаются в молочно-водной среде на плохо вымытых и дезинфицированных установках, находясь в активной фазе размножения. У них отсутствует период адаптации -- лагфаза. В плохо вымытой и непросушенной аппаратуре размножаются также молочнокислые бактерии, кишечные палочки, микрококки, гнилостные микроорганизмы и др.

Руки и одежда работников ферм могут стать источником обсеменения молока возбудителями (кишечными палочками, стафилококками, стрептококками и др.) различных болезней. Работники ферм, соприкасающиеся с молоком, обязаны строго выполнять правила личной гигиены, предупреждающие обсеменение молока микроорганизмами.

ИЗМЕНЕНИЕ МИКРОФЛОРЫ МОЛОКА ПРИ ХРАНЕНИИ

Во время хранения молока изменяется количество содержащихся в нем микроорганизмов, а также соотношение между отдельными группами и видами бактерий. Характер этих изменений зависит от температуры и продолжительности хранения молока, а также от степени обсеменения и состава микрофлоры. Размножающаяся и накапливающаяся в процессе хранения молока микрофлора называется вторичной. Изменение вторичной микрофлоры происходит по определенным закономерностям, т. е. проходит через определенные естественные фазы развития, изученные С. А. Королевым: бактерицидная фаза, фаза смешанной микрофлоры, фаза молочнокислых бактерий, фаза дрожжей и плесеней. Бактерицидная фаза. Время, в течение которого микроорганизмы не развиваются в свежевыдоенном молоке и даже частично отмирают, называют бактерицидной фазой. Бактерицидные свойства молока обусловлены присутствием в нем лизоцимов, нормальных антител, лейкоцитов и др.

Лизоцимы (лактенины) представляют собой вещества белковой природы (ферменты), образующиеся в организме животного и обладающие бактерицидным и бактериостатическим действием по отношению ко многим видам бактерий. Большое количество лизоцимов находится в различных жидкостях организма: слезной жидкости, слюне, спинно-мозговой жидкости, молоке и особенно в молозиве и околоплодной жидкости.

В молоке коров находятся четыре группы лизоцимов: лизоцим М (молока), лизоцим В (вымени), лизоцим О (основной), лизоцим Т (термостабильный). Они вырабатываются молочной железой или поступают в молоко из крови. При пастеризации молока лизоцимы (кроме термостабильного) инактивируются. Наибольшей бактерицидной активностью отличается лизоцим М. Он действует губительно на патогенных стафилококков, маститного стрептококка, сальмонелл, кишечных палочек, возбудителя сибирской язвы и других, особенно грамположительных, микроорганизмов. Отсутствие лизоцима М в свежевыдоенном! молоке свидетельствует о заболевании молочной железы; такое молоко является биологически неполноценным, так как в нем беспрепятственно могут размножаться многие виды микроорганизмов.

В молоке, содержащем большое количество микроорганизмов» лизоцимы быстро расходуются и довольно скоро утрачивают свое антибактериальное действие. Антитела-- гамма-глобулины, образующиеся в макроорганизме в ответ на введение в него микроорганизмов, их продуктов обмена или других чужеродных белковых веществ. Антител являются термолабильными, т. е. они разрушаются при пастеризации молока.

Лейкоциты (фагоциты) -- клеточные элементы крови макроорганизма, способные активно поглощать и растворять живые и убитые микроорганизмы. Они всегда содержатся в небольшом количестве в молоке, выполняя защитную антибактериальную функцию. При воспалении молочной железы количество лейкоцитов в молоке увеличивается в сотни раз, что является диагностическим признаком ранних форм маститов. При тепловой обработке молока лейкоциты уничтожаются.

Таким образом, наличие бактерицидной фазы молока обусловлено присутствием биологических защитных факторов, созданных самой природой. Продолжительность бактерицидной фазы имеет большое значение в сохранении хорошего качества молока. Она зависит от температуры хранения молока, степени его обсеменения, состава микрофлоры и индивидуальных особенностей дойных животных. Особенно большое влияние на продолжительность бактерицидной фазы оказывает температура хранения молока. Чем она выше, тем короче бактерицидная фаза. Зависимость продолжительности бактерицидной фазы от степени обсеменения молока тоже обратная: чем больше микроорганизмов в молоке, тем менее продолжительна бактерицидная фаза. С увеличением концентрации бактерий в молоке на несколько тысяч при одной и той же температуре хранения продолжительность бактерицидной фазы сокращается в два раза.

Таким образом, существует два пути увеличения продолжительности бактерицидной фазы: получение бактериально чистого молока и его немедленное охлаждение до низких плюсовых температур.

Фаза смешанной микрофлоры. По окончании бактерицидной фазы начинается ничем не задерживаемое размножение всех групп микроорганизмов, находящихся в молоке и способных в нем размножаться при данных условиях. Интенсивность их размножения будет различна. Эта фаза является периодом наиболее быстрого размножения микрофлоры. Она продолжается от 12 ч, до 1--2 сут. В течение этого периода микрофлора молока возрастает от немногих тысяч, которые оно имеет к концу бактериальной фазы, до сотен миллионов. В остальных фазах развития концентрация микробов может увеличиться до З млрд. Такой быстрый темп размножения объясняется тем, что в молоке в это время еще не накопились продукты жизнедеятельности микроорганизмов, задерживающие их дальнейшее развитие. Лишь к концу фазы продукты обмена в виде повышения кислотности будут задерживать развитие многих групп микроорганизмов, чем и определяется граница между фазой смешанной микрофлоры и следующей. Качественный состав микрофлоры в фазе определяется составом первичной микрофлоры молока, скоростью размножения различных видов микроорганизмов и температурными условиями хранения молока.

В зависимости от температуры хранения в данной фазе в молоке может развиваться микрофлора трех типов: криофлора (флора низких температур), мезофлора (флора средних температур), термофлора (флора высоких температур).

Криофлора развивается при хранении молока в охлажденном состоянии при температуре от 0 до 10 "С. В этих условиях микроорганизмы размножаются очень медленно. Например, при температуре 4,5 "С накопление биомассы за 24 ч составляет 9 %. Молочнокислые бактерии практически не размножаются. Если молоко хранят и далее при низких температурах, то микрофлора не выходит за пределы фазы смешанной микрофлоры, которая может продолжаться довольно долго, не давая резких видимых изменений молока. Однако количество микрофлоры в молоке неуклонно нарастает, и постепенно накапливаются продукты ее жизнедеятельности. Даже при температуре около О °С в течение двух недель количество бактерий в молоке может увеличиваться в десятки тысяч раз и составлять сотни миллионов клеток в 1 см3. При этом характер изменений молока обусловлен Развитием сначала микрококков, затем флюоресцирующих палочек. Вас. meqatherium, Вас. subtilis и других гнилостных микроорганизмов, т. е. процессы идут в направлении гнилостного разложения белков и отчасти разложения жира.

Мезофлора развивается при хранении молока в температурных пределах от 10 до 35 °С, т. е. при хранении молока без охлаждения. При этом характерны быстрое размножение микроорганизмов и неуклонное нарастание количества молочнокислой микрофлоры, которая, в конце концов, получает решительный перевес над остальными микроорганизмами, чем и обусловлен переход к следующей фазе -- фазе молочнокислых бактерий. Однако в составе микрофлоры, особенно в начальной стадии фазы смешанной микрофлоры, развиваются бактерии группы кишечных палочек, флюоресцирующие и другие гнилостные бактерии, ухудшающие качество молока. Поэтому надо стремиться к тому, чтобы молоко вообще не находилось в фазе смешанной микрофлоры. В неконтролируемых условиях фаза смешанной микрофлоры продолжается одни сутки, реже -- двое.

Термофлора развивается при температуре 40--45С. Такие условия наблюдаются в сыроделии при производстве твердых сыров с высокой температурой второго нагревания.

Во время хранения молока при искусственно созданных высоких температурах (в термостате) развитие микрофлоры идет в сторону обогащения молочнокислыми термофильными палочками и стрептококками.

Фаза молочнокислых бактерий. Эта фаза начинается с момента заметного нарастания кислотности и преобладания молочнокислых бактерий в молоке (кислотность около 60°Т и свыше 50% молочнокислых стрептококков от общего количества бактерий). В дальнейшем с накоплением молочной кислоты молочнокислые бактерии замедляют темп своего размножения, а остальные группы микроорганизмов постепенно отмирают.

Наиболее чувствительными к повышению кислотности являются флюоресцирующие бактерии, за ними погибают гнилостные микроорганизмы, далее -- микрококки, а также бактерий группы кишечных палочек, дольше всех выдерживающие нарастание кислотности среди немолочнокислых бактерий. Молочная кислота не является губительным фактором для спор дрожжей и плесеней, находящихся в молоке.

Следовательно, в течение молочнокислой фазы происходит как бы самоочищение молока почти от всех групп микроорганизмов, кроме молочнокислых бактерий, количество которых к концу фазы приближается к 100 % всей микрофлоры. Количество молочнокислых бактерий в первичной микрофлоре оказывает некоторое влияние на скорость вытеснения остальных микроорганизмов, но на конечный результат почти не влияет. Первоначально в фазе молочнокислых Бактерии преооладакп молочнокислые стрептококки, максимальное количество которых (до 2 млрд в 1 см3) накапливается через 1--2 сут. При этом предельная кислотность достигает 120 "Т и наблюдается массовое отмирание стрептококков. Молочнокислые палочки как более кислотоустойчивые продолжают размножаться, и уже на 4-е сутки их количество превышает количество стрептококков, а через 7 сут увеличение достигает почти 100 %. В дальнейшем после возрастания кислотности до 250--300 °Т происходит отмирание и молочнокислых палочек. Продолжительность молочнокислой фазы очень велика, она может длиться месяцами без каких-либо заметных изменений в микрофлоре, кроме только что рассмотренных. Это объясняется наличием молочной кислоты, которая подавляет развитие микроорганизмов. В этот период времени не могут размножаться и дрожжи с плесенями. Молочнокислую фазу можно назвать также фазой консервирования молока, хотя оно не является абсолютным, так как по истечении некоторого времени возникают новые микробиологические процессы -- развиваются дрожжи и плесени.

Фаза молочнокислых бактерий охватывает то состояние молока, в котором оно перестает быть собственно молоком, а является кисломолочным продуктом. Молоко в начале этой стадии можно иногда использовать в производстве сыра или масла.

Закономерности кисломолочного процесса, обусловленные развитием молочнокислых бактерий, учитывают при производстве кисломолочных продуктов, кислосливочного масла и сыра.

Фаза развития дрожжей и плесеней. Эта фаза является заключительной во всем процессе микробиологических изменений молока. После полного ее завершения органическое вещество молока претерпевает почти полную минерализацию (разложение на неорганические вещества). Начальные стадии фазы могут наблюдаться в масле, сыре, твороге и сметане.

Внешняя картина развития этой фазы выражается в том, что еще во время молочнокислой фазы на поверхности сгустка (если он не подвергается перемешиванию) образуются отдельные островки молочной плесени (Oidium lactis), постепенно смыкающиеся в сплошную белую пушистую пленку. В это же время появляются дрожжи рода Mycoderma, участвующие в образовании пленки. Позже появляются плесени родов Fenicillium и Aspergillus.

Внешний вид и качество молока в это время изменяются сравнительно слабо. Появляется прогорклый вкус, обусловленный продуктами разложения жира, что особенно бывает заметно в кислых сливках (сметане). Появляются плесневый и дрожжевой привкусы. Через некоторое время под пленкой начинают появляться признаки пептонизации в виде слоя полупрозрачной жидкости светло-желтого или темно-бурого цвета. Слой быстро увеличивается за счет исчезающего сгустка, который в дальнейшем полностью растворяется, превращаясь в буроватую жидкость, закрытую сверху, как пробкой, толстой пленкой плесени. По мере распада белка реакция среды становится щелочной, в результате чего создаются условия для развития гнилостных бактерий.

Интересно отметить, что плесени, развиваясь во время продолжения молочнокислой фазы, разлагают белки и подщелачивают субстрат, что на время активизирует развитие отмирающих молочнокислых бактерий. Поэтому правильнее было бы сказать, что фаза плесеней «налагается» на молочнокислую, а не заменяет ее, как это имеет место между фазой смешанной микрофлоры и фазой молочнокислых бактерий.

Развитие микрофлоры в указанных фазах влияет на качество и сохранность молока, на появление различного вида порчи молока, о чём мы поговорим во второй части лекций.

ТЕХНОЛОГИЯ ПРИГОТОВЛЕНИЯ МОЛОЧНЫХ ПРОДУКТОВ. ПРОДУКТЫ, ПРИГОТОВЛЯЕМЫЕ С ИСПОЛЬЗОВАНИЕМ МНОГОКОМПОНЕНТНЫХ ЗАКВАСОК

Кефир

Отличительная особенность кефира состоит в том, что при производстве его используют естественную, сложную по микробиологическому составу симбиотическую закваску -- кефирный грибок.

Микрофлора кефирных грибков и грибковой закваски

Кефирные грибки (рис. 23) имеют неправильную форму, сильно складчатую или бугристую поверхность, цвет белый со слегка желтоватым оттенком, консистенцию упругую, вкус кислый, специфический. Диаметр кефирных грибков может колебаться от 1--2 мм до 3--6 см и более. Активные кефирные грибки всплывают на поверхность молока.

Многие исследователи считают, что кефирный грибок представляет собой сгусток белка, который удерживает в себе микроорганизмы (Г. Хорват, 1968, и др.). Однако еще С. А. Королев (1932) отмечал, что кефирные грибки являются прочными симбиотическими образованиями. Такое представление о природе кефирного грибка, несомненно, более правильно объясняет его микробиологические, морфологические и культуральные особенности.

Кефирные грибки имеют всегда определенную структуру и ведут себя биологически как живой организм: растут, делятся и передают свои свойства и структуру последующим поколениям. Несмотря на многократные попытки, еще не удалось из смеси отдельных микроорганизмов, составляющих микрофлору кефирного грибка, получить новый кефирный грибок с присущими этому организму структурой и свойствами. На практике новые порции кефирных грибков получают в результате роста и размножения ранее существовавших. При микроскопировании микротомных срезов кефирного грибка обнаруживаются тесные переплетения палочковидных нитей, которые образуют строну грибка, удерживающую остальные группы микроорганизмов.

Первоначально многие исследователи считали этот микроб гнилостным (Вас. subtilis), однако в дальнейшем было показано, что он1 относится к молочнокислым бактериям.

В состав постоянной микрофлоры кефирного грибка входят дрожжи, молочнокислые и уксуснокислые бактерии.

Дрожжи. В кефирных грибках обнаружены дрожжи как сбраживающие, так и не сбраживающпе лактозу. (Э. Фрейденрейх, 1897; Е. М. Николаева, 1907; А. Ф. Войт-кевич, 1934; В. М. Богданов, 1957; В. И. Буканова, 1955; Е. П. Феофилова, 1958). Эти микроорганизмы наиболее прочно связаны с палочкой стромы грибка. Е. П. Феофилова (1958), тщательно отмывая поверхностную микрофлору кефирного грибка и воздействуя на нее спиртом, установила,

что в глубине грибка оставались только микробы стромы и дрожжи. В периферийных слоях грибка располагались дрожжи, сбраживаю-щие лактозу, в глубинных -- не сбраживающие.

В. И. Буканова (1955) показала, что дрожжи, сбраживающие лактозу, обладают значительно более высокой антибиотической активностью по отношению к Е. coli, что определяет их большую роль в формировании качества продукта.

В состав поверхностной микрофлоры кефирного грибка входит ряд микроорганизмов, которые могут быть разделены на следующие группы: мезофильные молочнокислые стрептококки: мезофильные молочнокислые палочки; термофильные молочнокислые палочки; уксуснокислые бактерии.

Мезофильные молочнокислые стрептококки. Их присутствие в кефирном грибке отмечалось многими исследователями. Считалось, что эта группа, хотя и присутствует постоянно в кефирных грибках и кефире, является посторонней сопутствующей микрофлорой, неблагоприятно влияющей на качество готового продукта. С. А. Королев (1932) установил, что па долю этой группы микроорганизмов приходится около 60% всей микрофлоры кефира, и высказал мнение о существенной роли ее в процессе сквашивания. Мезофильные молочнокислые стрептококки кефирного грибка -- не однородная группа. Она состоит из активных кислотообразователей (Str. lactis, Str. cremoris) и ароматообразующпх стрептококков (Lciic. citrovorum. Lenc. dextranicum). В настоящее время Str. lactis n Si,-. cremoris рассматриваются как постоянная и наиболее активная часть микрофлоры кефирного грибка, обеспечивающая быстрое нарастание кислотности закваски в первые часы сквашивания (Н. С. Королева, 1966, Н. А. Бавина, 1971).


Подобные документы

  • Классификация молока, его химический состав и пищевая ценность. Ветеринарно-санитарные и гигиенические требования к ферме. Технология и гигиена обработки молока на ферме. Ветеринарно-санитарный контроль производства молока. Требования к качеству молока.

    курсовая работа [53,1 K], добавлен 15.11.2015

  • Ветеринарно-санитарные правила технологии производства молока. Оборудование помещений молочных ферм. Ветеринарно-санитарные требования при доении коров, первичная обработка, хранение и транспортировка. Микробиологический и органолептический анализ молока.

    курсовая работа [50,2 K], добавлен 27.04.2009

  • Сведения об убойных животных и их заготовках. Анализ методов определения убойных животных. Этапы ветеринарно-санитарной экспертизы при сибирской язве, лептоспирозе. Влияние транспортировки на убойных животных. Ветеринарно-санитарная экспертиза молока.

    контрольная работа [57,2 K], добавлен 05.04.2010

  • Физико-химические свойства и состав молока. Подготовка доильной установки и коровы к доению. Учет молока, его первичная обработка. Характеристика молока различных животных. Санитарно—гигиенический режим получения молока. Кислотный метод определения жира.

    курсовая работа [56,8 K], добавлен 29.10.2014

  • Характеристика лаборатории государственной ветеринарно-санитарной экспертизы рынка "Казачья слобода". Ветеринарно–санитарная экспертиза мяса, органолептические методы исследования. Ветеринарно-санитарный контроль на рынке, профилактика заражения людей.

    отчет по практике [31,3 K], добавлен 23.02.2014

  • Порядок проведения ветеринарно-санитарной экспертизы при туляремии, бруцеллезе, туберкулезе, вынужденном убое животных. Сортовая разрубка (разделка) туш для розничной торговли. Значение лимфатической системы при ветеринарно-санитарной экспертизе мяса.

    контрольная работа [126,1 K], добавлен 29.03.2010

  • Практическое ознакомление с отделом мониторинга и дополнительного образования. Основные методы микробиологических исследований в отделе ветеринарно-санитарной экспертизы. Исследования на паразитарную чистоту. Санитарная экспертиза овощей, фруктов, грибов.

    курсовая работа [76,0 K], добавлен 18.12.2014

  • Дефекты и пороки копченой рыбы. Классификация кожевенно-мехового сырья, их первичная обработка и консервирование. Ветеринарно-санитарная экспертиза молока больных животных. Пороки куриных яиц и их ветеринарно-санитарная оценка. Правила маркировки яиц.

    контрольная работа [34,0 K], добавлен 12.10.2012

  • Общая характеристика и внутренняя структура предприятия ИП "Коза-дереза". Гигиена и технология молока и молочных продуктов на ферме, порядок и методика проведения ветеринарно-санитарной экспертизы. Экологическая безопасность на исследуемом предприятии.

    дипломная работа [304,0 K], добавлен 12.09.2015

  • Характеристика возбудителя, патогенеза и клинических признаков туберкулеза, бруцеллеза и лейкоза. Изучение патологоанатомических изменений в организме животных. Методика санитарно-гигиенического исследования пищевых продуктов животного происхождения.

    курсовая работа [35,8 K], добавлен 03.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.