Прогнозування та емуляція нестаціонарних послідовностей за допомогою штучних вейвлет-нейронних мереж

Дослідження існуючих методів емуляції і прогнозування нестаціонарних об’єктів і сигналів довільної природи за умов апріорної та поточної невизначеності. Розробка синтезу універсальної активаційної функції на основі генератора аналітичних вейвлетів.

Рубрика Программирование, компьютеры и кибернетика
Вид автореферат
Язык украинский
Дата добавления 11.08.2014
Размер файла 67,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Часовий ряд як сукупність значень будь-якого показника за декілька послідовних моментів або періодів часу. Знайомство з методами для прогнозування часового ряду за допомогою штучних нейронних мереж. Розгляд головних задач дослідження часового ряду.

    контрольная работа [1,1 M], добавлен 14.09.2014

  • Застосування нейронних мереж при вирішенні різних технічних проблем. Архітектура штучних нейронних мереж. Дослідження штучного інтелекту. Гіпотеза символьних систем. Представлення за допомогою символів. Синтаксичний та семантичний аналіз розуміння мови.

    курсовая работа [985,8 K], добавлен 14.01.2010

  • Аналіз існуючих моделей та методів визначення повітряних та наземних рухомих об’єктів, узагальнення, поєднання та вдосконалення методів присвоєння координат на карті аеропорту у реальному часі. Засоби аналізу динамічних сценаріїв поточної обстановки.

    дипломная работа [6,9 M], добавлен 27.01.2013

  • Дослідження логічних схем, їх побудови і емуляції роботи в різних програмних засобах, призначених для цього. Electronics Workbench 5 – розробка фірми Interactive Image Technologies, її можливості. Рівні бази Multisim. Ключові особливості Proteus.

    курсовая работа [2,0 M], добавлен 23.08.2014

  • Навчання штучних нейронних мереж, особливості їх використання для вирішення практичних завдань. Рецепторна структура сприйняття інформації. Перцептрон як модель розпізнавання. Задача моделювання штучної нейронної мережі з розпаралелюванням процесів.

    дипломная работа [2,8 M], добавлен 24.07.2013

  • Характеристика особливостей побудови біологічних та штучних нейронних мереж. Вивчення їх активіаційних функцій: порогової бінарної, лінійної обмеженої, гіперболічного тангенса. Персептрони і зародження штучних нейромереж. Багатошарові нейронні мережі.

    реферат [1,2 M], добавлен 11.06.2010

  • Використання методів обробки сигналів, які базуються на використанні малохвильової теорії. Вимоги до алгоритмів компресії та критерії порівняння алгоритмів. Застосування вейвлет-перетворень. Критерії оцінювання оптимальності вибору малохвильових функцій.

    реферат [1,1 M], добавлен 26.05.2019

  • Ознайомлення із загальною структурою системи автоматичного розпізнавання мовлення. Визначення особливостей нейронних мереж. Дослідження та характеристика процесу побудови системи розпізнавання мовлення. Вивчення специфіки прихованої моделі Маркова.

    дипломная работа [1,1 M], добавлен 25.07.2022

  • Призначення пакету Forecast Expert, його використання для прогнозування однофакторної залежності та оцінка її довірчого інтервалу. Створення фінансової моделі підприємства за допомогою Project Expert. Практична робота з програмою "Бізнес-прогноз 2.0".

    контрольная работа [1,7 M], добавлен 24.05.2009

  • Характеристика інструментів MatLab - пакету прикладних програм для числового аналізу. Основні функції та можливості програмного комплексу. Скриптова мова програмування. Побудова моделі штучної нейронної мережі за допомогою команди NNTool та її тестування.

    лабораторная работа [215,8 K], добавлен 11.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.