Проект графического контроллера LCD-монитора

Понятие растровой графики, устройства вывода изображения. Разработка графического контроллера жидкокристаллического LCD-монитора. Анализ возможных опасных и вредных производственных факторов. Расчет показателей экономической эффективности проекта.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 26.12.2010
Размер файла 3,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

Введение

1. Анализ растровой графики

1.1 Достоинства растровой графики

1.2 Недостатки растровой графики

1.3 Цвет и цветовые модели

2. Анализ устройств вывода изображений

2.1 Жидкокристаллические мониторы (LCD Monitors)

2.2 Плазменные мониторы

2.3 Дисплей с электростатической (автоэлектронной) эмиссией

2.4 Светоизлучающий пластик

2.5 Электролюминисцентные мониторы

2.6 Вакуумные флуоресцентные мониторы

2.7 Электронная бумага

2.8 Перспективные разработки

3. Разработка графического контроллера жидкокристаллического экрана

3.1 Постановка задачи. Описание оборудования и программных средств

3.2 Детальное описание требований к разработке

3.3 Разработка контроллера в САПР Quartus II 8.1

4. Охрана труда

4.1 Анализ возможных опасных и вредных производственных факторов

4.1.1 Воздух рабочей зоны

4.1.2 Микроклиматические параметры

4.1.3 Шум

4.1.4 Освещение

4.1.5 Электромагнитное, ионизирующее излучение

4.1.6 Электробезопасность

4.1.7 Пожарная безопасность

4.2 Разработка мероприятий, направленных на устранение или снижение

вредного влияния выявленных факторов

4.2.1 Воздух рабочей зоны

4.2.2 Микроклиматические параметра

4.2.3 Шум

4.2.4 Освещение

4.2.5 Электромагнитное, ионизирующее излучение

4.2.6 Электробезопасность

4.2.7 Пожарная безопасность

4.3 Расчет занулення

5. Расчет экономической части проекта

5.1 Технико-экономическая характеристика предлагаемого проекта и выбранного аналога

5.2 Организационное обеспечение проекта.

5.3 Расчет показателей экономической эффективности проекта

5.3.1 Общая схема расчетов

5.3.2 Расчет текущих затрат

5.3.3 Расчет прочих коммерческих расходов

Вывод

Список литературы

Приложение А. Листинг описания блока counter на языке проектирования VHDL

Приложение Б. Листинг описания блока counter_2 на языке проектирования VHDL

АННОТАЦИЯ

Сейчас развитие видеоподсистемы идет очень быстрыми темпами, и зачастую видеоадаптеры диктуют моду мониторам. Однако когда вывод на монитор пришел на смену выводу на телетайп, и сложность изображения увеличилась, целесообразнее стало подключить компьютер к растровым мониторам. По этому пути развития и пошли дальше мониторы. Изображение выводимое на современных мониторах - растровое, поэтому возникла необходимость в промежуточных блоках для подготовки графической информации к отображению. Для построения картинки теперь требовались специальные устройства, ориентированные на работу с растровыми мониторами, которые могли бы хранить в себе видеоинформацию, обрабатывать ее и переводить в аналоговую форму для отображения на дисплее

Данная работа посвящена разработке графического контролера LCD монитора небольших размеров. Такие мониторы применяются различных областях жизнедеятельности человека начиная от бытовой техники и заканчивая специализированными устройствами. При разработке графического контролера будут использоваться два стенда фирмы Altera: DE2-70, TRDB_LTM и система автоматизированного проектирования (САПР) Quartus II 8.1.

Проблемы рассмотрения данной тематики является очень актуальной задачей для устройств вывода изображения.

АНОТАЦІЯ

Зараз розвиток відеопідсистеми йде дуже швидкими темпами, і часто відеоадаптери диктують моду моніторів. Однак коли висновок на монітор прийшов на зміну висновку на телетайп, і складність зображення збільшилася, доцільніше стало підключити комп'ютер до растрових моніторів. Цим шляхом розвитку і пішли далі монітори. Зображення виводиться на сучасних моніторах - растрове, тому виникла необхідність в проміжних блоках для підготування графічної інформації до відображень. Для побудови картинки тепер були потрібні спеціальні пристроi, орієнтовані на роботу з світовими моніторами, які могли б зберігати в собі відеоінформацію, звертаючись її і переводити в аналогову форму для відображення на дисплеї

Дана робота присвячена розробці графічного контролера LCD монітора невеликих розмірів. Такі монітори застосовуються в різних галузях життєдіяльності людини починаючи від побутової техніки і закінчуючи спеціалізованими пристроями. При розробці графічного контролера будуть використовуватися два стенди фірми Altera: DE2-70, TRDB_LTM і система автоматизованого проектування (САПР) Quartus II 8.1.

Проблеми розгляду даної тематики є дуже актуальним завданням для пристроїв виведення зображення.

SUMMERY

Now the development of video subsystem is very fast, and often Video and daptery dictate fashion displays. However, when output to the monitor replaced the conclusion on the teletype, and the complexity of the images has increased, better hundred to connect the computer to raster displays. On this path of development and went on monitors. The image displayed on the modern monitors - bitmap, hence the need in the intermediate blocks for under cooking graphic information to the mapping reflection. To construct the image are required properties of a special device, meant to work with vegetable monitors that could be stored in a video, the formation it and translate it into analog form for display

This work is dedicated to the development of graphic controller LCD monitor is not large. These monitors are used different areas of human activity ranging from household appliances and finishing with specialized devices. When designing graphics controller will use the two company's stand Altera: DE2-70, TRDB_LTM and computer-aided design (CAD) Quartus II 8.1.

Problems consideration of this topic is a very urgent task for the image output devices.

ВВЕДЕНИЕ

Сейчас развитие видеоподсистемы идет очень быстрыми темпами, и зачастую видеоадаптеры диктуют моду мониторам.

Первые мониторы, являвшиеся наследниками осциллографов, были векторными и не предполагали наличие видеоадаптера, ведь в них изображение строилось не посредством последовательного облучения электронным пучком экрана строка за строкой, а, так сказать, «от точки до точки». Компьютер управлял отклоняющей системой дисплея напрямую.

Однако когда вывод на монитор пришел на смену выводу на телетайп, и сложность изображения увеличилась, целесообразнее стало подключить компьютер к растровым мониторам. По этому пути развития и пошли дальше мониторы. Изображение, выводимое на современных мониторах - растровое, поэтому возникла необходимость в промежуточных блоках для подготовки графической информации к отображению. Для построения картинки теперь требовались специальные устройства, ориентированные на работу с растровыми мониторами, которые могли бы хранить в себе видеоинформацию, обрабатывать ее и переводить в аналоговую форму для отображения на дисплее

В растровых дисплейных системах видеопамять организована в виде прямоугольного массива точек. Элемент видеопамяти, стоящий на пересечении конкретных строки и столбца видеопамяти, хранит значение яркости и/или цвета соответствующей точки. Отображаемая на экране часть видеопамяти называется экранным буфером (буфером регенерации или экранной битовой картой). Регенерация изображения осуществляется последовательным построчным сканированием экранного буфера.

Так как каждый элемент видеопамяти определяет один элемент отображения размером в точку на экране монитора, то каждая точка экран (и соответствующий ей элемент видеопамяти) обозначаются термином пиксел (pixel - picture element).

Задача системы вывода изображений (видеоконтроллера) состоит в циклическом построчном просмотре экранного буфера. Адреса видеопамяти генерируются синхронно с координатами растра и содержимое выбранных пикселов используется для управления цветом.

Генератор растровой развертки формирует сигналы отклонения и управляет адресными X и Y регистрами, определяющими следующий элемент буфера регенерации.

В идеальном случае время, требуемое для регенерации экранного буфера, должно быть много меньше, чем время, необходимое для манипуляций с данными, что позволит быстро обновлять или двигать изображение. Это означает, что усилители отклонения и усилитель, управляющий интенсивностью луча, должны быть очень широкополосными, чтобы обеспечить требуемую скорость передачи данных между экранным буфером и системой вывода изображения.

Данная работа посвящена разработке графического контролера LCD монитора небольших размеров. Такие мониторы применяются различных областях жизнедеятельности человека начиная от бытовой техники и заканчивая специализированными устройствами. При разработке графического контролера будут использоваться два стенда фирмы Altera: DE2-70, TRDB_LTM и система автоматизированного проектирования (САПР) Quartus II 8.1.

Из аппаратного оснащения стенда DE2-70 используется: FPGA Cyclone II, память типа SRAM, генератор тактовых импульсов, переключатель (тумблер), и 40-пиновый IDE разъем для передачи данных между стендами DE2-70 и TRDB_LTM.

LTM состоит из трех основных компонентов: сенсорный ЖК-панели, аналого-цифровой преобразователя(АЦП), а 40-контактный IDE-разъем.

Проблемы рассмотрения данной тематики является очень актуальной задачей для устройств вывода изображения.

1. АНАЛИЗ РАСТРОВОЙ ГРАФИКИ

Изображения в растровой графике состоят из отдельных точек различных цветов (рис 1), образующих цельную картину (наподобие мозаики) Типичным примером растровой графики служат отсканированные фотографии или изображения созданные в графическом редакторе PhotoShop. Применение растровой графики позволяет добиться изображения высочайшего фотореалистичного качества. Но такие файлы очень объемны и трудно редактируемы (каждую точку приходиться подправлять вручную) При изменении размеров качество изображения ухудшается. Так при уменьшении исчезают мелкие детали, а при увеличении картинка превращается в набор пикселей. При печати растрового изображения или при просмотре его на устройствах, имеющих недостаточную разрешающую способность значительно ухудшается восприятие образа.

Модель растра

Рис. 1.1

Изображение (объект) может быть монохромным (штриховым), черно-белой фотографией (в градациях серого) и цветным. Любой рисунок можно представить набором мозаичных точек.

Суть принципа точечной графики: если нужно закодировать какой-то объект, то на него "накладываем" сетку и создаем матрицу (таблицу) той же размерности, заполняя единицами ячейки, наложенные на объект, и нулями вне объекта. Если границы оригинал-объекта параллельны границам ячеек сетки, получается идеальная матрица (bitmap) из нулевых и единичных битов, которая представляет закодированное изображение объекта. Если эту матрицу вывести на экран или принтер или на диск для хранения, то получим оттиск объекта. Таким образом, с помощью отдельных блоков можно закодировать объект - известный древний способ рисования по клеточкам.

Но идеальный случай, когда границы объекта совпадают с направляющими линиями матрицы, реализуется редко. Если имеем полностью пустые и полностью заполненные квадратики - это биты 0 и 1. А если не полностью заполненные и не полностью пустые, нужно установить порог: Ниже этого порога - нолики, а выше - единицы. Например, если порог меньше 1/2, то 0, если больше, то 1.

Разрешение измеряется в единицах:

ppi (pixel per inch - пиксел на инч (дюйм)) - количество пикселей на единицу длины в 1 дюйм;

dpi (dots per inch - точки на дюйм) - количество точек на единицу длины в 1 дюйм. (1 дюйм = 25,4 мм.)

1.1 Достоинства растровой графики

К достоинствам растровой графики относятся:

а) Каждый пиксель независим друг от друга;

б) Техническая реализуемость автоматизации ввода (оцифровки) изобразительной информации. Существует развитая система внешних устройств для ввода изображений (к ним относятся сканеры, видеокамеры, цифровые фотокамеры, графические планшеты);

в) Фотореалистичность (можно получать живописные эффекты, например, туман или дымку, добиваться тончайшей нюансировки цвета, создавать перспективную глубину, размытость и т.д.);

г) Форматы файлов, предназначенные для сохранения точечных изображений, являются стандартными, поэтому не имеет решающего значения, в каком графическом редакторе создано то или иное изображение.

д) Можно использовать в Web-дизайне.

1.2 Недостатки растровой графики

К недостаткам растровой графики относятся:

а) Объём файла точечной графики однозначно определяется произведением площади изображения на разрешение и на глубину цвета (если они приведены к единой размерности). При этом совершенно неважно, что отображено на фотографии: белый снежный пейзаж с одиноким столбом вдалеке, или сцена рок-концерта с обилием цвета и форм. Если три параметра одинаковы, размер файла будет практически одинаковым;

б) При попытке слегка повернуть на небольшой угол изображение, например, с чёткими тонкими вертикальными линиями, чёткие линии превращаются в чёткие "ступеньки" (это означает, что при любых трансформациях: поворотах, наклонах и т.д. в точечной графике невозможно обойтись без искажений);

в) Невозможность увеличения изображений для рассмотрения деталей. Поскольку изображение состоит из точек, то увеличение изображения приводит только к тому, что эти точки становятся крупнее. Никаких дополнительных деталей при увеличении растрового изображения рассмотреть не удаётся. Более того, увеличение точек растра визуально искажает иллюстрацию и делает её грубой (пикселизация).

1.3 Цвет и цветовые модели

В компьютерной графике применяют понятие цветового разрешения (другое название - глубина цвета). Оно определяет метод кодирования цветовой информации для ее воспроизведения на экране монитора. Для отображения черно-белого изображения достаточно двух бит (белый и черный цвета). Восьмиразрядное кодирование позволяет отобразить 256 градаций цветового тона. Два байта (16 бит) определяют 65 536 оттенков (такой режим называют High Color). При 24-разрядном способе кодирования, возможно, определить более 16,5 миллионов цветов.

С практической точки зрения цветовому разрешению монитора близко понятие цветового охвата. Под ним подразумевается диапазон цветов, который можно воспроизвести с помощью того или иного устройства вывода (монитор, принтер, печатная машина и прочие). В соответствии с принципами формирования изображения аддитивным или субтрактивным методами разработаны способы разделения цветового оттенка на составляющие компоненты, называемые цветовыми моделями. В компьютерной графике в основном применяют модели RGB и HSB (для создания и обработки аддитивных изображений) и CMYK (для печати копии изображения на полиграфическом оборудовании). Цветовые модели расположены в трехмерной системе координат, образующей цветовое пространство, так как из законов Гроссмана следует, что цвет можно выразить точкой в трехмерном пространстве.

Первый закон Грассмана (закон трехмерности). Любой цвет однозначно выражается тремя составляющими, если они линейно независимы. Линейная независимость заключается в невозможности получить любой из этих трех цветов сложением двух остальных.

Второй закон Грассмана (закон непрерывности). При непрерывном изменении излучения цвет смеси также меняется непрерывно. Не существует такого цвета, к которому нельзя было бы подобрать бесконечно близкий.

Третий закон Грассмана (закон аддитивности). Цвет смеси излучений зависит только от их цвета, но не спектрального состава. То есть цвет (С) смеси выражается суммой цветовых уравнений излучений:

С11К+П1П+И1ИжС22К+П2П+И2ИжСттК+ПтП+ИтИжСсумм =

12+…+Кт)К+(П12+…+Пт)П+ (И12+…+Ит)Ию

1.4 Описание растровых форматов

В 1987 году специалисты из фирмы CompuServe поднатужились и явили миру новый формат для хранения изображений в режиме индексированных цветов. Формат GIF (Graphics Interchange Format) создан крупнейшей сетевой службой CompuServe (ныне подразделение AOL, America OnLine) специально для передачи растровых изображений в глобальных сетях. В 1989 году формат был модифицирован, и его новая версия получила название gif89a. Gif ориентирован в первую очередь на хранение изображений в режиме индексированных цветов (не более 256), также поддерживает компрессию без потерь LZW. Но главная соковыжималка для картинок в формате gif - это, все-таки, приведение их к меньшему числу цветов. Само собой, что такое пройдет без последствий лишь на картинках с изначально небольшим количеством цветов: рисованной графике, элементах оформления, маленьких надписях (кстати, для хорошего сглаживания надписи классическим шрифтом на однородном фоне достаточно от 7 до 11 цветов в зависимости от кегля).

Используется только по своему первоначальному предназначению - в Интернете, поскольку поддерживает только индексированные изображения. Не поддерживает дополнительных каналов, обтравочных контуров, цветовых профилей. Версия GIF 89a позволяет сохранять в одном файле несколько индексированных изображений. Браузеры способны демонстрировать все эти изображения по очереди, получая в результате несложную анимацию. В файле анимации хранятся не только кадры анимации, но и параметры ее демонстрации.

GIF анимация в силу своей простоты наиболее распространена в Интернете. Кроме того, один из цветов в палитре индексированного изображения можно объявлять прозрачным. В браузере сквозь участки этого цвета будет виден фон страницы.

Настраиваемая палитра (не более 256 цветов), задаваемая прозрачность одного из цветов, возможность сохранения с чередованием строк (при просмотре сначала выводится каждая 8-я, затем каждая 4-я и т.д. - это позволяет судить об изображении до его полной загрузки). Способен содержать несколько кадров в одном файле с последующей последовательной демонстрацией (т.н. "анимированный GIF"). Уменьшение размера файла достигается удалением из описания палитры неиспользуемых цветов и построчного сжатия данных (записывается количество точек повторяющегося по горизонтали цвета, а не каждая точка с указанием ее цвета). Такой алгоритм дает лучшие результаты для изображений с протяженными по горизонтали однотонными объектами. К сожалению, с 1995 года разработчик GIF компания Compuserve сделала платным любое его использование в программных продуктах (кроме бесплатного ПО). Это приводит к постепенному вытеснению этого популярного формата из Интернет. Можно сказать, что на поверхности его держит только способность содержать анимацию. Она используется для создания рекламных баннеров.

Формат JPEG (Joint Photographic Experts Group) впервые реализовал новый принцип сжатия с потерями информации. Он основан на удалении из изображения той части информации, которая слабо воспринимается человеческим глазом. Лишенное избыточной информации изображение занимает гораздо меньше места, чем исходное. Степень сжатия, а, следовательно, и количество удаляемой информации, плавно регулируется. Низкие степени сжатия дают лучшее качество изображения, а высокие могут существенно его ухудшить. Наиболее широко JPEG используется при создании изображений для электронного распространения на компакт дисках или в Интернете.

Компактность файлов JPEG делает этот формат незаменимым в тех случаях, когда размер файлов критичен, например, при их передачи по каналам связи. В полиграфии использовать его не рекомендуется, хотя формат допускает хранение цветовых профилей и контуров обтравки. JPEG поддерживает полутоновые и полноцветные изображения в моделях RGB и CMYK. Не поддерживаются дополнительные цветовые альфа-каналы. Используйте формат JPEG только для хранения фотографических изображений на рисунках с четкими границами и большими заливочными областями сильно проявляются дефекты сжатия. Особенно характерно проявление грязи вокруг темных линий на светлом фоне и видимых квадратных областей. Последний дефект связан с тем, сто алгоритм сжатия обрабатывает изображения квадратными блоками со стороной 8 пикселей.

Миллионы цветов и оттенков, палитра не настраиваемая, предназначен для представления сложных фотоизображений. Разновидность progressive JPEG позволяет сохранять изображения с выводом за указанное количество шагов (от 3 до 5 в Photoshop'e) - сначала с маленьким разрешением (плохим качеством), на следующих этапах первичное изображение перерисовывается все более качественной картинкой. Анимация или прозрачный цвет форматом не поддерживаются. Уменьшение размера файла достигается сложным математическим алгоритмом удаления информации - заказываемое качество ниже - коэффициент сжатия больше, файл меньше. Главное, подобрать максимальное сжатие при минимальной потере качества. Кроме коэффициента сжатия еще приходится делать выбор между типами формата - стандартный, оптимизированный или прогрессивный. Наиболее подходящий формат для размещения в Интернете полноцветных изображений. Вероятно, до появления мощных алгоритмов сжатия изображения без потери качества останется ведущим форматом для представления фотографий в Web. Плохо, что качество теряется при каждом последующем сохранении.

Существует три подформата jpg: обычный, optimized (файлы несколько меньше, но не поддерживаются старыми программами) и Progressive (чересстрочное отображение, аналог interlaced в gif). Некоторые приложения позволяют хранить изображение в jpg в режиме CMYK и даже включать в файл обтравочные контуры. Однако, использовать jpg для полиграфических нужд категорически не рекомендуется из-за взаимодействия регулярной структуры блоков 8х8 пикселей, получающихся в результате компрессии, с не менее регулярной структурой типографского растра, что в итоге приводит к образованию муара. Из долговременного пользования этим, безусловно полезным форматом можно извлечь две вещи. Во-первых, не стоит сохранять в нем все, что попало, а только крупные фотографии с большим количеством плавных цветовых переходов. А, во-вторых, ни в коем случае не стоит сохранять одно и то же изображение в jpg больше одного раза: слишком заметными оказываются деструктивные изменения картинки от повторного использования компрессии.

Растровый формат BMP (BitMap), созданный Microsoft, ориентирован на применение в операционной системе windows. Он используется для представления растровых изображений в ресурсах программ. Поддерживаются только изображения в модели RGB с глубиной цвета до 24 бит. Не поддерживаются дополнительные цветовые и альфа-каналы, контуры обтравки, управление цветом. В принципе формат предполагает использование простейшего алгоритма сжатия (Run Length Encoding, RLE) без потерь информации, но этот вариант используется редко из-за потенциальных проблем несовместимости.

Последняя версия Photoshop 7 в модуле Save for Web умеет сохранять картинки в формате Wireless Bitmap (WBMP), специально оптимизированном для сотовых телефонов, смартфонов, карманных компьютеров и прочих мобильных устройств. Описание этого формата вместе с языком разметки WML (Wireless Markup Language) включено в спецификацию WAP (Wireless Application Protocol). Кроме Photoshop создавать изображения WBMP способна также Macromedia Fireworks 4 и выше. Формат поддерживает только два цвета, но можно имитировать больше с помощью разброса пикселей (dithering). Теоретически файлы WBMP могут содержать анимацию. Сжатие не поддерживается, что очень удивительно, так как на практике графический файл для WAP не может быть больше 1461 байт (это ограничение связано с небольшим объемом памяти сотовых телефонов). Из-за скромного разрешения дисплеев мобильных устройств безопасный размер файлов ограничено 90х24 пикселями. Помимо вышеперечисленных недостатков WBMP еще довольно сыроват: лишь немногие устройства способны отображать графику в этом формате.

Формат PCX (PC eXchange) - один из первых растровых форматов, созданных фирмой ZSoft для программы PC Paintbrush. Поддерживает монохромные, индексированные и полноцветные изображения модели RGB. Не поддерживаются дополнительные цветовые и альфа-каналы, контуры обтравки, управление цветом. Формат предполагает использование простейшего алгоритма сжатия (Run Length Encoding, RLE) без потерь информации. Ныне имеет преимущественно историческое значение. Свою пальму первенства по примитивизму когда-то взрастил и формат pcx: он почти так же прост внутри, как и bmp. Возможности у этого формата такие же, как и у bmp, только поддержка OS/2 отсутствует. Зато pcx можно посмотреть большинством программ под DOS, в том числе внутренним просмотрщиком Norton Commander.

Формат PCD (Photo CD) был разработан фирмой Kodak для хранения сканированных фотографических изображений. Сканирование выполняется на специальной аппаратуре (рабочих станциях Kodak, PIW), а его результат записывается на компакт-диск особого формата, Kodak Photo CD. Его можно просматривать с помощью промышленных видеоплееров и игровых приставок на обычном телевизоре. На практике Photo CD чаще применяются в издательских технологиях как источник изображений. Большинство производителей библиотек фотоснимков используют именно этот формат на своих компакт-дисках. Формат PCD имеет ряд полезных особенностей, делающих эту его область применения превалирующей. Файл PCD содержит изображение сразу в нескольких фиксированных разрешениях. Базовое (Base) разрешение, 512x768 пикселей, используется для просмотра на телевизорах NTSC и PAL. Кроме него имеются пониженные разрешения Base4, Base16 и более высокие 4Base, 16Base и 64Base. Последнее разрешение, 64Base, равное 4096x6144 пикселей, есть только на дисках стандарта Pro Master. Любопытно, что наличие в одном файле шести вариантов одного изображения не увеличивает его размер. Дело в том, что копии высокого разрешения представлены в виде разностей с базовым. Таким образом, удается избежать дублирования графической информации. Изображения на Photo CD представлены в особой цветовой модели YCC, разработанной специалистами Kodak и во многом аналогичной модели Lab.

YCC тоже имеет три базовых компонента, яркостный и два хроматических. Поскольку глаз более чувствителен к яркостям, чем к цвету, половина цветовой информации отбрасывается при сканировании: на каждые два пикселя приходится только одно значение хроматических компонентов. Благодаря этому удается сократить объем графических данных и размер PCD-файла. Для дальнейшего уменьшения размеров файла используется обычная схема сжатия без потерь качества LZW. Существуют несколько форматов Photo CD. Формат Master Photo CD содержит изображения, сканированные с обычной фотопленки формата 35 мм. Максимальное разрешение для этого типа 16 Base. Профессиональным фотографам адресован формат Master Pro Photo CD, для которого используется пленка большего формата (120 мм и 4x5 дюймов). Для полиграфических приложений предназначен формат Print Photo CD. Оригинал сканируется профессиональными сканерами (Crosfield, Linotype, Scitex) и сохраняется с несжатым разрешением 64 Base. Формат Catalog Photo CD позволяет разместить на одном диске до 4500 изображений с базовым разрешением. И, наконец, на мультимедийные приложения ориентирован формат Portfolio PhotoCD. На компакт-диске такого формата можно разместить до 800 изображений, а также звук, интерактивные сценарии и т. п.

Формат TIFF (Tagged Image File Format) создан объединенными силами таких гигантов, как Aldus, Microsoft и Next специально для хранения сканированных изображений. Исключительная гибкость формата сделала его действительно универсальным. ТIFF - один из самых древних форматов в мире микрокомпьютеров, на сегодняшний день он является самым гибким, универсальным и активно развивающимся. В нем можно хранить графику в любом режиме: от битового и индексированных цветов до Lab, CMYK и RGB (кроме дуплексов и многоканальных документов). Хотя с момента его создания прошло уже много времени, TIFF до сих пор является основным форматом, используемым для хранения сканированных изображений и размещения их в издательских системах и программах иллюстрирования. Версии формата существуют на всех компьютерных платформах, что делает его исключительно удобным для переноса растровых изображений между ними. TIFF поддерживает монохромные, индексированные, полутоновые и полноцветные изображения в моделях RGB и CMYK с 8- и 16-битными каналами. Он позволяет хранить обтравочные контуры, калибровочную информацию, параметры печати. Допускается использование любого количества дополнительных альфа-каналов. Дополнительные цветовые каналы не поддерживаются. Большим достоинством формата остается поддержка практически любого алгоритма сжатия. Наиболее распространенным является сжатие без потерь информации по алгоритму LZW (Lempel Ziv Welch), обеспечивающему очень высокую степень компрессии. Кстати, этот же алгоритм используется многочисленными программами сжатия общего назначения, поддерживающими формат ZIP.

Формат PSD (PhotoShop Document) - это собственный формат программы Adobe Photoshop. Единственный формат, поддерживающий все возможности программы. Предпочтителен для хранения промежуточных результатов редактирования изображений, так как сохраняет их послойную структуру. Все последние версии продуктов фирмы Adobe Systems поддерживают этот формат и позволяют импортировать файлы Photoshop непосредственно.

К недостаткам формата PSD можно отнести недостаточную совместимость с другими распространенными приложениями и отсутствие возможности сжатия.

Поддерживаются все цветовые модели и любая глубина цвета от бело-черного до true color, сжатие без потерь. Начиная с версии 3.0, Adobe добавила поддержку слоев и контуров, поэтому формат версии 2.5 и ранее выделяется в отдельный подформат. Для совместимости с ним в более поздних версиях Photoshop имеется возможность включить режим добавления в файл одного базового слоя, в котором слиты все слои. Такие файлы свободно читаются большинством популярных просмотрщиков, импортируются в другие графические редакторы и программы для 3D моделирования.

FLM (Filmstrip) - собственный формат Adobe Premier, программы редактирования видеоинформации и создания презентаций.

Формат IFF (Amiga Interchange File Format) используется на компьютерах Commodore Amiga с программно-аппаратным комплексом Video Toaster. Он ориентирован на создание и обработку высококачественных видеоматериалов в реальном времени. Поддерживается также некоторыми программами рисования на платформе Windows, например Deluxe Paint фирмы Electronic Arts. Формат IFF поддерживает все типы изображений, за исключением многоканальных и полноцветных CMYK. Обтравочные контуры, цветовые профили и альфа-каналы не поддерживаются.

Формат PXR (Pixar) предназначен для обмена со специализированными графическими станциями Pixar, ориентированными на трехмерное моделирование и анимацию. Поддерживаются только полутоновые и полноцветные RGB изображения с единственным альфа каналом.

На сегодня самый прогрессивный формат графики для Сети - это PNG (Portable Network Graphics, читается "пинг"). Этот луч света и уникальное решение кучи головной боли, он позволяет создавать "зоны прозрачности" как.gif, но в довесок может быть и полупрозрачным (сквозь него может просвечивать фон), был, по сути, выпадом независимых групп и консорциумов в сторону безмерно обнаглевшей компании Ulead, которая в 1995 году "прихватизировала" народный алгоритм сжатия без потерь LZW. Вместо последнего в формате png используется алгоритм Deflate, дающий, кстати, несколько лучшие результаты, чем LZW. Изначально призванный заменить морально устаревший gif на искусственных ландшафтах Сети, png предлагает целый ряд новых возможностей, недостаток которых в gif не раз делал его объектом бессильных ругательств.

Это достаточно "молодой" формат для Web-графики, конкурирующий с GIF. Все последние версии браузеров поддерживают его без специальных подключаемых модулей. Формат поддерживает полутоновые и полноцветные RGB-изображения с единственным альфа-каналом, а также индексированные и монохромные изображения без альфа-каналов. Альфа-канал служит маской прозрачности. Таким образом, формат PNG - единственный из распространенных в Интернете форматов, позволяющий получать полноцветные изображения с прозрачным фоном. В формате PNG использован мощный алгоритм сжатия без потерь информации, основанный на популярном LZW-сжатии.

Будучи ориентированным на Web, формат PNG не поддерживает многоканальных изображений, цветовых профилей и контуров обтравки.

Существует два подформата: PNG8 и PNG24, цифры означают максимальную глубину цвета, возможную в подформате.

В PNG24 наконец-то была реализована поддержка 256 градаций прозрачности за счет дополнительного альфа-канала с 256 градациями серого. С помощью этой функции, например, полупрозрачный логотип может выглядеть одинаково на абсолютно любом фоне. К тому же png нашпигован такими полезными возможностями, как двумерный interlacing (т.е. изображение проявляется постепенно не только по строкам, но и по столбцам) и встроенная гамма-коррекция, позволяющая сохранять изображения, яркость которых одинакова как на PC, так и на компьютерах Mac, Sun и Silicon Graphics. Загорелись? Я тоже. Давайте остывать вместе. Ни одна из полезных функций не поддерживается ни одним из существующих браузеров.

PNG8 - мало распространен из-за слабой рекламы, создавался специально для Интернета как замена первых двух форматов и благодаря патентной политике Compuserve постепенно вытесняет GIF. Позволяет выбирать палитру сохранения - серые полутона, 256 цветов, true color (истинные цвета). В зависимости от свойств изображения действительно иногда предпочтительнее GIF-a. Позволяет использовать "прозрачный" цвет, но, в отличие от GIF-a таких цветов может быть до 256. В отличие от GIF сжатие без потери качества производится и по горизонтали и по вертикали (алгоритм собственный, параметры тоже не настраиваемые). Не поддерживает анимацию.

Почему же такой замечательный и удобный формат не получил распространения? Дело в том, что наша "самая любимая" фирма Microsoft сочла этот формат неперспективным на основании того, что разработан он не ими.

Формат SCT (Scitex Continuous Tone) используется сканерами, фотонаборными автоматами и графическими станциями Scitex для получения высококачественной полиграфической продукции. Особый формат используется патентованным растеризатором Scitex. Он поддерживает полутоновые и полноцветные изображения в моделях RGB и CMYK без альфа-каналов. Обтравочные контуры и цветовые профили не поддерживаются.

Scitex используется исключительно на этапе растрирования смеси из векторных и растровых данных в одну битовую карту, предназначенную для high-end фотонаборных автоматов фирмы Scitex - она то и сохраняется в этом формате. Можно не доверять растрирование файла сервисному бюро, а самому сохранить макет в формате Scitex. Он не поддерживает никаких алгоритмов сжатия.

Pict (Macintosh QuickDraw Picture Format) - это внутренний формат операционной системы Mac, аналог bmp. Он способен нести в себе растровую и векторную информацию, текст и даже звук. Такая потрясающая гибкость формата лишний раз подтверждает эффективность использования Mac при работе с мультимедиа. Изображение может храниться как в RGB, так и в CMYK, причем глубина цвета варьируется от индексированных цветов до true color; реализован алгоритм компрессии без потерь RLE. Формат pict открывается всеми приложениями, разработанными для Mac (QuickTime, Photoshop, etc.)

Замечательный контраст с предыдущим форматом составляет формат RAW. Он не поддерживает ничего. То есть совсем. Не хранятся даже данные о количестве каналов, глубине цвета и разрешении, так что во время открытия вам придется вводить эти параметры вручную, по памяти. Изображение хранится просто как поток пикселей с фиксированным заголовком, куда можно впоследствии поместить любую текстовую информацию. Кстати, размер этого заголовка в байтах вам тоже придется указывать при открытии картинки в этом формате. Архаизм? Нет! Просто претензия на полную мультиплатформенность и совместимость со всеми программами. Претензия, к слову сказать, неудачная: далеко не каждый графический редактор или просмотрщик поддерживает raw. Простота, доведенная в погоне за совместимостью до полного маразма.

Довольно старый формат TGA (Targa) создан специально для работы с графическим акселератором TrueVision. Этот акселератор широко используется приложениями на платформе DOS. Формат поддерживает 24-битное и 32-битные RGB изображения с одним альфа-каналом, а также полутоновые, индексированные и 16-битные RGB изображения без альфа-каналов. Обтравочные контуры и цветовые профили не поддерживаются. Также пользуется уважением среди программ DOS формат targa (Truevision Targa Image File). Он поддерживает глубину цвета от 8 до 32 бит на пиксель и использует алгоритм компрессии без потерь RLE. Файлы формата targa часто применялись DOS версией 3DStudio Max для хранения текстур.

Еще один формат, не ставший популярным ввиду слабой маркетинговой поддержки - это FlashPix(FPX). Он был разработан фирмой Kodak, известной по формату PhotoCD своими попытками загнать в один файл несколько копий одного и того же изображения с разными разрешениями. FlashPix не стал исключением из фирменного правила и тоже поддерживает несколько копий с разным разрешением в одном файле. Веб-дизайнер, никогда не сталкивавшийся с файлами полиграфического качества, возможно спросит о смысле такого расточительного расходования дискового пространства. Он есть. Дело в том, что в полиграфии нередко работают с изображениями, занимающими десятки и даже сотни мегабайт. Их приведение к нужному размеру занимает гораздо больше времени, чем просто считывание копии с нужным разрешением, а размер файлов в предпечатной подготовке роли не играет. FlashPix также обладает встроенной системой защиты изображений с помощью водяных знаков. Формат достаточно редкий, и немногие программы умеют с ним работать.

Для рядового пользователя Pixar(PXR) - всего лишь музейная редкость. Это и понятно: он применяется исключительно на high-end графических станциях Pixar, предназначенных для профессиональной трехмерной анимации. Его возможности невелики: отсутствие компрессии, поддержка лишь модели RGB и градаций серого и одного альфа-канала.

ICO - формат мелких картинок (иконок) в WWW. Картинки используются браузерами для маркировки Web-проектов в строке URL и в избранном. Поддерживается и используется программками для создания иконок типа IconXP.

FLA - внутренний формат программы для создания интерактивной анимации Flash.

SWF - формат публикации Flash для отображения на разных платформах.

2. АНАЛИЗ УСТРОЙСТВ ВЫВОДА ИЗОБРАЖЕНИЙ

Монитор (дисплей) - устройство для преобразования цифровой и (или) аналоговой информации в видео изображение, которое может видеть человек.

Родственным устройством является проектор - оптико-механический или оптико-цифровой прибор, позволяющий при помощи источника света проецировать изображения объектов на поверхность расположенную вне прибора (на экран). Технологии, используемые при производстве мониторов и проекторов часто близки, поэтому в описании они будут присутствовать вместе. Существуют даже проекционные мониторы, представляющие собой конструктивное сочетание проектора и экрана. Проектор находится позади экрана и это пространство закрыто.

Прежде всего, следует отталкиваться от технологии, т. к. она обуславливает существенные различия в свойствах.

2.1 Жидкокристаллические мониторы (LCD Monitors)

LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Жидкие кристаллы были открыты давно, но изначально они использовались для других целей. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD мониторы для настольных компьютеров. Далее речь пойдет только о традиционных LCD мониторах, так называемых Nematic LCD.

Экран LCD монитора представляет собой массив маленьких сегментов (называемых пикселями), которые могут манипулироваться для отображения информации. LCD монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) в отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в такой световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света) как показано на рисунке 2.1. Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели.

При появлении электрического поля, молекулы жидких кристаллов частично выстраиваются вдоль поля и на угол поворота плоскости поляризации света становится отличным от 90о.

Рис.2.1. Принцип работы LCD-монитора

Для вывода цветного изображения необходима подсветка монитора сзади так, чтобы свет порождался в задней части LCD дисплея. Это необходимо для того, чтобы можно было наблюдать изображение с хорошим качеством, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинируя три основные цвета для каждой точки или пикселя экрана, появляется возможность воспроизвести любой цвет.

Первые LCD дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15" размеров для использования в ноутбуках, а для настольных компьютеров производятся 19" и более LCD мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270°.

В будущем следует ожидать расширения вторжения LCD мониторов на рынок, благодаря тому факту, что с развитием технологии конечная цена устройств снижается, что дает возможность большему числу пользователей покупать новые продукты.

Вкратце расскажем о разрешении LCD мониторов. Это разрешение одно и его еще называют native, оно соответствует максимальному физическому разрешению CRT мониторов. Именно в native разрешении LCD монитор воспроизводит изображение лучше всего. Это разрешение определяется размером пикселей, который у LCD монитора фиксирован. Например, если LCD монитор имеет native разрешение 1024x768, то это значит, что на каждой из 768 линий расположено 1024 электродов, читай пикселей. При этом есть возможность использовать и более низкое, чем native, разрешение. Для этого есть два способа. Первый называется "Centering" (центрирование), суть метода в том, что для отображения изображения используется только то количество пикселей, которое необходимо для формирования изображения с более низким разрешением. В результате изображение получается не во весь экран, а только в середине. Все неиспользуемые пиксели остаются черными, т.е. вокруг изображения образуется широкая черная рамка. Второй метод называется "Expansion" (растяжение). Суть его в том, что при воспроизведении изображения с более низким, чем native, разрешением используются все пиксели, т.е. изображение занимает весь экран. Однако из-за того, что изображение растягивается на весь экран, возникают небольшие искажения, и ухудшается резкость. Поэтому, при выборе LCD монитора важно четко знать какое именно разрешение вам нужно.

Отдельно стоит упомянуть о яркости LCD мониторов, так как пока нет никаких стандартов для определения того, достаточной ли яркостью обладает LCD монитор. При этом в центре яркость LCD монитора может быть на 25% выше, чем у краев экрана. Единственный способ определить, подходит ли вам яркость конкретного LCD монитора, это сравнить его яркость с другими LCD мониторами.

И последний параметр, о котором нужно упомянуть, это контрастность. Контрастность LCD монитора определяется отношением яркостей между самым ярким белым и самым темным черным цветом. Хорошим контрастным соотношением считается 120:1, что обеспечивает воспроизведение живых насыщенных цветов. Контрастное соотношение 300:1 и выше используется тогда, когда требуется точное отображение черно-белых полутонов. Но, как и в случае с яркостью пока нет никаких стандартов, поэтому главным определяющим фактором являются ваши глаза.

К преимуществам LCD мониторов можно отнести то, что они действительно плоски в буквальном смысле этого слова, а создаваемое на их экранах изображение отличается четкостью и насыщенностью цветов. Отсутствие искажений на экране и массы других проблем свойственных традиционным CRT мониторам. Добавим, что потребляемая и рассеивая мощность у LCD мониторов существенно ниже, чем у CRT мониторов.

2.2 Плазменные мониторы

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24", созданные с использованием ЭЛТ технологии, были слишком тяжелыми и громоздкими. ЖК-мониторы - плоские и легкие, но экраны, размер которых больше 20", обладали слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 см, рис.1. Поэтому, несмотря на большой экран, они могут быть установлены в любом месте - на стене, под потолком, на столе.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана. Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в г. Рязани в НПО "Плазма". Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно "выдергивать" из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в университете штата Иллинойс в 1966г., и в начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз решить могли. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская Фондовая Биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. Также, в область плазменной технологии обратили свои взоры и корейские компании "второй мировой линии", такие, как, например, Fujitsu, производящие более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40" и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов, как показано на рисунке 2.2. Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Рис.2.2 Устройство экрана плазменной панели

Для того чтобы "зажечь" пиксель происходит приблизительно следующее. На два ортогональных друг другу питающий и управляющий электроды, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов, и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для "поджига" на сканирующий электрод, подается импульс, одноименные потенциалы складываются, вектор электростатического поля удваивает свою величину. Происходит разряд - часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.


Подобные документы

  • Технические характеристики, конструкция, состав монитора "Philips 150B". Принцип работы монитора по структурной схеме и источника питания. Оборудование рабочего места ремонтника. Разработка алгоритма поиска неисправностей. Расчет стабилизатора напряжения.

    курсовая работа [2,6 M], добавлен 02.11.2011

  • Эргономические требования к компоновке информации на экране монитора. Разработка структурной, функциональной и принципиальной схемы Монитора пациента. Дизайнерская проработка конструкции медицинского прибора с помощью компьютерного моделирования.

    дипломная работа [1,0 M], добавлен 15.02.2013

  • Разработка контроллера прибора, обеспечивающего реализацию функций оцифровки аналоговых данных с выводом результата в виде графического вида сигнала. Выбор контроллера и элементов схемы, их описание. Общий алгоритм работы и листинг программы управления.

    курсовая работа [1,1 M], добавлен 26.12.2012

  • Технические характеристики устройства монитора ACER AL532. Описание схемы электрической принципиальной. Параметры устройства, измеряемые при регулировке после ремонта. Расчёт интенсивности отказа электронной схемы. Методики измерения параметров.

    курсовая работа [1,2 M], добавлен 02.12.2016

  • Разработка контроллера управления цифровой частью системы, перечень выполняемых команд. Описание алгоритма работы устройства, его структурная организация. Синтез принципиальной электрической схемы, особенности аппаратных затрат и потребляемой мощности.

    курсовая работа [318,8 K], добавлен 14.06.2011

  • Разработка микроконтроллера для контроля ритма дыхания больного в реанимационной палате. Структурная и принципиальная схемы микропроцессорного контроллера. Модули процессора, памяти, ввода и вывода, режимы индикации. Описание работы, принципиальная схема.

    курсовая работа [197,6 K], добавлен 06.12.2013

  • Проектирование универсального цифрового контроллера, его функции, возможности и недостатки. Разработка структурной схемы устройства. Расчет элементов печатных плат. Компоновочный расчет устройства. Стоимостная оценка затрат, эргономичность устройства.

    дипломная работа [1,5 M], добавлен 29.06.2010

  • Преобразование релейно-контактной схемы управления механизмом подъема крана с использованием силового магнитного контроллера. Группировка и обозначение сигналов. Механические характеристики магнитного контроллера. Функциональные схемы узлов механизма.

    курсовая работа [471,5 K], добавлен 09.04.2012

  • Обзор характеристик контроллера по сбору аналоговой информации и преобразовании ее в цифровую, типы корпусов и исполнений, функциональное назначение выводов. Описание регистров PIC, тактовых генераторов. Система команд, блок ввода аналоговых данных.

    курсовая работа [338,0 K], добавлен 05.09.2011

  • Техническая структура и программно-алгоритмическое обеспечение микропроцессорного регулирующего контроллера МПК Ремиконты Р-130. Разработка функциональной схемы контроллера для реализации автоматической системы регулирования. Схема внешних соединений.

    контрольная работа [403,6 K], добавлен 18.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.