Machine learning in the task of self-calibration of moving elements of robotic systems using the example of controlling stepper motors

Improving the accuracy and efficiency of the robotic system. Using machine learning to self-calibrate moving parts. Development of an algorithm for controlling the rotation angle of a stepper motor. Programming the installation control microcontroller.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык английский
Дата добавления 19.03.2024
Размер файла 582,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

National Aviation University

Machine learning in the task of self-calibration of moving elements of robotic systems using the example of controlling stepper motors

Kemenyash Yuriy Mykhailovych Assistant Professor

Faculty of Air Navigation, Electronics and Telecommunications

Khotsianivskyi Volodymyr Petrovych Postgraduate student

Faculty of Air Navigation, Electronics and Telecommunications

Kuleshov Danylo Oleksandrovich Student Aerospace Faculty

Ukraine

Аннотация

Машинное обучение в задаче самокалибровки подвижных элементов робототехнических систем на примере управления шаговыми двигателями

Кеменяш Юрий Михайлович, доцент

Факультет аэронавигации, электроники и телекоммуникаций

Хоцианивский Владимир Петрович, аспирант

Факультет аэронавигации, электроники и телекоммуникаций

Кулешов Даниил Александрович Студент аэрокосмического факультета

Национальный авиационный университет. Украина

В статье рассматривается использование машинного обучения для самокалибровки движущихся элементов робототехнических систем, в частности для управления двумя шаговыми двигателями, поскольку они популярны в робототехнике благодаря своей точности и контролю за углом поворота. Описан алгоритм самокалибровки, который использует машинное обучение для повышения точности перемещения шаговых двигателей. Представлен пример, в котором сравнивалась точность перемещения шаговых двигателей, которые были настроены с помощью самокалибровки на основе машинного обучения. Предлагаемый подход демонстрирует, что использование машинного обучения для самокалибровки движущихся элементов роботизированных систем, в частности шаговых двигателей, может повысить их точность и помочь обеспечить более эффективную работу роботизированной системы.

Ключевые слова. Машинное обучение; микроконтроллеры; робототехнические системы; шаговые двигатели; nema; самокалибровка;

Summary

The paper discusses the use of machine learning for self-calibration of moving elements of robotic systems, particularly for controlling two stepper motors, as they are popular in robotics due to their accuracy and control over the angle of rotation. An algorithm for self-calibration is described, which uses machine learning to improve the accuracy of movement of stepper motors. An example is presented where the accuracy of movement of stepper motors, which were tuned using self-calibration based on machine learning, was compared. The proposed approach demonstrates that using machine learning for self-calibration of moving elements of robotic systems, particularly stepper motors, can improve their accuracy and help ensure more efficient operation of the robotic system.

Key words. Machine learning; microcontrollers; robotic systems; stepper motors; nema; selfcalibration;

Introduction

Calibrating moving elements of robots is one of the important tasks in robotics, which involves tuning the parameters of the robot's moving elements to achieve maximum accuracy and efficiency [1 ]. Calibrating the moving elements of robots is a crucial stage in their development and operation, as untimely or improper calibration can lead to malfunctions, decreased accuracy and speed of movement, as well as increased risk of emergencies occurring[3]. However, traditional methods of calibrating robotic actuators, such as using sensors or manually programming motion parameters, can be difficult to use.

As the use of machine learning methods becomes increasingly popular in robotics, it is advisable to use machine learning to solve this task, since it is one of the key technologies that allows robots and automated systems to interact with the environment and perform complex functions with maximum accuracy and efficiency. For example, deep learning methods can be used for automatic determination of optimal robot motion parameters based on data collected during its operation, as well as for predicting possible deviations in its operation. As a result, this will allow automating and simplifying the process of calibrating the moving elements of robots, ensuring maximum accuracy and speed of operation[4].

Therefore, the subject of research is the application of machine learning methods that will allow for the effective solution of tasks for calibrating the moving elements of robotic systems.

Problem statement

Traditionally, calibration is done manually by experts, which requires significant effort and time. However, with the development of machine learning technologies, opportunities have emerged to automate this process and reduce the costs associated with it [5].

Applying machine learning methods for calibrating robot's moving elements has several advantages. They can work with large volumes of data, which allows for more accurate results and reduces the number of errors. In addition, the use of machine learning methods can allow robots to adapt to changes in the environment and ensure maximum efficiency.

One of the possible machine learning methods for calibrating the moving elements of robots is Q-Learning. This method is one type of reinforcement learning, where a robot interacts with the environment and learns to make decisions based on the rewards received. In the context of calibrating robotic actuators, Q-Learning can be used to build a model that determines the optimal parameters of the robot's motion based on data collected during its operation. To apply Q-Learning, a model needs to be created that tracks the state of the robot and its actions, as well as determines rewards for each action (see Figure 1).

Fig.1. Reinforcement learning, agent and environment

In this case, actions involve changing the parameters of the robot's motion, while rewards reflect the accuracy of its movement. Optimal motion parameters based on the data it receives during its operation. This can be done by iteratively choosing actions and updating the model based on the rewards received. At the beginning of the training process, the model can be initialized with random values for the robot's movement parameters. The robot will move with these parameters and receive rewards for its work. Next, based on the received data, the model will be updated and select new motion parameters. The training cycle will continue until optimal motion parameters are reached, maximizing the rewards for the robot's work.

One of the advantages of Q-Learning is that it can teach a robot to adapt to changes in the environment, as it uses rewards obtained for its performance under different conditions.

This allows the robot to continue working effectively even when the environment parameters change.

Fuzzy Q-Learning algorithm:

- Observation of state x

- For each activated rule, one action is selected according to the usage strategy.

- A calculation is in progress a(x):

- The corresponding value of Q(x, a) is being calculated

Where q[x,i] is the corresponding q-value of the fired rule i for choosing action i according to the algorithm. Applying a(x) and observing the new rule x'.

- Calculation of the reward

- Updating the values of q accordingly to:

Overall, the use of machine learning methods for calibrating the movements of robots is a promising direction in the development of robotics. Using Q-Learning can help ensure maximum accuracy and efficiency of robots in various fields of activity.

Problem solution

The object of the study is a vertical plotter (see Figure 2), which consists of two Nema17 stepper motors, an external camera, and a user interface developed in Python programming language.

Fig. 2. Schematic construction of the research stand

The stepper motors are responsible for moving the moving elements of the plotter, while the external camera is used to observe the working process and collect data for further analysis. The user interface provides the ability to interact with the plotter and control its operation. To control the operation of the system, an algorithm for searching the moving element object is used, which consists of the following stages:

1. Separation of the moving element image from the background. This stage typically uses background subtraction algorithms or pattern matching to detect the object in the image.

2. Determining the color of the moving object. This stage may use different color models such as RGB, HSV, or HSL to determine the color characteristics of the moving object.

3. Determining the coordinates of the moving object on the image and transmitting this data to the learning system. This stage involves determining the position of the moving object in the image and transmitting this data to the learning system for further analysis and processing.

After determining the coordinates of the moving element on the image and passing this data to the learning system, the algorithm uses Q-Learning to determine the necessary control signals to move the moving element to the desired position. machine learning microcontroller stepper motor

During the operation of the system, the motors provide movement in four possible directions: clockwise and counterclockwise for each of the motors. The robot receives a reward or punishment depending on the correctness of the direction of movement towards the goal. Direction towards the goal provides a positive reward, while direction away from the goal provides a negative reward. In addition, a positive reward is given if the robot reaches the boundaries of the working area and places the control object in the goal, while a negative reward is given if the robot does not reach the goal or does not place the control object in the goal (see Fig. 3).

Fig. 3. Visualization of the system operation

Conclusion

So, the method presented in the text has several advantages. One of the main advantages is that the motors can be placed in the robot in any way. Additionally, thanks to the self-tuning algorithm, the system can quickly understand where the boundaries of its working area are, which allows for simpler and more direct control of the robot.

In this way, the application of this technology can improve the efficiency and accuracy of the robot, as well as make it more convenient to use.

References

[1] Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. International Journal of Robotics Research, 32(11), 1238-1274.

[2] Sadati, N., Fathabadi, A., & Elahi, M. (2020). Deep reinforcement learning for robotic systems: A review. Robotics and Autonomous Systems, 124, 103333.

[3] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.

[4] Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

[5] Gu, S., Holly, E., Lillicrap, T., & Levine, S. (2017). Deep reinforcement learning for robotic manipulation with asynchronous off-policy updates. Proceedings of the IEEE international conference on robotics and automation, 3389-3396.

Размещено на Allbest.ru


Подобные документы

  • Initial data for the term paper performance. Order of carrying out calculations. Analyze uncompensated system. Synthesize the real PD-compensator ( ) which would guarantee desired phase margin at gain crossover frequency . Analyze compensated system.

    курсовая работа [658,7 K], добавлен 20.08.2012

  • Analyses o the current situation on the project and the development of their technical realization. Brief description of the existing zonal area network. Basic requirements for communication lines. Calculation of the required number of channels.

    дипломная работа [771,0 K], добавлен 20.09.2016

  • Основные понятия IP телефонии, строение сетей IP телефонии. Структура сети АГУ. Решения Cisco Systems для IP-телефонии. Маршрутизаторы Cisco Systems. Коммутатор серии Catalyst 2950. IP телефон. Настройка VPN сети. Способы и средства защиты информации.

    дипломная работа [1,1 M], добавлен 10.09.2008

  • История образования и раскол в Microsoft, обзор GNU/Linux-подобных систем Fedora, Slackware. Обзор BSD-подобных систем OpenBSD, Frenzy. Unix-подобные операционные системы Extended File System ext. XFS и Unix File System, ядро linux-kernelи Emacs.

    реферат [135,9 K], добавлен 07.12.2010

  • Разработка программы, реализующей таймер прямого хода на базе микроконтроллера AT90S8515. Приложение и среда программирования Algorithm Builder, ее преимущества. Принципиальная схема и назначение переменных. Описание основной программы и подпрограмм.

    курсовая работа [1,2 M], добавлен 19.03.2012

  • Найдоцільніший тип мікропроцесорного пристрою для керування обладнанням - однокристальний мікроконтролер (ОМК). Розробка принципової схеми пристрою контролю температури процесу. Складання програми мікроконтролера та її симуляція в Algorithm Builder.

    реферат [2,1 M], добавлен 11.08.2012

  • История развития IP-телефонии. Принцип действия. Качество IP-телефонии. Интернет-телефония - частный случай IP-телефонии. Система для звонков по телефону и посылки факсов средствами IP. Стандарт Media Gateway Control. Voice Profile Internet Mail.

    реферат [66,9 K], добавлен 10.04.2007

  • Интеллектуальная система управления приточно-вытяжными установками IEVENT. Автоматизированная система управления вентиляцией и кондиционированием. Функциональная и принципиальные электрические схемы. Расчет затрат на оборудование и разработку системы.

    дипломная работа [5,7 M], добавлен 10.08.2014

  • Идентификация параметров электромеханической системы. Моделирование нелинейных объектов. Оптимизация параметров пид-регуляторов для объектов управления с нелинейностями с применением пакета прикладных программ Nonlinear Control Design (NCD) Blockset.

    лабораторная работа [474,0 K], добавлен 25.05.2010

  • Характеристика существующей сети города Павлодар. Расчет нагрузки от абонентов сети Metro Ethernet, логическая схема включения компонентов решения Cisco Systems. Сопряжение шлюзов выбора услуг с городскими сетями передачи данных, подключение клиентов.

    дипломная работа [6,8 M], добавлен 05.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.