дипломная работа  Исследование алгоритмов

Обучение с учителем и формальная запись задачи классификации. Каскадный классификатор, выбор предметной области и обзор реализаций методов машинного обучения. Мобильные платформы и изучение инструментов разработки. Обучение каскадного классификатора.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

  ___    ___    ___   ____    __   
 / _ \  / _ \  ( _ ) |___ \  / /_  
| | | || (_) | / _ \   __) || '_ \ 
| |_| | \__, || (_) | / __/ | (_) |
 \___/    /_/  \___/ |_____| \___/ 
                                   

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 11.07.2016
Размер файла 1,5 M

Подобные документы

  • Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.

    курсовая работа [436,9 K], добавлен 14.12.2022

  • Популярность алгоритмов машинного обучения для компьютерных игр. Основные техники обучения с подкреплением в динамической среде (компьютерная игра "Snake") с экспериментальным сравнением алгоритмов. Обучение с подкреплением как тип обучения без учителя.

    курсовая работа [1020,6 K], добавлен 30.11.2016

  • Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.

    дипломная работа [1,0 M], добавлен 28.12.2015

  • Обзор существующих алгоритмов для обнаружения лиц. Выравнивание лица с помощью разнообразных фильтров. Использование каскадного классификатора Хаара для поиска лиц на изображении. Распознавание лиц людей с использованием локальных бинарных шаблонов.

    дипломная работа [332,4 K], добавлен 30.09.2016

  • Диагностический анализ изучения алгоритмов обучения нейронных сетей "с учителем". Сбор входных и выходных переменных для наблюдений и понятие пре/пост процессирования. Подготовка и обобщение многослойного персептрона, модель обратного распространения.

    курсовая работа [249,3 K], добавлен 22.06.2011

  • Создание системы предобработки данных; разработка системы классификации на базе методов и алгоритмов машинного обучения, их реализация в программной системе. Предобработка информации, инструкция пользователя, система классификации, машинный эксперимент.

    дипломная работа [917,1 K], добавлен 31.01.2015

  • Описание и анализ предметной области. Принципы обучения слепому методу печати. Обзор существующих клавиатурных тренажеров. Диаграмма объектов предметной области. Функции, которые должна выполнять разрабатываемая система. Построение структурной схемы.

    курсовая работа [8,1 M], добавлен 28.08.2012

  • Проект системы процесса обучения студентов; словарь предметной области, формулировка проблемы. Назначение продукта, заинтересованность пользователей; обзор ключевых потребностей. Альтернативные и конкурентные решения. Архитектура программной системы.

    курсовая работа [1,2 M], добавлен 19.03.2012

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Обзор существующий решений в области электронного обучения. Исследование архитектурных и технологических аспектов построения виртуальных корпоративных университетов. Анализ возможностей системы дистанционного обучения Sakai, отличительные особенности.

    дипломная работа [2,7 M], добавлен 09.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.