Исследование алгоритмов
Обучение с учителем и формальная запись задачи классификации. Каскадный классификатор, выбор предметной области и обзор реализаций методов машинного обучения. Мобильные платформы и изучение инструментов разработки. Обучение каскадного классификатора.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 11.07.2016 |
Размер файла | 1,5 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.
курсовая работа [436,9 K], добавлен 14.12.2022Популярность алгоритмов машинного обучения для компьютерных игр. Основные техники обучения с подкреплением в динамической среде (компьютерная игра "Snake") с экспериментальным сравнением алгоритмов. Обучение с подкреплением как тип обучения без учителя.
курсовая работа [1020,6 K], добавлен 30.11.2016Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.
дипломная работа [1,0 M], добавлен 28.12.2015Обзор существующих алгоритмов для обнаружения лиц. Выравнивание лица с помощью разнообразных фильтров. Использование каскадного классификатора Хаара для поиска лиц на изображении. Распознавание лиц людей с использованием локальных бинарных шаблонов.
дипломная работа [332,4 K], добавлен 30.09.2016Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.
курсовая работа [249,3 K], добавлен 22.06.2011Создание системы предобработки данных; разработка системы классификации на базе методов и алгоритмов машинного обучения, их реализация в программной системе. Предобработка информации, инструкция пользователя, система классификации, машинный эксперимент.
дипломная работа [917,1 K], добавлен 31.01.2015Описание и анализ предметной области. Принципы обучения слепому методу печати. Обзор существующих клавиатурных тренажеров. Диаграмма объектов предметной области. Функции, которые должна выполнять разрабатываемая система. Построение структурной схемы.
курсовая работа [8,1 M], добавлен 28.08.2012Проект системы процесса обучения студентов; словарь предметной области, формулировка проблемы. Назначение продукта, заинтересованность пользователей; обзор ключевых потребностей. Альтернативные и конкурентные решения. Архитектура программной системы.
курсовая работа [1,2 M], добавлен 19.03.2012Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Обзор существующий решений в области электронного обучения. Исследование архитектурных и технологических аспектов построения виртуальных корпоративных университетов. Анализ возможностей системы дистанционного обучения Sakai, отличительные особенности.
дипломная работа [2,7 M], добавлен 09.04.2011