Основы физики

Основные характеристики движения материальной точки. Законы Ньютона, их характеристика. Движение жидкости и уравнение неразрывности. Колебательное движение, маятник. Предмет и методы молекулярной физики. Квантовая оптика. Законы радиоактивного распада.

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 04.06.2012
Размер файла 168,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Предмет физики. Связь физики с другими науками и производством

Мир, окружающий нас, материален: он состоит из вечно существующей и непрерывно движущейся материи. Материей в широком смысле слова называется все, что реально существует в природе (Вселенной) и может быть обнаружено человеком посредством органов чувств или с помошью специальных приборов. Конкретные виды материи многообразны. К ним относятся элементарные частицы (электроны, протоны, нейтроны и др.), совокупности небольшого числа этих частиц (атомы, молекулы, ионы), физические тела (совокупности множества элементарных частиц) и физические поля (гравитационные, электромагнитные и др.), посредством которых взаимодействуют различные материальные частицы.

Неотъемлемым свойством материи является движение, под которым следует понимать все изменения и превращения материи, все процессы, протекающие в природе. «Движение, рассматриваемое в самом общем смысле слова, т. е. понимаемое как форма бытия материи, как внутренне присущий материи атрибут, обнимает собою все происходящие во Вселенной изменения и процессы, начиная от простого перемещения и кончая мышлением»**.

Разнообразные формы движения материи исследуются различными науками, в том числе и физикой***. Физика изучает наиболее простую и вместе с тем наиболее общую форму движения материи: механические, атомно-молекулярные, гравитационные, электромагнитные, внутриатомные и внутриядерные процессы. Слово «физика» имеет греческое происхождение: ср\/а1а(физис) -- природа. Так было названо большое сочинение древнегреческого ученого Аристотеля, написанное в III в до н. э. и содержащее все имевшиеся к тому времени сведения о природе (сведения по геометрии, астрономии, земледелию, медицине, ботанике и т. д.). Таким образом, первоначально физика включала в себя все естественные науки. Со временем эти науки выделились из физики заческой формы движения являются наиболее общими потому, что они содержатся во всех более сложных формах движения материи, изучаемых другими науками. Например, процессы жизнедеятельности организмов, изучаемые биологией, всегда сопровождаются механическими, электрическими, внутриатомными и другими физическими процессами (но, конечно, не сводятся к этим процессам). микроскоп в развитии биологии, телескоп -- в астрономии, спектральный анализ -- в химии, рентгеновский анализ -- в медицине и т. п. Все естественные и прикладные науки широко и плодотворно применяют теперь метод меченых атомов, электронную аппаратуру и другие физические приборы и методы исследования. Почти все эти науки имеют сейчас специальные физические разделы: астрофизика -- в астрономии, физическая химия -- в химии, биофизика -- в биологии, агрофизика -- в агрономии, электрофизика -- в электротехнике; металлофизика -- в металловедении и т. д. Можно поэтому утверждать, что физика является фундаментом, на котором строятся все естественные и прикладные науки. Физика оказывает весьма большое влияние на развитие производства как через соответствующие естественные науки, так и непосредственно. Достаточно напомнить, что физика дала производству электроэнергию, все виды транспорта, радиосвязь, телевидение, ядерную энергетику и т. д.

2. Основные характеристики движения материальной точки

Простейшим видом движения материи является механическое движение, представляющее собой перемещение в пространстве тел или их частей относительно друг друга.

Различают три вида механического движения тел -- поступательное, вращательное и колебательное. При поступательном движении твердого тела все его точки описывают совершенно одинаковые (при наложении совпадающие) линии и имеют одинаковую скорость и одинаковое ускорение (в данный момент времени Если форма и размеры тела не оказывают существенного влияния на характер его движения, то такое тело можно рассматривать как материальную точку. Материальной точкой называется тело, формой и размерами которого можно пренебречь в данной задаче. Последняя оговорка весьма существенна: при рассмотрении одного движения тела можно считать его материальной точкой, тогда как при рассмотрении другого движения того же самого тела это может оказаться недопустимым» Например, изучая движение Земли вокруг Солнца, можно и Землю и Солнце считать материальными точками. Изучая же движение Земли вокруг своей оси, нельзя принимать Землю за материальную точку, так как на характер вращательного движения Земли существенно влияют ее форма и размеры.

Перемещение тела можно рассматривать только относительно какого-либо другого тела или группы тел. Поэтому при изучении движения материальной точки необходимо прежде всего выбрать систему отсчета, т. е. систему координат, связанную с телом, относительно которого рассматривается движение материальной точки. Такой системой отсчета может служить, например, прямоугольная система координат XYZ Прямолинейное движение материальной точки

Если в процессе движения материальной точки вектор скорости не изменяется ни по величине, ни по направлению, то такое движение называется равномерным прямолинейным движением. В этом случае за равные промежутки времени тело совершает равные перемещения, и мгновенная скорость тела в любой момент времени равна его средней скорости. Следовательно, зависимость перемещения материальной точки от времени в случае прямолинейного равномерного движения определяется уравнением:

3. Движение материальной точки по окружности

ньютон движение оптика молекулярный радиоактивный

Рассмотрим движение материальной точки по окружности с постоянной по величине скоростью. В этом случае, называемом равномерным движением по окружности, касательная составляющая ускорения отсутствует (ак = 0) и ускорение совпадает со своей центростремительной составляющей (а = ац). Определим величину центростремительного ускорения.

Наряду со скоростью v равномерное движение материальной точки по окружности можно характеризовать так называемой угловой скоростью о), понимая под нею отношение угла Дф поворота радиуса R (т. е. отношение углового пути) к промежутку времени А/, за который этот поворот произошел

Единицей измерения угловой скорости является радиан в секунду (рад/с или с'1). Радиан в секунду -- угловая скорость равномерно вращающегося тела, при которой за время 1 с совершается поворот тела относительно оси на угол 1 рад. В отличие от угловой скорости о> скорость v принято называть линейной.

Введем еще две характеристики движения материальной точки по окружности: период вращения Т (время одного оборота точки по окружности) и число оборотов в единицу времени v (частота враще-

4. Законы Ньютона

1-й закон Существуют такие системы отсчёта, относительно которых материальная точка, при отсутствии внешних воздействий, сохраняет состояние покоя или равномерного прямолинейного движения.

Второго закона В инерциальной системе отсчета ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

3-й Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

Импульс. Законы сохранения и изменения импульса.

Иммпульс (Количество движения) -- векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости: Закомн сохранемния иммпульса (Закомн сохранемния количества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона.

5. Силы трения

При наличии относительного движения двух контактирующих тел силы трения, возникающие при их взаимодействии, можно подразделить на:

Трение скольжения -- сила, возникающая при поступательном перемещении одного из контактирующих/взаимодействующих тел относительно другого и действующая на это тело в направлении, противоположном направлению скольжения;

Трение качения -- момент сил, возникающий при качении одного из двух контактирующих/взаимодействующих тел относительно другого.

При отсутствии относительного движения двух контактирующих тел и наличии сил, стремящихся осуществить такое движение, в ряде ситуаций возникает

Трение покоя -- сила, возникающая между двумя контактирующими телами и препятствующая возникновению относительного движения. Эту силу необходимо преодолеть для того, чтобы привести два контактирующих тела в движение друг относительно друга. Она действует в направлении, противоположном направлению возможного движения.

Закомн Амонтомна -- Куломна -- эмпирический закон, устанавливающий связь между силой трения, возникающей при скольжении тела по поверхности, с силой нормальной реакции этого тела. Согласно этому закону величина силы трения не зависит от площади соприкосновения тела с поверхностью, а определяется исключительно свойствами соприкасающихся поверхностей.

Сила трения скольжения возникает при скольжении данного тела по поверхности другого тела.

Силы упругости.

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия

!При малых деформациях (|x| << l) сила упругости пропорциональна деформации тела и направлена в сторону, противоположную направлению перемещения частиц тела при деформации: Fx = Fупр = -kx.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил.

Силы тяготения.

Все тела Вселенной, как небесные, так и находящиеся на Земле, подвержены взаимному притяжению. Если же мы и не наблюдаем его между обычными предметами, окружающими нас в повседневной жизни (например, между книгами, тетрадями, мебелью и т.д.), то лишь потому, что оно в этих случаях слишком слабое.

Взаимодействие, свойственное всем телам Вселенной и проявляющееся в их взаимном притяжении друг к другу, называют гравитационным, а само явление всемирного тяготения -- гравитацией.

Гравитационное взаимодействие осуществляется посредством особого вида материи, называемого гравитационным полем. Такое поле существует вокруг любого тела, будь то планета, камень, человек или лист бумаги. При этом тело, создающее гравитационное поле, действует им на любое другое тело так, что у того появляется ускорение, всегда направленное к источнику поля. Появление такого ускорения и означает, что между телами возникает притяжение.

Особенностью гравитационного поля является его всепроникающая способность. Защититься от него ничем нельзя, оно проникает сквозь любые материалы.

Гравитационные силы обусловлены взаимным притяжением тел и направлены вдоль линии, соединяющей взаимодействующии точки, поэтому называются центральными силами. Они зависят только от координат взаимодействующих точек и являются потенциальными силами.

В 1682 г. И.Ньютон открыл закон всемирного тяготения:

Все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной,

G = 6,67*10-11(Н*м2)/кг2.

6. Системы отсчета. Силы инерции

Система отсчёта в механике, совокупность системы координат и часов, связанных с телом, по отношению к которому изучается движение (или равновесие) каких-нибудь других материальных точек или тел. Любое движение является относительным, и движение тела следует рассматривать лишь по отношению к какому-либо другому телу (телу отсчёта) или системе тел. Нельзя указать, например, как движется Луна воооще, можно лишь определить её движение по отношению к Земле или Солнцу и звёздам и т. д.

Математически движение тела (или материальной точки) по отношению к выбранной С. о. описывается уравнениями, которые устанавливают, как изменяются с течением времени t координаты, определяющие положение тела (точки) в этой С. о. Например, в декартовых координатах х, у, г движение точки определяется уравнениями Х = f1(t), у = f2(t), Z = f3(t), называются уравнениями движения

Сила инерции -- фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем.

В математических вычислениях введения этой силы происходит путём преобразования уравнения

F1+F2+…Fn = ma к виду

F1+F2+…Fn-ma = 0

Где Fn -- реально действующая сила, а -ma -- «сила инерции».

Закон инерции про инерционные системы отсчёта гласит, что без влияния неуравновешенных сил тело будет сохранять свою скорость или неподвижность. В качестве примера силы инерции можно рассмотреть простую силу инерции, которую можно ввести в равноускоренной системе отсчёта:

Среди сил инерции выделяют следующие:

простую силу инерции, которую мы только что рассмотрели;

центробежную силу, объясняющую стремление тел улететь от оси во вращающихся системах отсчёта;

силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта;

С точки зрения общей теории относительности, гравитационные силы в любой точке -- это силы инерции в данной точке искривлённого пространства Эйнштейна

Вес тела.

Вес тела - это сила, с которой тело, вследствие его притяжения к Земле, действует на опору или подвес.

Рассмотрим, например, тело, подвешенное к пружине, другой конец которой закреплен (рис. 6). На тело действует сила тяжести направленная вниз. Оно поэтому начинает падать, увлекая за собой нижний конец пружины. Пружина окажется из-за этого деформированной, и появится сила упругости пружины. Она приложена к верхнему краю тела и направлена вверх. Верхний край тела будет поэтому «отставать» в своем падении от других его частей, к которым сила упругости пружины не приложена. Вследствие этого и тело деформируется. Возникает еще одна сила упругости - сила упругости деформированного тела. Она приложена к пружине и направлена вниз. Вот эта сила и есть вес тела.

7. Энергия

Энергия -- скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.

Основное утверждение про энергию носит название закон сохранения энергии и заключается в том, что суммарная энергия замкнутой системы не изменяется во времени.

Механика различает потенциальную энергию (или, в более общем случае, энергия взаимодействия тел или их частей между собой или с внешними полями) и кинетическую энергию (энергия движения). Их сумма называется полной энергией.

Энергией обладают все виды полей. По этому признаку различают: электромагнитную (разделяемую иногда на электрическую и магнитную энергии), гравитационную и ядерную энергии (также может быть разделена на энергию слабого и сильного взаимодействий).

Термодинамика рассматривает внутреннюю энергию и иные термодинамические потенциалы.

В химии рассматриваются такие величины как энергия связи и энтальпия, имеющие размерность энергии, отнесённой к количеству вещества. См. также: химический потенциал.

Энергия взрыва иногда измеряется в тротиловом эквиваленте.

Закон сохранения и превращения энергии.

Закомн сохранемния энемргии -- фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

Законы сохранения и превращения энергии

Тысячелетний опыт науки и техники, бесчисленные эксперименты привели нас к выводу, что энергия не может ни возникнуть из ничего, ни исчезнуть. Мечта многих изобретателей о машине, которая производила бы механическую работу, не питаясь от внешнего энергетического источника (перпетуум мобиле), так и осталась мечтой. Этого факта было достаточно для того, чтобы сформулировать один из основных законов природы, так называемый закон сохранения энергии.

Закон сохранения энергии во многих случаях противоречит нашим непосредственным восприятиям. Часто кажется, что энергия будто бы пропадает. Подмастерье кидает каменщику кирпич вверх: кинетическая энергия кирпича исчезла, поскольку наверху он уже находится в состоянии покоя. Поезд затормозил. Его кинетическая энергия исчезла. Батарея нашего карманного фонаря истощилась - большая часть ее химической энергии исчезла. Можно привести еще бесчисленное количество примеров. На каждом шагу наблюдаются явления исчезновения энергии. Однако при ближайшем рассмотрении этого вопроса можно убедиться, что при исчезновении одного вида энергии всегда одновременно возникает по меньшей мере один новый вид энергии; в большинстве случаев возникает несколько новых видов энергии. Таким образом, энергия не исчезла, а превратилась в один или несколько других видов энергии. Кинетическая энергия кирпича в основном перешла в потенциальную и в меньшей степени - в звуковую и тепловую; кинетическая энергия затормозившего поезда - в тепловую; химическая энергия, содержащаяся в батарее карманного фонаря, при его работе превращается в световую и тепловую энергии; в радиоприемнике электрическая энергия - в звуковую, тепловую и световую энергии.

Переход одного вида энергии в другой может совершаться различными способами. Если не принимать во внимание технических несовершенств, то можно сказать, что из определенного количества энергии одного вида всегда возникает (в случае полного превращения) вполне определенное количество другого вида энергии независимо от того, каким способом и с помощью какого устройства совершено это превращение

8. Закон динамики вращения

Динамическими характеристиками вращения являются три момента:

- момент инерции I,

- момент силы

- момент импульса .

Следует различать моменты векторов силы и импульса относительно точки и относительно оси. Момент вектора относительно точки сам является вектором. Момент того же вектора относительно оси есть проекция на эту ось его момента относительно точки, лежащей на той же оси. Пусть О - какая-либо точка, относительно которой рассматривается момент вектора силы или вектора импульса. Ее называют началом или полюсом. Обозначим буквой радиус - вектор, проведенный из этой точки к точке приложения силы . Моментом силы относительно точки О называется векторное произведение радиуса - вектора на силу : .

Аналогично, момент импульса относительно точки О - это векторное произведение радиус-вектора на импульс : . Динамические характеристики связаны между собой законами (или уравнениями) движения. Основной закон динамики вращения (уравнение моментов) относительно точки: производная по времени (скорость изменения) от момента импульса системы материальных точек относительно неподвижного начала равна геометрической сумме моментов всех внешних сил относительно того же начала:

Момент инерции и импульса.

Момемнт иммпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением ее радиус-вектора и импульса:

где -- радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчета начала отсчёта, -- импульс частицы.

В системе СИ момент импульса измеряется в единицах джоуль-секунда; Дж·с.

Момент инерции -- скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·мІ.

9. Движение жидкости. Уравнение неразрывности

Уравнение неразрывности (закон непрерывности потока): для установившейся струи (физически ограниченной трубой переменного сечения и формы либо для «трубки тока», мысленно выделенной из более обширного потока газа или жидкости) всегда выполняется закон постоянства расхода (сколько в трубу втекает, столько же из неё и вытекает) S · v · с = const, где S -- площадь сечения струи (трубы) в любом месте на её протяжении, v -- скорость потока в этом сечении, с -- удельная плотность вещества потока в этом же месте. Прежде всего это верно для ламинарного потока (без завихрений), однако верно и для общей (интегральной) скорости турбулентного потока. При нагреве или при больших скоростях течения жидкостей возможны кавитационные эффекты -- переход части потока из жидкой в газообразную фазу (пар). Однако соотношение продолжает выполняться, если в качестве удельной плотности использовать общую плотность паро-жидкостной смеси в рассматриваемом сечении. Нарушение закона постоянства расхода свидетельствует о нарушении закона сохранения массы -- значит, где-то по пути происходит потеря или добавление вещества. Для несжимаемых жидкостей (с = const) уравнение неразрывности можно упростить до S · v = const.

Уравнение Бернулли и его приложения.

Уравнение Бернулли: для установившейся струи жидкости или газа в любом её сечении всегда выполняется соотношение с · U + P + с · v2 / 2 = const, где с -- удельная плотность потока в этом сечении, U -- потенциал объёмных (массовых) сил в этом месте (например, в гравитационном поле он равен h · g -- произведению высоты на ускорение свободного падения), P -- давление жидкости или газа в рассматриваемом сечении, v -- скорость потока в этом сечении. Первый член уравнения Бернулли, записанного в такой форме, является удельной потенциальной энергией, второй -- давлением, а третий -- скоростным напором. Для струи жидкости уменьшение на каком-либо участке давления P ниже некоторой величины, равной давлению фазового перехода этой жидкости (обычно это достаточно малые величины), указывает на переход части жидкости в пар -- кавитационный эффект. В техническом приложении уравнение Бернулли выглядит так: с · U + P + с · v2 / 2 + Q'T + A' = const, где Q'T -- удельные потери давления на гидродинамическое трение (не путать с гидродинамическим сопротивлением!), A' -- удельная полезная работа, выполненная потоком (например, вращение турбины).

10. Давление в жидкости. Поверхностное натяжение

Вокруг нас много жидкостей. Одни из них движутся, например, вода в реках или нефть в трубах, другие - покоятся. При этом все они имеют вес и поэтому давят на дно и стенки сосуда, в котором находятся. Подсчет давления движущейся жидкости - непростая задача, поэтому изучим лишь как рассчитывать давление, создаваемое весом покоящейся жидкости. Оно называется гидростатическим давлением

p - давление слоя жидкости, Па

Повемрхностное натяжемние -- термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.

Поверхностное натяжение имеет двойной физический смысл -- энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение -- это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение -- это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].

Сила поверхностного натяжения направлена по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует. Сила поверхностного натяжения пропорциональна длине того участка контура, на который она действует. Коэффициент пропорциональности г -- сила, приходящаяся на единицу длины контура -- называется коэффициентом поверхностного натяжения. Он измеряется в ньютонах на метр. Но более правильно дать определение поверхностному натяжению, как энергии (Дж) на разрыв единицы поверхности (мІ). В этом случае появляется ясный физический смысл понятия поверхностного натяжения.

Капиллярные явления.

КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ, поверхностные явления на границе жидкости с др. средой, связанные с искривлением ее пов-сти. Искривление пов-сти жидкости на границе с газовой фазой происходит в результате действия поверхностного натяжения жидкости, к-рое стремится сократить пов-сть раздела и придать ограниченному объему жидкости форму шара. Поскольку шар обладает миним. пов-стью при данном объеме, такая форма отвечает минимуму поверхностной энергии жидкости, т.е. ее устойчивому равновесному состоянию. В случае достаточно больших масс жидкости действие поверхностного натяжения компенсируется силой тяжести, поэтому маловязкая жидкость быстро принимает форму сосуда, в к-рый она налита, а ее своб. пов-сть представляется практически плоской. В отсутствие силы тяжести или в случае очень малых масс жидкость всегда принимает сферич. форму (капля), кривизна пов-сти к-рой определяет мн. св-ва в-ва. Поэтому капиллярные явления ярко выражены и играют существ. роль в условиях невесомости, при дроблении жидкости в газовой среде (или распылении газа в жидкости) и образовании систем, состоящих из мн. капель или пузырьков (эмульсий, аэрозолей, пен), при зарождении новой фазы капель жидкости при конденсации паров, пузырьков пара при вскипании, зародышей кристаллизации. При контакте жидкости с конденсир. телами (др. жидкостью или твердым телом) искривление пов-сти раздела происходит в результате действия межфазного натяжения. В случае смачивания, напр., при соприкосновении жидкости с твердой стенкой сосуда, силы притяжения, действующие между молекулами твердого тела и жидкости, заставляют ее подниматься по стенке сосуда, вследствие чего примыкающий к стенке участок пов-сти жидкости принимает вогнутую форму. В узких каналах, напр., цилиндрич. капиллярах, образуется вогнутый мениск - полностью искривленная пов-сть жидкости

11. Гармонические колебания

Гармоническое колебание -- явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

;

где х -- значение изменяющейся величины, t -- время, А -- амплитуда колебаний, щ -- циклическая частота колебаний, -- полная фаза колебаний, -- начальная фаза колебаний.

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Вынужденные колебания совершаются под воздействием внешней периодической силы.

гармонические колебания отличаются от всех остальных видов колебаний по следующим причинам:

Очень часто малые колебания, как свободные, так и вынужденные, которые происходят в реальных системах, можно считать имеющими форму гармонических колебаний или очень близкую к ней.

Широкий класс периодических функций может быть разложен на сумму тригонометрических компонент. Другими словами, любое колебание может быть представлено как сумма гармонических колебаний.

Для широкого класса систем откликом на гармоническое воздействие является гармоническое колебание (свойство линейности), при этом связь воздействия и отклика является устойчивой характеристикой системы. С учётом предыдущего свойства это позволяет исследовать прохождение колебаний произвольной формы через системы.

12. Колебательное движение. Маятник

Мамятник -- система, подвешенная в поле тяжести и совершающая механические колебания. Колебания совершаются под действием силы тяжести, силы упругости и силы трения. Во многих случаях трением можно пренебречь, а от сил упругости (либо сил тяжести) абстрагироваться, заменив их связями.

Во время колебаний маятника происходят постоянные превращения энергии из одного вида в другой. Кинетическая энергия маятника превращается в потенциальную энергию (гравитационную, упругую) и обратно. Кроме того, постепенно происходит диссипация кинетической энергии в тепловую за счёт сил трения.

Одним из простейших маятников является шарик, подвешенный на нити. Идеализацией этого случая является математический маятник -- механическая система, состоящая из материальной точки, подвешенной на невесомой нерастяжимой нити или на невесомом стержне в поле тяжести.

Если размерами массивного тела пренебречь нельзя, но всё еще можно не учитывать упругих колебаний тела, то можно прийти к понятию физического маятника. Физический маятник -- твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной горизонтальной оси, не проходящей через центр масс этого тела

13. Волновой процесс. Интерференция волн

Волновой процесс имеет следующие характерные признаки:

Волновой процесс всегда переносит энергию и импульсы. Нас интересуют волновые процессы ЭМВ.

Конечная скорость всех волновых процессов. В случае ЭМВ - это скорость света.

Независимость волновых процессов друг от друга. В этой комнате существуют поля самых разных частот, поля р/станций, света и т.д.

Волновые процессы, различные по физической природе, описываются одним и тем же математическим аппаратом.

Под волновым процессом понимают возмущение некоторой величины в пространстве, перемещающееся с конечной скоростью, переносящее мощность без переноса вещества.

Интерференция волн -- взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве.[1] Сопровождается чередованием максимумов и минимумов интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

14. Фронт волны. Звук и ультразвук

ФРОНТ ВОЛНЫ, поверхность, окружающая источник колебаний, все точки которой имеют одинаковые фазы колебаний. Фронт волны может быть сферой (сферическая волна) или иметь более сложную форму. Направление распространения волны - нормаль к фронту волны.

Звук, в широком смысле -- упругие волны, продольно распространяющиеся в среде и создающие в ней механические колебания; в узком смысле -- субъективное восприятие этих колебаний специальными органами чувств животных или человека.

Как и любая волна, звук характеризуется амплитудой и спектром частот. Обычно человек слышит звуки, передаваемые по воздуху, в диапазоне частот от 16--20 Гц до 15--20 кГц[1]. Звук ниже диапазона слышимости человека называют инфразвуком; выше: до 1 ГГц, -- ультразвуком, от 1 ГГц -- гиперзвуком. Среди слышимых звуков следует также особо выделить фонетические, речевые звуки и фонемы (из которых состоит устная речь) и музыкальные звуки (из которых состоит музыка).

Ультразвук . Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц.

Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных физических и технологических методах.

15. Предмет и методы молекулярной физики. Синергетика и ее роль в современной науке

Молекулярная физика -- раздел физики, который изучает физические свойства тел на основе рассмотрения их молекулярного строения. Задачи молекулярной физики решаются методами физической статистики, термодинамики и физической кинетики, они связаны с изучением движения и взаимодействия частиц (атомов, молекул, ионов), составляющих физические тела. Круг вопросов, охватываемых молекулярной физикой, очень широк. В ней рассматриваются: строение вещества и его изменение под влиянием внешних факторов (давления, температуры, электромагнинтного поля), явления переноса (диффузия, теплопроводность, вязкость), фазовое равновесие и процессы фазовых переходов (кристаллизация, плавление, испарение, конденсация), критическое состояние вещества, поверхностные явления на границах раздела фаз. Синергемтика (от др.-греч. ухн- -- приставка со значением совместности и ?сгпн -- «деятельность») -- междисциплинарное направление научных исследований, задачей которого является изучение природных явлений и процессов на основе принципов самоорганизации систем (состоящих из подсистем). «…Наука, занимающаяся изучением процессов самоорганизации и возникновения, поддержания, устойчивости и распада структур самой различной природы…» С мировоззренческой точки зрения синергетику иногда позиционируют как «глобальный эволюционизм» или «универсальную теорию эволюции», дающую единую основу для описания механизмов возникновения любых новаций подобно тому, как некогда кибернетика определялась, как «универсальная теория управления», одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т. п В России:

Концептуальный вклад в развитие синергетики внёс академик Н. Н. Моисеев -- идеи универсального эволюционизма и коэволюции человека и природы.

Математический аппарат теории катастроф пригодный для описания многих процессов самоорганизации разработан российским математиком В. И. Арнольдом и французским математиком Рене Томом.

В рамках школы академика А. А. Самарского и члена-корреспондента РАН С. П. Курдюмова разработана теория самоорганизации на базе математических моделей и вычислительного эксперимента (включая теорию развития в режиме с обострением).

Синергетический подход в биофизике развивается в трудах членов-корреспондентов РАН М. В. Волькенштейна и Д. С. Чернавского.

Синергетический подход в теоретической истории развивается в работах Д. С. Чернавского, Г. Г. Малинецкого, Л. И. Бородкина, С. П. Капицы, А. В. Коротаева, С. Ю. Малкова, П. В. Турчина, А. П. Назаретяна и др

16. Молекулярно-кинетическая теория. Газовые законы

Молекулярно-кинетическая теория (сокращённо МКТ) -- теория XIX века, рассматривавшая строение вещества, в основном газов, с точки зрения трёх основных приближенно верных положений:

все тела состоят из частиц, размером которых можно пренебречь: атомов, молекул и ионов;

частицы находятся в непрерывном хаотическом движении (тепловом);

частицы взаимодействуют друг с другом путём абсолютно упругих столкновений.

Основными доказательствами этих положений считались:

Диффузия

Броуновское движение

Изменение агрегатных состояний вещества

В современной (теоретической) физике термин молекулярно-кинетическая теория уже не используется, хотя он встречается в учебниках по курсу общей физики. В современной физике МКТ заменила кинетическая теория, в русскоязычной литературе -- физическая кинетика, и статистическая механика. В этих разделах физики изучаются не только молекулярные (атомные или ионные) системы, находящиеся не только в «тепловом» движении, и взаимодействующие не только через абсолютно упругие столкновения.

Основное уравнение МКТ

где k является постоянной Больцмана (отношение Универсальной газовой постоянной R к числу Авогадро NA), а i -- число степеней свободы молекул.

Основное уравнение МКТ связывает макроскопические параметры (давление, объём, температура) газовой системы с микроскопическими (масса молекул, средняя скорость их движения).

Газовые законы

1. При постоянной температуре T = const (изотермический процесс)

pV = const .(закон Р. Бойля и Э. Мариотта).

2. При постоянном давлении р = const (изобарический процесс)

V/T = const . (закон Ж. Гей-Люссака).

3. При постоянном объеме V = const (изохорический процесс)

p/T = const . (закон Ж. Шарля).

4. Процесс, происходящий в теплоизолированной системе (адиабатический процесс)

pV g = const .

Здесь g = c p /c V - отношение теплоемкостей газа при постоянном давлении и постоянном объеме

17. Явления переноса в газах. Диффузия, теплопроводность, внутреннее трение

Явления переноса объединяют группу процессов, связанные с неоднородностью плотности, температуры и скоростями упорядоченного перемещения слоёв вещества. Выравнивание неоднородностей приводит к возникновению явлений переноса. К явлениям переноса относится диффузия, внутреннее трение и теплопроводность. При явлениях переноса в газах возникает упорядоченный направленный перенос массы при диффузии, импульсе, при внутреннем трении и внутренней энергии при теплопроводности. При этом нарушается полная хаотичность движения молекул и закон распределения молекул по скоростям Максвелла нарушается. Это связано с тем, что при движении молекул появляется упорядоченная составляющая, которая приведет к ликвидации неоднородностей. В простейших случаях одномерных неоднородностей (неоднородности изменяются вдоль одной координаты) физические величины, характеризующие эти явления зависят только от одной координаты. В дальнейшем мы будем рассматривать только одномерные процессы выравнивания неоднородности газов. Явления переноса наблюдается также в жидкостях и твёрдых телах, но законы которым подчиняются эти явления в данных веществах имеют крайне (L) сложный математический вид, поэтому их рассматривать не будем (J). Явления переноса это неравновесный процесс, который с течением времени стремится привести систему к равновесному состоянию.

Диффузия (лат. diffusio -- распространение, растекание, рассеивание) -- процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией (против градиента концентрации). Самым известным примером диффузии является перемешивание газов или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: если один конец стержня нагреть или электрически зарядить, распространяется тепло (или соответственно электрический ток) от горячей (заряженной) части к холодной (незаряженной) части. В случае металлического стержня тепловая диффузия развивается быстро, а ток протекает почти мгновенно. Если стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно, а диффузия электрически заряженных частиц -- очень медленно. Диффузия молекул протекает в общем ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом, то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микрометров только через несколько тысяч лет

Теплопровомдность -- это перенос теплоты структурными частицами вещества (молекулами, атомами, электронами) в процессе их теплового движения. Такой теплообмен может происходить в любых телах с неоднородным распределением температур, но механизм переноса теплоты будет зависеть от агрегатного состояния вещества. Явление теплопроводности заключается в том, что кинетическая энергия атомов и молекул, которая определяет температуру тела, передаётся другому телу при их взаимодействии или передаётся из более нагретых областей тела к менее нагретым областям. Иногда теплопроводностью называется также количественная оценка способности конкретного вещества проводить тепло.

ямзкость (внумтреннее тремние) -- одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей -- это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно.

18. Явления переноса в жидких и твердых телах. Теплоемкость твердых тел

Явления переноса в жидкостях

Теорию явлений переноса в жидкостях также можно отнести к физической кинетике, хотя для жидкостей метод кинетических уравнений непригоден, но для них возможен более общий подход, основанный также на иерархии времён релаксации. Для жидкости время установления равновесия в макроскопически малых (но содержащих ещё большое число молекул) элементарных объёмах значительно больше, чем время релаксации во всей системе, вследствие чего в малых элементах объёма приближённо устанавливается статистическое равновесие. Поэтому в качестве исходного приближения при решении уравнения Лиувилля можно принять локально равновесное распределение Гиббса с температурой , химическим потенциалом и гидродинамической скоростью , соответствующими рассматриваемой точке жидкости.

Закон равнораспределения применяется для определения удельной теплоёмкости кристаллических тел. Поскольку каждый атом из такого тела может колебаться в трёх независимых направлениях, то кристалл можно рассматривать как систему 3N независимых гармонических осцилляторов, где N обозначает число атомов в решётке. Каждый гармонический осциллятор обладает средней энергией kBT, поэтому средняя полная энергия тела равна 3NkBT, а его удельная теплоёмкость 3NkB.

Если взять за N -- число Авогадро (NA), то, используя соотношение R = NAkB между газовой постоянной (R) и постоянной Больцмана (kB), получим выражение для закона Дюлонга -- Пти, который описывает молярную теплоёмкость твёрдых тел. Он гласит, что удельная теплоёмкость одного моля атомов кристаллической решётки составляет 3R ? 6 кал/(моль·К).

Следует отметить, что этот закон неверен при низких температурах, где важно принять во внимание квантовые эффекты. Он также вступает в противоречие с экспериментально подтверждённым третьим началом термодинамики, согласно которому удельная теплоёмкость любого вещества стремится к нулю при стремлении температуры к абсолютному нулю.[6] Более точные теории, которые принимают во внимание квантовые эффекты, были разработаны Альбертом Эйнштейном (1907 год) и Петером Дебаем (1911 год).[7]

Многие физические системы можно смоделировать в виде системы связанных гармонических осцилляторов. Движения таких осцилляторов можно разложить на нормальные моды, которые можно представить как вибрационные моды струны фортепьяно или резонансы трубы органа. С другой стороны, теорема о равнораспределении становится неприменимой для таких систем из-за отсутствия обмена энергии между нормальными модами. В предельном случае моды независимы и, таким образом, их энергии сохраняются независимо. Это означает, что смешивание энергий, формально называемое эргодичностью, важно для выполнения закона равнораспределения.

19. Строение жидкостей и твердых тел. Деформация

Стpоение твеpдых тел пpинципиально отлично от стpоения газов. В них межмолекуляpные pасстояния малы и потенциальная энеpгия молекул сpавнима с кинетической. Твеpдые тела делятся на два вида: на кpисталлические и амоpфные. В состоянии теpмодинамического pавновесия пpебывают лишь кpисталлические тела. Амоpфные же тела по сути пpедставляют метастабильные состояния, котоpые по своему стpоению пpиближаются к неpавновесным, медленно кpисталлизующимся жидкостям. В амоpфном теле идет очень медленный пpоцесс кpисталлизации, пpоцесс постепенного пеpехода вещества в кpисталлическую фазу. Отличие кpисталла от амоpфного твеpдого тела заключается пpежде всего в анизотpопии его свойств. Свойства кpисталлического тела зависят от напpавления в пpостpанстве. Различного pода пpоцессы, такие как теплопpоводность, электpопpоводность, свет, звук, распростpаняются в pазличных напpавлениях твеpдого тела по-pазному. Амоpфные же тела (стекло, смолы, пластмассы) изотpопны, как и жидкости. Отличие амоpфных тел от жидкостей состоит только в том, что последние текучи, в них невозможны статические дефоpмации сдвига. В дальнейшем мы остановимся только на кpисталлических телах.

Кpисталлические тела обладают пpавильным молекуляpным стpоением. Именно пpавильному стpоению кpисталла обязана анизотpопия его свойств. Пpавильное pасположение атомов кpисталла обpазует так называемую кpисталлическую pешетку. В pазличных напpавлениях pасположение атомов в pешетке pазлично, что и ведет к анизотpопии свойств. Однако в больших объемах анизотpопия пpоявляется лишь в монокpисталлах, в цельных кpисталлах. Поликpисталлические же тела посуществу пpедставляют собой спpессованный. очень мелкий кpисталлический поpошок. В таком теле мелкие кpисталлики оpиентиpованы по отношению дpуг к дpугу беспоpядочно, из-за чего в поликpисталлическом теле анизотpопия не пpоявляется. Напpимеp, все металлы в твеpдом состоянии по сути являются поликpисталлами. Однако теpмодинамика в кpупном и в мелком кpисталле одна и та же. Поэтому теpмо-динамические свойства поли- и монокpисталлов одинаковы (исключение составляют лишь свойства, зависящие от напpавления и диспеpсности частиц.)

Жидкость занимает пpомежуточное положение между твеpдым телом и газом. В чем ее сходство с газом? Жидкость, как и газы, изотpопна. Кpоме того, жидкость обладает текучестью. В ней, как и в газах, отсутствуют касательные напpяжения (напpяжения на сдвиг). Пожалуй, только этими свойствами и огpаничивается сходство жидкости с газом. Значительно существеннее сходство жидкости с твеpдыми телами. Жидкости тяжелы, т.е. их удельные веса сpавнимы с удельными весами твеpдых тел. Жидкости, как и твеpдые тела, плохо сжимаемы. Вблизи темпеpатуp кpисталлизации их теплоемкости и дpугие тепловые хаpактеpистики близки к соответствующим хаpактеpистикам твеpдых тел. Все это говоpит о том, что по своему стpоению жидкости должны в чем-то напоминать твеpдые тела. Теоpия должна объяснить это сходство, хотя должна находить и объяснение отличий жидкостей от твеpдых тел. В частности, она должна объяснить пpичину анизотpопии кpисталлических тел и изотpопию жидкостей. Удовлетвоpительное объяснение стpоения жидкостей пpедложил советский физик Я.Фpенкель. Согласно теоpии Фpенкеля жидкости имеют так называемое квазикpисталлическое стpоение. Кpисталлическое стpоение хаpактеpизуется пpавильным pасположением атомов в пpостpанстве. Оказывается, в жидкостях тоже наблюдается до известной степени пpавильное pасположение атомов, но лишь в малых областях. В малой области наблюдается пеpиодическое pасположение атомов, но по меpе увеличения pассматpиваемой области в жидкости пpавильное, пеpиодическое pасположение атомов теpяется и на больших ее участках полностью исчезает. Пpинято говоpить, что в твеpдых телах имеет место "дальний поpядок" в pасположении атомов (пpавильная кpисталлическая стpуктуpа в больших областях пpостpанства, охватывающих очень большое число атомов), в жидкостях же - "ближний поpядок". Жидкость как бы pазбивается на мелкие ячейки, в пpеделах котоpых и наблюдается кpисталлическое, пpавильное стpоение. Четких гpаниц между ячейками не существует, гpаницы pазмыты. Такое стpоение жидкостей и называется квазикpисталлическим.

Хаpактеp теплового движения атомов в жидкостях также напоминает движение атомов в твеpдых телах. В твеpдом теле атомы совеpшают колебательное движение около узлов кpисталлической pешетки. В жидкостях имеет место до известной степени аналогичная каpтина.

Деформамция (от лат. deformatio -- «искажение») -- изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.

Деформации разделяют на обратимые (упругие) и необратимые (пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые -- остаются. В основе упругих деформаций лежат обратимые смещения атомов металлов от положения равновесия; в основе необратимых -- необратимые перемещения атомов на значительные расстояния от исходных положений равновесия.

Пластические деформации -- это необратимые деформации, вызванные изменением напряжений. Деформации ползучести -- это необратимые деформации, происходящие с течением времени. Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств -- в частности, при холодном деформировании повышается прочность.

20. Фазовые переходы. Диаграмма состояний вещества

Фамзовый перехомд (фазовое превращение) в термодинамике -- переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов).


Подобные документы

  • Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.

    реферат [34,2 K], добавлен 26.04.2007

  • Понятие механического движения. Прямолинейное равномерное и неравномерное движение. Законы криволинейного движения. Основы классической динамики, законы Ньютона. Силы в природе и движения тел. Пространство и время, специальная теория относительности.

    контрольная работа [29,3 K], добавлен 04.08.2011

  • Предмет и задачи механики – раздела физики, изучающего простейшую форму движения материи. Механическое движение - изменение с течением времени положения тела в пространстве относительно других тел. Основные законы классической механики, открытые Ньютоном.

    презентация [303,7 K], добавлен 08.04.2012

  • Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.

    лекция [339,3 K], добавлен 28.06.2013

  • Движение материальной точки в неинерциальной системе координат. Относительный покой точки. Маятник с двумя потенциальными ямами. Перевернутый вибрирующий маятник. Уклонение линии отвеса от направления радиуса Земли. Отклонение падающих тел к Востоку.

    презентация [462,5 K], добавлен 28.09.2013

  • Элементарная струйка и поток жидкости. Уравнение неразрывности движения жидкости. Примеры применения уравнения Бернулли, двигатель Флетнера (турбопарус). Критическое число Рейнольдса и формула Дарси-Вейсбаха. Зависимость потерь по длине от расхода.

    презентация [392,0 K], добавлен 29.01.2014

  • Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.

    курс лекций [1,0 M], добавлен 13.10.2011

  • Примеры взаимодействия тел с помощью опытов. Первый закон Ньютона, инерциальные системы отсчета. Понятие силы и физического поля. Масса материальной точки, импульс и центр масс системы. Второй и третий законы Ньютона, их применение. Движение центра масс.

    реферат [171,4 K], добавлен 10.12.2010

  • Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

    презентация [220,4 K], добавлен 28.09.2013

  • Поиск эффективных методов преподавания теории вращательного движения в профильных классах с углубленным изучением физики. Изучение движения материальной точки по окружности. Понятие динамики вращательного движения твердого тела вокруг неподвижной оси.

    курсовая работа [1,7 M], добавлен 04.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.