Оценивание рисков в системах с нечеткой, неполной и противоречивой информацией

Абсолютные и относительные показатели значимости рисков. Оценка и прогнозирование совокупности рисков в слабо структурированных системах с использованием экспертного оценивания. Метод кластеризации нечетких экспертных оценок с учетом критериев оценки.

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 19.01.2018
Размер файла 16,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Разработка самообучающейся интеллектуальной информационной системы для анализа кредитоспособности заемщика и оценки кредитных рисков на основе подхода иммунокомпьютинга. Применение процедур кластеризации, классификации и формирования оценок рисков.

    курсовая работа [822,3 K], добавлен 09.06.2012

  • Методы оценивания информационных рисков, их характеристика и отличительные особенности, оценка преимуществ и недостатков. Разработка методики оценки рисков на примере методики Microsoft, модели оценки рисков по безопасности корпоративной информации.

    дипломная работа [207,4 K], добавлен 02.08.2012

  • Сущность и способы оценки информационной безопасности. Цели ее проведения. Методы анализа информационно-технологических рисков. Показатели и алгоритм расчета рисков по угрозе ИБ. Расчет информационных рисков на примере сервера Web торговой компании.

    курсовая работа [190,1 K], добавлен 25.11.2013

  • Классификация основных рисков, их идентификация. Планирование и оценка рисков информационной системы в организации, принятие мер для устранения рисков. Определение точки безубыточности проекта. Расчет цены потерь и вероятности наступления риска.

    лабораторная работа [381,2 K], добавлен 20.01.2016

  • Информация, хранящаяся в наших компьютерах, главное содержание, принципы построения и требования к ней. Основные методы учета рисков при анализе проектов. Теория Нечеткой Логики (Fuzzy Logic), направления и специфика применения с помощью пакета Matlab.

    контрольная работа [2,9 M], добавлен 06.10.2014

  • Понятие и содержание маркетинговой информационной системы. Основные факторы микросреды организации. Подходы к определению роли информации в оценке рисков. Решение проблем функционирования аппаратно-программной среды организации, ожидаемый эффект.

    дипломная работа [295,5 K], добавлен 18.07.2014

  • Параметры автомобиля, используемые в экспертной системе. Задание нечетких и лингвистических переменных, виды термов. Список правил для функционирования системы, результаты анализа ее работы. Применение алгоритма Мамдани в системах нечеткой логики.

    курсовая работа [1,5 M], добавлен 10.02.2013

  • Метод корректировки нормы дисконта с учетом риска. Анализ чувствительности критериев эффективности. Установление взаимосвязи между исходными и выходными показателями в виде математического уравнения или неравенства. Определение математической модели.

    контрольная работа [45,6 K], добавлен 14.01.2011

  • Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.

    курсовая работа [2,2 M], добавлен 12.11.2010

  • Исследование общих сведений о медицинских экспертных системах, способных заменить специалиста-эксперта в разрешении проблемной ситуации. Обучение искусственных нейронных сетей в программе Statistica 7. Обзор программной реализации модуля кластеризации.

    дипломная работа [5,9 M], добавлен 14.06.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.