Основы физики

Основные характеристики движения материальной точки. Законы Ньютона, их характеристика. Движение жидкости и уравнение неразрывности. Колебательное движение, маятник. Предмет и методы молекулярной физики. Квантовая оптика. Законы радиоактивного распада.

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 04.06.2012
Размер файла 168,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Наиболее распространённые примеры фазовых переходов первого рода:

плавление и кристаллизация

испарение и конденсация

сублимация и десублимация

При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т. д.

Наиболее распространённые примеры фазовых переходов второго рода:

прохождение системы через критическую точку

переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядка -- намагниченность)

переход металлов и сплавов в состояние сверхпроводимости (параметр порядка -- плотность сверхпроводящего конденсата)

переход жидкого гелия в сверхтекучее состояние (п.п. -- плотность сверхтекучей компоненты)

переход аморфных материалов в стеклообразное состояние

Фамзовая диаграммма (диаграмма состоямния) -- графическое отображение равновесного состояния бесконечной физико-химической системы при условиях, отвечающих координатам рассматриваемой точки на диаграмме (носит название фигуративной точки).

21. Законы термодинамики

1.Внутренняя энергия может изменяться только под влиянием внешних воздействий, то есть в результате сообщения системе количества теплоты Q и совершения над ней работы (- А):

или

Это выражение представляет собой закон сохранения энергии в применении к макроскопическим системам и является математической формулировкой I-го начала термодинамики: количество тепла, сообщенное системе, идет на приращение внутренней энергии системы и на совершение системой работы над внешними телами.

Второй Закон Термодинамики

Второй Закон Термодинамики, как и Первый (Закон сохранения энергии) установлен эмпирическим путем. Впервые его сформулировал Клаузиус: "теплота сама собой переходит лишь от тела с большей температурой к телу с меньшей температурой и не может самопроизвольно переходить в обратном направлении".

Другая формулировка: все самопроизвольные процессы в природе идут с увеличением энтропии. (Энтропия - мера хаотичности, неупорядоченности системы).

22.Электрическое поле и диполь

Электрическое поле -- одна из составляющих электромагнитного поля, особый вид материи, существующий вокруг тел или частиц, обладающих электрическим зарядом, а также в свободном виде при изменении магнитного поля (например, в электромагнитных волнах). Электрическое поле непосредственно невидимо, но может наблюдаться благодаря его силовому воздействию на заряженные тела. Электрическое поле материально.

Для количественного определения электрического поля вводится силовая характеристика -- напряжённость электрического поля. Напряжённостью электрического поля называют векторную физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещённый в данную точку пространства, к величине этого заряда. Направление вектора совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.

Дипомль -- идеализированная система, служащая для приближённого описания распространения поля. Дипольное приближение основано на разложении потенциалов поля в ряд по степеням радиус-вектора и отбрасывании всех членов выше первого порядка. Полученные функции будут эффективно описывать поле в случае, если:

размеры излучающей поле системы малы по сравнению с рассматриваемыми расстояниями, так что отношение характерного размера системы к длине радиус-вектора является малой величиной и имеет смысл рассмотрение лишь первых членов разложения потенциалов в ряд;

член первого порядка в разложении не равен 0, в противном случае нужно использовать приближение более высокой мультипольности;

в уравнениях рассматриваются градиенты потенциалов не выше первого порядка.

Типичный пример диполя -- два заряда, равных по величине и противоположных по знаку, находящихся на расстоянии друг от друга, очень малом по сравнению с расстоянием до точки наблюдения. Поле такой системы полностью описывается дипольным приближением.

23. Проводники в электрическом поле

Проводнимки -- это тела, в которых имеются свободные носители заряда, то есть заряженные частицы, которые могут свободно перемещаться внутри этого тела. Среди наиболее распространённых твёрдых проводников известны металлы, полуметаллы, углерод (в виде угля и графита). Пример проводящих жидкостей при нормальных условиях -- ртуть, электролиты, при высоких температурах -- расплавы металлов. Пример проводящих газов -- ионизированный газ (плазма). Некоторые вещества при нормальных условиях являющиеся изоляторами при внешних воздействиях могут переходить в проводящее состояние, а именно проводимость полупроводников может сильно варьироваться при изменении температуры, освещённости, легировании и т. п.

Проводниками также называют части электрических цепей -- соединительные провода и шины.

Микроскопическое описание проводников связано с электронной теорией металлов. Наиболее простая модель описания проводимости известна с начала прошлого века и была развита Друде.

Проводники бывают первого и второго рода. К проводникам первого рода относят те проводники, в которых имеется электронная проводимость (посредством движения электронов). К проводникам второго рода относят проводники с ионной проводимостью (электролиты)

24. Диэлектрики в электрическом поле

Диэлектрик (изолятор) -- материал, плохо проводящий или совсем не проводящий электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см?3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле

К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы (непременно сухие).

Ряд диэлектриков проявляют интересные физические свойства. К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики.

Условно к проводникам относят материалы с удельным электрическим сопротивлением с < 10?5 Ом·м, а к диэлектрикам -- материалы, у которых с > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10?8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10?5--108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков -- возбуждённым.

Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.

Удельное сопротивление деионизированной воды (см. также бидистиллят) -- 10-20 МОм·см.

25. Электронная теория проводимости металлов. Конденсатор

Ещё задолго до открытия электронов было экспериментально показано, что прохождение тока в металлах не связано, в отличие от тока в жидких электролитах, с переносом вещества металла. Опыт состоял в том, что через контакт двух различных металлов, например золота и серебра, в течение времени, исчисляемого многими месяцами, пропускался постоянный электрический ток. После этого исследовался материал вблизи контактов. Было показано, что никакого переноса вещества через границу не наблюдается и вещество по различные стороны границы раздела имеет тот же состав, что и до пропускания тока. Эти опыты показали, что атомы и молекулы металлов не принимают участия в переносе электрического тока, но они не ответили на вопрос и природе носителей заряда в металлах. Прямым доказательством, что электрический ток в металлах обуславливается движением электронов, были опыты Толмена и Стюарта, проведённые в 1916 г. Идея этих опытов была высказана Мандельштамом и Папалекси в 1913 г.

Возьмём катушку, которая может вращаться вокруг своей оси. Концы катушки с помощью скользящих контактов замкнуты на гальванометр. Если находящуюся в быстром вращении катушку резко затормозить, то свободные электроны в проволоке продолжат двигаться по инерции, в результате чего гальванометр должен зарегистрировать импульс тока.

При достаточно плотной намотке и тонких проводах можно считать, что линейное ускорение катушки при торможении направлено вдоль проводов. При торможении катушки к каждому свободному электрону приложена сила инерции - , направленная противоположно ускорению (me - масса электрона). Под её действием электрон ведёт себя в металле так, как если бы на него действовало некоторое эффективное электрическое поле:

. Конденсамтор (от лат. condensare -- «уплотнять», «сгущать») -- двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Конденсатор в цепи постоянного тока может проводить ток в момент включения его в цепь (происходит заряд или перезаряд конденсатора), по окончании переходного процесса ток через конденсатор не течёт, так как его обкладки разделены диэлектриком. В цепи же переменного тока он проводит колебания переменного тока посредством циклической перезарядки конденсатора, замыкаясь так называемым током смещения.

25. Закон Ома. Работа и мощность тока

Закон Ома -- открыт в 1826 году, это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома.

Закон Ома гласит: Сила тока в однородном участке цепи прямо пропорциональна напряжению, приложенному к участку, и обратно пропорциональна электрическому сопротивлению этого участка.

При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Дt по цепи протекает заряд Дq = IДt. Электрическое поле на выделенном учестке совершает работу

ДA = (ц1 - ц2)Дq = Дц12IДt = UIДt,

где U = Дц12 - напряжение. Эту работу называют работой электрического тока.

Если обе части формулы

RI = U,

выражающей закон Ома для однородного участка цепи с сопротивлением R, умножить на IДt, то получится соотношение

RI2Дt = UIДt = ДA.

Это соотношение выражает закон сохранения энергии для однородного участка цепи.

Работа ДA электрического тока I, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло ДQ, выделяющееся на проводнике.

ДQ = ДA = RI2Дt.

Закон преобразования работы тока в тепло был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем и носит название закона Джоуля-Ленца.

Мощность электрического тока равна отношению работы тока ДA к интервалу времени Дt, за которое эта работа была совершена:

Работа электрического тока в СИ выражается в джоулях (Дж), мощность - в ваттах (Вт).

Рассмотрим теперь полную цепь постоянного тока, состоящую из источника с электродвижущей силой и внутренним сопротивлением r и внешнего однородного участка с сопротивлением R. Закон Ома для полной цепи записывается в виде

(R + r)I = .

Умножив обе части этой формулы на Дq = IДt, мы получим соотношение, выражающее закон сохранения энергии для полной цепи постоянного тока:

RI2Дt + rI2Дt = IДt = ДAст.

Первый член в левой части ДQ = RI2Дt - тепло, выделяющееся на внешнем участке цепи за время Дt, второй член ДQист = rI2Дt - тепло, выделяющееся внутри источника за то же время.

Выражение IДt равно работе сторонних сил ДAст, действующих внутри источника.

При протекании электрического тока по замкнутой цепи работа сторонних сил ДAст преобразуется в тепло, выделяющееся во внешней цепи (ДQ) и внутри источника (ДQист). ДQ + ДQист = ДAст = IДt

26. Электрическая цепь. Правила Кирхгофа

Электримческая цепь -- совокупность устройств, предназначенных для протекания электрического тока, электромагнитные процессы в которых могут быть описаны с помощью понятий ток и напряжение

Неразветвленные и разветвленные электрические цепи

Разветвленная цепь

Электрические цепи подразделяют на неразветвленные и разветвленные. На рисунке 1 представлена схема простейшей неразветвленной цепи. Во всех элементах ее течет один и тот же ток. Простейшая разветвленная цепь изображена на рисунке 2. В ней имеются три ветви и два узла. В каждой ветви течет свой ток. Ветвь можно определить как участок цепи, образованный последовательно соединенными элементами (через которые течет одинаковый ток) и заключенный между двумя узлами. В свою очередь узел есть точка цепи, в которой сходятся не менее трех ветвей. Если в месте пересечения двух линий на электрической схеме поставлена точка (рисунок 2), то в этом месте есть электрическое соединение двух линий, в противном случае его нет. Узел, в котором сходятся две ветви, одна из которых является продолжением другой, называют устранимым или вырожденным узлом

Линейные и нелинейные электрические цепи

Под нелинейными электрическими цепями понимают электрические цепи, содержащие элементы с нелинейными вольт-амперными, вебер-амперными или кулон-вольтными характеристиками. Если цепь содержит хотя бы один такой элемент и изображающаяся точка в процессе работы перемещается по существенно нелинейному участку характеристики этого элемента, то она принадлежит к рассматриваемому классу цепей.

Первый закон (ЗТК, Закон токов Кирхгофа) гласит, что алгебраическая сумма токов в любом узле любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком)

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Данный закон следует из закона сохранения заряда. Если цепь содержит p узлов, то она описывается p ? 1 уравнениями токов. Этот закон может применяться и для других физических явлений (к примеру, водяные трубы), где есть закон сохранения величины и поток этой величины.

Второй закон (ЗНК, Закон напряжений Кирхгофа) гласит, что алгебраическая сумма падений напряжений по любому замкнутому контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю

28. Полупроводники

Полупроводниким -- материалы, которые по своей удельной проводимости занимают промежуточное место между проводниками и диэлектриками и отличаются от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и различных видов излучения. Основным свойством этих материалов является увеличение электрической проводимости с ростом температуры[1].

Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например, алмаз можно отнести к широкозонным полупроводникам, а арсенид индия -- к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира -- полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий около 30 % земной коры.

В зависимости от того, отдаёт ли примесной атом электрон или захватывает его, примесные атомы называют донорными или акцепторными. Характер примеси может меняться в зависимости от того, какой атом кристаллической решётки она замещает, в какую кристаллографическую плоскость встраивается.

Проводимость полупроводников сильно зависит от температуры. Вблизи абсолютного нуля температуры полупроводники имеют свойства диэлектриков.

Полупроводники характеризуются как свойствами проводников, так и диэлектриков. Так как, образуя кристаллы, атомы полупроводников устанавливают ковалентные связи (то есть, один электрон в кристалле кремния, как и алмаза, связан двумя атомами), электронам необходим уровень внутренней энергии для высвобождения из атома (1,76Ч10?19 Дж против 11,2Ч10?19 Дж, чем и характеризуется отличие между полупроводниками и диэлектриками). Эта энергия появляется в них при повышении температуры (например, при комнатной температуре уровень энергии теплового движения атомов равняется 0,4Ч10?19 Дж), и отдельные атомы получают энергию для отрыва электрона от атома. С ростом температуры число свободных электронов и дырок увеличивается, поэтому в полупроводнике, не содержащем примесей, удельное сопротивление уменьшается. Условно принято считать полупроводниками элементы с энергией связи электронов меньшей чем 1,5--2 эВ. Электронно-дырочный механизм проводимости проявляется только у чистых (то есть без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

29. Электрический ток в газах

при обычных условиях все газы являются диэлектриками, то есть не проводят электрического тока. Этим свойством объясняется, например, широкое использование воздуха в качестве изолирующего вещества. Принцип действия выключателей и рубильников как раз и основан на том, что размыкая их металлические контакты, мы создаем между ними прослойку воздуха, не проводящую ток.

Однако при определенных условиях газы могут становиться проводниками. Например, пламя, внесенное в пространство между двумя металлическими дисками (см. рисунок), приводит к тому, что гальванометр отмечает появление тока. Отсюда следует вывод: пламя, то есть газ, нагретый до высокой температуры, является проводником электрического тока.

Нагревание - не единственный способ превращения газа в проводник. Вместо пламени можно использовать ультрафиолетовое или рентгеновское излучение, а также поток альфа-частиц или электронов. Опытами установлено, что действие любой из этих причин приводит к ионизации молекул газа. При этом от некоторых молекул отрывается один (или несколько) электронов, в результате чего молекула превращается в положительный ион. Под воздействием электрического поля, существующего между дисками, образовавшиеся ионы и электроны начинают двигаться, создавая между дисками электрический ток.

Прохождение тока через газы называют газовым разрядом. Только что мы рассмотрели пример так называемого несамостоятельного разряда. Он так называется потому, что для его поддержания требуется какой-либо ионизатор - пламя, излучение или поток заряженных частиц. Опыты показывают, что если ионизатор устранить, то ионы и электроны вскоре воссоединяются (говорят: рекомбинируют), вновь образуя электронейтральные молекулы. В результате газ перестает проводить ток, то есть становится диэлектриком.

30. Электрический ток в жидкостях

Происхождение электрического тока (движение электрических зарядов) через раствор существенно отличается от движения электрических зарядов по металлическому проводнику.

Различие, прежде всего в том, что зарядоносителями в растворах являются не электроны, а ионы, т.е. сами атомы или молекулы, потерявшие или захватившие один или несколько электронов.

Естественно, это движение, так или иначе, сопровождается изменением свойств самого вещества.

Рассмотрим электрическую цепь, элементом которой является сосуд с раствором поваренной соли и с вставленными в него электродами любой формы из пластины. При подключении к источнику питания в цепи появляется ток, представляющий собой в растворе движение тяжелых заряженных частиц - ионов. Появление ионов уже означает возможность химического разложения раствора на два основных элемента - Na и Cl. Натрий, потерявший электрон, представляет собой положительно заряженный ион, движущийся к электроду, который подключен к отрицательному полюсу источника питания, электрической цепи. Хлор, “узурпировавший” электрон, представляет собой отрицательный ион.

Отрицательные ионы хлора движутся к электроду, который подключен к положительному полюсу источника питания эл. цепи.

Образование положительных и отрицательных ионов происходит вследствие самопроизвольного распада молекулы поваренной соли в водном растворе (электролитическая диссоциация). Движение ионов обусловлено напряжением, поданным на электроды, опущенные в раствор. Достигнув электродов, ионы забирают или отдают электроны, образуя соответственно молекулы Cl и Na. Подобные явления наблюдаются в растворах многих других веществ. Молекулы этих веществ, подобно молекулам поваренной соли, состоят из противоположно заряженных ионов, на которые они и распадаются в растворах. Количество распавшихся молекул, точнее, число ионов, характеризует электрическое сопротивление раствора.

Ещё раз подчеркнём, что происхождение электрического тока по цепи, элементом которой является раствор, вызывает перемещение вещества этого элемента электрической цепи, и, следовательно, изменение его химический свойств, в то время, как при прохождении электрического тока по металлическому проводнику никаких изменений в проводнике не происходит.

Электролиз широко применяется в различных электрохимических производствах. Важнейшие из них: электролитическое получение металлов из водных растворов их солей и из их расплавленных солей; электролиз хлористых солей; электролитическое окисление и восстановление; получение водорода электролизом; гальваностегия; гальванопластика; электрополировка. Методом рафинирования получают чистый металл, очищенный от примесей. Гальваностегия - покрытие металлических предметов другим слоем металла. Гальванопластикой - получение металлических копий с рельефных изображений каких-либо поверхностей. Электрополировка - выравнивание металлических поверхностей.

31. Постоянный магнит. Магнитное поле

Постоянный магнит -- изделие различной формы из магнитотвёрдого материала с высокой остаточной магнитной индукцией, сохраняющее состояние намагниченности в течение длительного времени. Постоянные магниты применяются в качестве автономных (не потребляющих энергии) источников магнитного поля.

Магнимтное помле -- составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Кроме того, магнитное поле может создаваться током заряженных частиц, либо магнитными моментами электронов в атомах (постоянные магниты). С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозон-фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Основной характеристикой магнитного поля является его сила, определяемая вектором магнитной индукции (вектор индукции магнитного поля)[1]. В СИ магнитная индукция измеряется в теслах (Тл), в системе СГС в гауссах.

Магнитное поле -- это особый вид материи, посредством которой осуществляется взаимодействие между движущимися заряженными частицами или телами, обладающими магнитным моментом.

Можно также рассматривать магнитное поле, как релятивистскую составляющую электрического поля. Точнее, магнитные поля являются необходимым следствием существования электрических полей и специальной теории относительности. Вместе, магнитное и электрическое поля образуют электромагнитное поле, проявлениями которого являются свет и прочие электромагнитные волны

Магнитное поле формируется изменяющимся во времени электрическим полем либо собственными магнитными моментами частиц. Кроме того, магнитное поле может создаваться током заряженных частиц.

Антиферромагнетики -- магнитные моменты вещества направлены противоположно и равны по силе.

Диамагнетики -- вещества, намагничивающиеся против направления внешнего магнитного поля.

Парамагнетики -- вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля.

Ферромагнетики -- вещества, в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов

Ферримагнетики -- материалы, у которых магнитные моменты вещества направлены противоположно, но не равны по силе.

Магнитное поле проявляется в воздействии на магнитные моменты частиц и тел, на движущиеся заряженные частицы (или проводники с током). Сила, действующая на движущуюся в магнитном поле электрически заряженную частицу, называется силой Лоренца, которая всегда направлена перпендикулярно к вектору . Она пропорциональна заряду частицы , составляющей скорости , перпендикулярной направлению вектора магнитного поля , и величине индукции магнитного поля .

32. Магнитные вещества. Магнитная индукция

Магнимтная индумкция -- векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Показывает, с какой силой магнитное поле действует на заряд , движущийся со скоростью.

Более точно, -- это такой вектор, что сила Лоренца , действующая на заряд , движущийся со скоростью , равна

где б -- угол между векторами скорости и магнитной индукции.

Также магнитная индукция может быть определена как отношение максимального механического момента сил, действующих на рамку с током, помещенную в однородное поле, к произведению силы тока в рамке на её площадь.

Является основной характеристикой магнитного поля, аналогичной вектору напряжённости электрического поля.

В системе СГС магнитная индукция поля измеряется в гауссах (Гс), в системе СИ -- в теслах (Тл)

1 Тл = 104 Гс

Магнитометры, применяемые для измерения магнитной индукции, называют тесламетрами.

33. Движение заряженных частиц в электрическом поле. Приборы и установки

Движение заряженных частиц в электрическом поле широко используется в современных электронных приборах, в частности, в электронно-лучевых трубках с электростатической системой отклонения электронного пучка.

ЭЛЕКТРИЧЕСКИЙ ЗАРЯД есть величина, характеризующая способность объекта создавать электрическое поле и взаимодействовать с электрическим полем.

ТОЧЕЧНЫЙ ЗАРЯД это абстрактный объект (модель), имеющий вид материальной точки, несущей электрический заряд (заряженная МТ).

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ это то, что существует в области пространства, в которой на заряженный объект действует сила, называемая электрической.

ОСНОВНЫМИ СВОЙСТВАМИ заряда являются

· аддитивность (суммируемость);

· инвариантность (одинаковость во всех инерциальных системах отсчета);

· дискретность (наличие элементарного заряда, обозначаемого е, и кратность любого заряда этому элементарному: q = Ne, где N - любое целое положительное и отрицательное число);

· подчинение закону сохранения заряда (суммарный заряд электрически изолированной системы, через границы которой не могут проникать заряженные частицы, сохраняется);

· наличие положительных и отрицательных зарядов (заряд величина алгебраическая).

ЗАКОН КУЛОНА определяет силу взаимодействия двух точечных зарядов , где - единичный вектор, направленный от первого заряда q1 ко второму q2.

34. Движение заряженных частиц в магнитном поле. Приборы и установки

Особенности движения заряженных частиц в электрическом и магнитном полях широко используются в современных физико-технических установках и приборах. Далее кратко описаны принципы устройства и действия некоторых из этих приборов.

1. Электронный осциллограф. Основной частью электронного осциллографа* является электроннолучевая трубка, устроенная следующим образом. В узком конце вакуумного баллона находится цилиндрический катод 2, нагреваемый металлической спиралью У, через которую пропускается ток (рис. 238). Дно цилиндра 2 покрыто слоем металла, имеющего малую работу выхода электронов. Диафрагма 3 выделяет из эмиттируемых катодом электронов узкий электронный пучок (электронный луч). В электрическом поле, создаваемом между катодом 2 и цилиндрическим анодом 4, электроны

разгоняются до скоростей порядка 104 км/с. Подогреваемый катод, диафрагма и анод составляют электронную пушку.

Электронный луч проходит через два отклоняющих конденсатора 5 и б, пластины которых расположены во взаимно перпендикулярных плоскостях, и падает на экран 7, покрытый люминесцирующим веществом. В месте падения луча на экране появляется светящаяся точка О.

3. Электронный микроскоп. С помощью электрического и магнитного полей можно придавать траекториям заряженных частиц весьма разнообразные формы. Можно, в частности, создать поле такой конфигурации, что оно будет собирать (фокусировать) в одну точку параллельные электронные лучи или, наоборот, будет превращать параллельные лучи в расходящиеся. Электрические и магнитные поля, способные симметрично отклонять и фокусировать электронные лучи, называются электронными линзами (электростатическими, или магнитными, или электромагнитными -- в зависимости от того, какое именно поле воздействует на эти лучи).

В оптическом микроскопе увеличенное изображение объекта получается, как известно, благодаря соответствующему ходу световых лучей, создаваемому системой стеклянных линз

В электронном микроскопе создается соответствующий ход электронных лучей при помощи системы электронных линз*.

Электронный микроскоп состоит из герметично закрывающейся трубы (в которой поддерживается разрежение порядка 10""3 Па), электронной пушки, системы электронных линз и люминесцирующего экрана. Создаваемые пушкой электронные лучи проходят через исследуемый объект (помещенный на коллодиевой пленке толщиной около 0,01 мкм) и систему электронных линз и падают на экран. В результате на экране получается увеличенное изображение (тень) объекта. Так как более плотные места объекта задерживают электронные лучи сильнее, чем менее плотные, то на изображении выявляется структура объекта: темные области изображения соответствуют более плотным местам объекта. Изображение в электронном микроскопе получается настолько четким, что его можно сфотографировать.

Движение заряженных частиц в магнитном поле. На проводник с током в магнитном поле действует сила Ампера FА IBlsin(.Ток, в свою очередь, это направленное движение заряженных частиц. Сила тока равна I=qnvS, где q - заряд частицы, n-концентрация движущихся заряженных частиц, v-средняя скорость их направленного движения, S-площадь поперечного сечения проводника. Подставив I в выражение для FА, получим FА= qnvSBlsin(, где nsl=N - общее число частиц, создающих ток. Тогда сила, действующая на отдельный движущийся заряд - сила Лоренца, равна Fл=qvBsin(. где ( - угол между векторами скорости и магнитной индукции. Направление силы Лоренца определяется для положительно заряженной частицы по правилу левой руки.

Магнитный поток. Магнитным потоком Ф через некоторую поверхность S называется скалярная величина, равная произведению модуля вектора магнитной индукции на площадь этой поверхности и косинус угла между нормалью n к ней и направлением вектора магнитной индукции B:Ф=|B|Scos(. Если магнитное поле неоднородно, то поверхность S разбивается на элементарные площадки (S в пределах каждой из которых поле можно считать однородным. Тогда полный поток через эту поверхность равен сумме потоков вектора магнитной индукции через элементарные площадки. В СИ единицей магнитного потока является 1 вебер (Вб) - магнитный поток через поверхность 1 м2, расположенную перпендикулярно направлению однородного магнитного поля, индукция которого равна 1 Тл: 1Вб=1В*с

35. Электромагнитная индукция. Обобщенный закон Ома

Электромагнитная индукция -- явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем в 1831 году. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина э.д.с. не зависит от того, что является причиной изменения потока -- изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой э.д.с. , называется индукционным током.

Знак «минус» в формуле отражает правило Ленца, названное так по имени российского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Обсудим сначала физический смысл закона Ома, относящегося к участку цепи, содержащему только идеальный резистор. Закон Ома утверждает, что для поддержания тока на участке к нему надо приложить постоянное напряжение, причем сила тока и напряжение пропорциональны друг другу: U = IR. Но это означает, что для поддержания направленного движения свободных зарядов на них должна действовать постоянная сила со стороны электрического поля . В случае участка цепи без источников это поле является электростатическим: , оно создается самими зарядами проводника. (В процессе установления тока заряды вдоль всей цепи за очень короткое время перераспределяются таким образом, чтобы создать нужное поле.) Переформулируем закон Ома следующим образом: если ток на участке цепи поддерживается полем , то сила тока пропорциональна работе этого поля по переносу единичного заряда с одного конца участка на другой. Напомним, что в случае электростатического поля эта работа равна разности потенциалов.

Обозначим один конец участка цифрой 1, а другой цифрой 2 и запишем закон Ома в виде

(1)

где U12 = ц1 - ц2, I12 = +I, если ток течет от 1 к 2, и I12 = -I для тока, текущего навстречу движению, т.е. от 2 к 1. Такая форма записи, позволяющая передвигаться по участку цепи в любом направлении, очень удобна.

Теперь предположим, что на этом же участке цепи действуют сторонние силы. Вспомним, что численной характеристикой сторонних сил является ЭДС (электродвижущая сила), которая определяется как работа сторонних сил по переносу единичного заряда с одного конца участка цепи на другой. Определим величину е12 как работу сторонних сил по переносу единичного заряда от 1 к 2, т.е. е12 = +е, если сторонние силы направлены по движению (от 1 к 2), и е12 = -е в противоположном случае

36. Электромагнитные волны. Радиосвязь

Электромагнитные волны -- распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей).

Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников -- движущихся зарядов, затухая наиболее медленно с расстоянием.

К электромагнитному излучению относятся радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и жесткое (гамма-)излучение (см. ниже, см. также рисунок).

Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

Электросвязь -- передача информации с помощью электрических сигналов по проводам, волоконно-оптическому кабелю или радиоволн.

Принцип электросвязи основан на преобразовании сигналов сообщения (звук, оптическая информация) в первичные электрические сигналы. В свою очередь первичные электрические сигналы при помощи передатчика преобразуются во вторичные электрические сигналы, характеристики которых хорошо согласуются с характеристиками линии связи. Далее посредством линии связи вторичные сигналы поступают на вход приёмника. В приемном устройстве вторичные сигналы обратно преобразуются в сигналы сообщения в виде звука или оптической информации.

37. Природа и свойства света. Линзы и микроскоп

Свет -- электромагнитное излучение, испускаемое нагретым или находящимся в возбуждённом состоянии веществом, воспринимаемое человеческим глазом. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра.

Одной из характеристик света является его цвет, который определяется длиной волны для монохроматического излучения, или суммарным спектром сложного излучения.

Свет может распространяться там, где звук уже не существует (если смотреть через прозрачный колпак, из-под которого выкачали воздух, то видно, как бьётся молоточек колокольчика под колпаком, а звука не слышно). Значит, световые колебания распространяются в особой среде, эту среду Гюйгенс назвал эфиром (современная наука отрицает существование эфира).

Скорость света в вакууме с = 299 792 458 м/с

Физические величины, связанные со светом: яркость, освещённость, световой поток, световая отдача.

Видимый свет -- электромагнитное излучение с длинами волн ? 380--760 нм (от фиолетового до красного).

Линза (нем. Linse, от лат. lens -- чечевица) -- деталь из оптически прозрачного однородного материала, ограниченная двумя полированными преломляющими поверхностями вращения, например, сферическими или плоской и сферической. В настоящее время всё чаще применяются и «асферические линзы», форма поверхности которых отличается от сферы. В качестве материала линз обычно используются оптические материалы, такие как стекло, оптическое стекло, оптически прозрачные пластмассы и другие материалы.

В зависимости от форм различают собирающие (положительные) и рассеивающие (отрицательные) линзы. К группе собирательных линз обычно относят линзы, у которых середина толще их краёв, а к группе рассеивающих -- линзы, края которых толще середины. Следует отметить, что это верно только если показатель преломления у материала линзы больше, чем у окружающей среды. Если показатель преломления линзы меньше, ситуация будет обратной. Например пузырёк воздуха в воде -- двояковыпуклая рассеивающая линза.

Линзы характеризуются, как правило, своей оптической силой (измеряется в диоптриях), или фокусным расстоянием.

Для построения оптических приборов с исправленной оптической аберрацией (прежде всего -- хроматической, обусловленной дисперсией света, -- ахроматы и апохроматы) важны и иные свойства линз/их материалов, например, коэффициент преломления, коэффициент дисперсии, коэффициент пропускания материала в выбранном оптическом диапазоне.

Иногда линзы/линзовые оптические системы (рефракторы) специально рассчитываются на использование в средах с относительно высоким коэффициентом преломления

Микроскомп (греч. мйксьт -- маленький и укпрЭщ -- смотрю) -- прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых невооружённым глазом. Представляет собой совокупность линз.

38. Волновая оптика. Интерференция, поляризация, дифракция

Волновая омптика -- раздел оптики, который описывает распространение света с учётом его волновой природы. Явления волновой оптики -- интерференция, дифракция, поляризация и т. п.

Интерференция волн -- взаимное усиление или ослабление амплитуды двух или нескольких когерентных волн, одновременно распространяющихся в пространстве.[1] Сопровождается чередованием максимумов и минимумов интенсивности в пространстве. Результат интерференции (интерференционная картина) зависит от разности фаз накладывающихся волн.

Интерферировать могут все волны, однако устойчивая интерференционная картина будет наблюдаться только в том случае, если волны имеют одинаковую частоту и колебания в них не ортогональны. Интерференция может быть стационарной и нестационарной. Стационарную интерференционную картину могут давать только полностью когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну, фронтом которой будет сфера.

Поляризамция волн -- явление нарушения симметрии распределения возмущений в поперечной волне (например, напряжённостей электрического и магнитного полей в электромагнитных волнах) относительно направления её распространения. В продольной волне поляризация возникнуть не может, так как возмущения в этом типе волн всегда совпадают с направлением распространения.[1]

Поперечная волна характеризуется двумя направлениями: волновым вектором и вектором амплитуды, всегда перпендикулярным к волновому вектору. Так что в трёхмерном пространстве имеется ещё одна степень свободы -- вращение вокруг волнового вектора.

Причиной возникновения поляризации волн может быть:

несимметричная генерация волн в источнике возмущения;

анизотропность среды распространения волн;

преломление и отражение на границе двух сред.

Основными являются два вида поляризации:

линейная -- колебания возмущения происходит в какой-то одной плоскости. В таком случае говорят о «плоско-поляризованной волне»;

круговая -- конец вектора амплитуды описывает окружность в плоскости колебаний. В зависимости от направления вращения вектора может быть правой или левой.

Дифрамкция вомлн (лат. diffractus -- буквально разломанный, переломанный) -- явление, которое можно рассматривать как отклонение от законов геометрической оптики при распространении волн. Первоначально понятие дифракции относилось только к огибанию волнами препятствий, но в современном, более широком толковании, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн в неоднородных средах, а также при распространении ограниченных в пространстве волн. Дифракция тесно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как частный случай интерференции (интерференция вторичных волн).

Дифракция волн наблюдается независимо от их природы и может проявляться:

в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях -- как расширение угла распространения волновых пучков или их отклонение в определенном направлении;

в разложении волн по их частотному спектру;

в преобразовании поляризации волн;

в изменении фазовой структуры волн.

Дифракционные эффекты зависят от соотношения между длиной волны и характерным размером неоднородностей среды либо неоднородностей структуры самой волны. Наиболее сильно они проявляются при размерах неоднородностей сравнимых с длиной волны. При размерах неоднородностей существенно превышающих длину волны (на 3-4 порядка и более), явлением дифракции, как правило, можно пренебречь. В последнем случае распространение волн с высокой степенью точности описывается законами геометрической оптики.

39. Квантовая оптика. Люминесценция и фотоэффект

Квамнтовой омптикой называют раздел оптики, занимающийся изучением явлений, в которых проявляются квантовые свойства света. К таким явлениям относятся: тепловое излучение, фотоэффект, эффект Комптона, эффект Рамана, фотохимические процессы, вынужденное излучение (и, соответственно, физика лазеров) и др.

Квантовая оптика является более общей теорией, чем классическая оптика. Основная проблема, затрагиваемая квантовой оптикой -- описание взаимодействия света с веществом с учётом квантовой природы объектов, а также описания распространения света в специфических условиях. Для того чтобы точно решить эти задачи требуется описывать и вещество (среду распространения, включая вакуум) и свет исключительно с квантовых позиций, однако часто прибегают к упрощениям: одну из компонент системы (свет или вещество) описывают как классический объект. Например часто при расчётах связанных с лазерными средами квантуют только состояние активной среды, а резонатор считают классическим, однако если длина резонатора будет порядка длины волны, то его уже нельзя считать классическим, и поведение атома в возбуждённом состоянии помещённого в такой резонатор будет гораздо более сложным.

Люминесценция -- нетепловое свечение вещества, происходящее после поглощения им энергии возбуждения.

Люминесцентное свечение тел принято делить на следующие виды:

фотолюминесценция -- свечение под действием света (видимого и УФ-диапазона). Она, в свою очередь, делится на флуоресценцию (время жизни 10?9-10?6 с);

фосфоресценцию (10?3-10 с);

хемилюминесценция -- свечение, использующее энергию химических реакций;

катодолюминесценция -- вызвана облучением быстрыми электронами (катодными лучами);

сонолюминесценция -- люминесценция, вызванная звуком высокой частоты;

рентгенолюминесценция -- свечение под действием рентгеновских лучей.

радиолюминесценция -- при возбуждении вещества г-излучением;

триболюминесценция -- люминесценция, возникающая при растирании, раздавливании или раскалывании люминофоров. Триболюминесценция вызывается электрическим разрядами, происходящими между образовавшимися наэлектризованными частями -- свет разряда вызывает фотолюминесценцию люминофора.

электролюминесценция- возникает при пропускании электрического тока через определенные типы люминофоров.

Фотоэффемкт -- это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта:

Формулировка 1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени, прямо пропорционально интенсивности света.

Согласно 2-ому закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастёт с частотой света и не зависит от его интенсивности.

3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света н0 (или максимальная длина волны л0), при которой ещё возможен фотоэффект, и если н<н0, то фотоэффект уже не происходит.

Теоретическое объяснение этих законов было дано в 1905 году Эйнштейном. Согласно ему, электромагнитное излучение представляет собой поток отдельных квантов (фотонов) с энергией hн каждый, где h -- постоянная Планка. При фотоэффекте часть падающего электромагнитного излучения от поверхности металла отражается, а часть проникает внутрь поверхностного слоя металла и там поглощается. Поглотив фотон, электрон получает от него энергию и, совершая работу выхода, покидает металл: hн = Aout + We, где We -- максимальная кинетическая энергия, которую может иметь электрон при вылете из металла.

40. Радиоактивность. Законы радиоактивного распада

РАДИОАКТИВНОСТЬ (от лат. radio - излучаю и activus-действенный), самопроизвольное превращение нестабильных атомных ядер в др. ядра, сопровождающееся испусканием частиц, а также жесткого электромагн. излучения (рентгеновского или g-излучения). Ядра нового нуклида, к-рые образуются в результате радиоактивного распада исходного нуклида (радионуклида), м. б. стабильными или радиоактивными.

Типы радиоактивности. Известны след. типы радиоактивности: 1) a-рас-пад, 2) b-распад, 3) спонтанное деление ядер, 4) протонная, двупротонная и двунейтронная радиоактивность, 5) двустадийная радиоактивность a-Распад сопровождается испусканием ядер (a-частиц). При этом заряд Z исходного ядра уменьшается на 2 единицы (в единицах элементарного заряда), а массовое число А -на 4 единицы (в атомных единицах массы). Если Z' и А'-заряд и массовое число возникающего ядра, то для a-распада кратко можно сформулировать правило сдвига: Z' = Z -- 2; А' = А -- 4. a-Распад наиб. характерен для тяжелых ядер (Z82). Существуют, однако, ок. 20 a-радио-нуклидов РЗЭ

1.При a-распаде ядер, находящихся в возбужденном состоянии, энергия испускаемых a-частиц может значительно превышать указанные значения (т. наз. длиннопробежные частицы). В редких случаях при a-распаде возникают a-частицы строго определенной энергии и не наблюдается сопутствующего электромагн. излучения (соответствующие радионуклиды наз. "чистыми" a-излучателями). Чаще всего при a-распаде испускается неск. групп a-частиц, каждая из к-рых обладает определенной энергией, т. е. энергетич. спектры a-распада дискретны. Испускание ядром a-частиц разл. энергий свидетельствует о наличии в этом ядре дискретных энергетич. Уровней

b-Распад. Под термином "b-распад" объединяют радиоактивные превращения, сопровождающиеся испусканием из атомных ядер электронов е-, к-рые возникают при превращении нейтрона в протон (b--распад); испусканием позитронов е+, возникающих в ядрах при превращении протона в нейтрон (b+-распад); захватом орбитального электрона, чаще всего с K-оболочки ядра (К-захват), реже с L-оболочки (L-захват).

b--Распад наблюдается как у легких, так и у тяжелых ядер. Как правило, b--распад характерен для ядер, имеющих избыточное (по сравнению со стабильными ядрами) число нейтронов.

Спонтанное деление наблюдается только у ядер тяжелых элементов с Z90. При этом типе радиоактивности образуются 2 новых ядра с приблизительно равными массами. Спонтанное деление часто сопровождается испусканием из каждого исходного ядра 2-3 нейтронов

Законы радиоактивности имеют статистич. характер, для отдельного ядра невозможно предсказать момент его распада. Поэтому соотношения, описывающие радиоактивность, выполняются не строго. Скорость распада за равные промежутки времени при постоянной средней скорости испытывает флуктуации. Среднюю квадратичную флуктуацию а (среднее квадратичное отклонение) можно найти по ф-ле: где среднее число актов радиоактивного превращения, зафиксированное за все время регистрации, а средняя квадратичная флуктуация (среднее квадратичное отклонение) s1 числа актов радиоактивного распада за единицу времени = = где t - продолжительность измерения) равна: s1 = -- С учетом флуктуации в случае практически всех типов радиоактивности скорость распада ядер при варьировании внеш. условий (т-ры, давления и т. д.) в любых возможных пределах не изменяется. В случае Э. 3. значение Т1/2 в небольшой мере влияет хим. форма, степень окисления элемента и др. факторы.

Размещено на Allbest.ru


Подобные документы

  • Развитие физики. Материя и движение. Отражение объективной реальности в физических теориях. Цель физики - содействовать покорению природы человеком и в связи с этим раскрывать истинное строение материи и законы её движения.

    реферат [34,2 K], добавлен 26.04.2007

  • Понятие механического движения. Прямолинейное равномерное и неравномерное движение. Законы криволинейного движения. Основы классической динамики, законы Ньютона. Силы в природе и движения тел. Пространство и время, специальная теория относительности.

    контрольная работа [29,3 K], добавлен 04.08.2011

  • Предмет и задачи механики – раздела физики, изучающего простейшую форму движения материи. Механическое движение - изменение с течением времени положения тела в пространстве относительно других тел. Основные законы классической механики, открытые Ньютоном.

    презентация [303,7 K], добавлен 08.04.2012

  • Сущность физики как науки о формах движения материи и их взаимных превращениях. Теснейшая связь физики с другими отраслями естествознания, ее методы исследований. Основные величины, используемые в механике, молекулярной физике, термодинамике и оптике.

    лекция [339,3 K], добавлен 28.06.2013

  • Движение материальной точки в неинерциальной системе координат. Относительный покой точки. Маятник с двумя потенциальными ямами. Перевернутый вибрирующий маятник. Уклонение линии отвеса от направления радиуса Земли. Отклонение падающих тел к Востоку.

    презентация [462,5 K], добавлен 28.09.2013

  • Элементарная струйка и поток жидкости. Уравнение неразрывности движения жидкости. Примеры применения уравнения Бернулли, двигатель Флетнера (турбопарус). Критическое число Рейнольдса и формула Дарси-Вейсбаха. Зависимость потерь по длине от расхода.

    презентация [392,0 K], добавлен 29.01.2014

  • Законы механики и молекулярной физики, примеры их практического использования. Сущность законов Ньютона. Основные законы сохранения. Молекулярно-кинетическая теория. Основы термодинамики, агрегатные состояния вещества. Фазовые равновесия и превращения.

    курс лекций [1,0 M], добавлен 13.10.2011

  • Примеры взаимодействия тел с помощью опытов. Первый закон Ньютона, инерциальные системы отсчета. Понятие силы и физического поля. Масса материальной точки, импульс и центр масс системы. Второй и третий законы Ньютона, их применение. Движение центра масс.

    реферат [171,4 K], добавлен 10.12.2010

  • Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

    презентация [220,4 K], добавлен 28.09.2013

  • Поиск эффективных методов преподавания теории вращательного движения в профильных классах с углубленным изучением физики. Изучение движения материальной точки по окружности. Понятие динамики вращательного движения твердого тела вокруг неподвижной оси.

    курсовая работа [1,7 M], добавлен 04.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.