Прогнозування та емуляція нестаціонарних послідовностей за допомогою штучних вейвлет-нейронних мереж
Дослідження існуючих методів емуляції і прогнозування нестаціонарних об’єктів і сигналів довільної природи за умов апріорної та поточної невизначеності. Розробка синтезу універсальної активаційної функції на основі генератора аналітичних вейвлетів.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Системи та засоби штучного інтелекту |
Вид | автореферат |
Язык | украинский |
Прислал(а) | Винокурова О.А. |
Дата добавления | 11.08.2014 |
Размер файла | 67,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Часовий ряд як сукупність значень будь-якого показника за декілька послідовних моментів або періодів часу. Знайомство з методами для прогнозування часового ряду за допомогою штучних нейронних мереж. Розгляд головних задач дослідження часового ряду.
контрольная работа [1,1 M], добавлен 14.09.2014Застосування нейронних мереж при вирішенні різних технічних проблем. Архітектура штучних нейронних мереж. Дослідження штучного інтелекту. Гіпотеза символьних систем. Представлення за допомогою символів. Синтаксичний та семантичний аналіз розуміння мови.
курсовая работа [985,8 K], добавлен 14.01.2010Аналіз існуючих моделей та методів визначення повітряних та наземних рухомих об’єктів, узагальнення, поєднання та вдосконалення методів присвоєння координат на карті аеропорту у реальному часі. Засоби аналізу динамічних сценаріїв поточної обстановки.
дипломная работа [6,9 M], добавлен 27.01.2013Дослідження логічних схем, їх побудови і емуляції роботи в різних програмних засобах, призначених для цього. Electronics Workbench 5 – розробка фірми Interactive Image Technologies, її можливості. Рівні бази Multisim. Ключові особливості Proteus.
курсовая работа [2,0 M], добавлен 23.08.2014Навчання штучних нейронних мереж, особливості їх використання для вирішення практичних завдань. Рецепторна структура сприйняття інформації. Перцептрон як модель розпізнавання. Задача моделювання штучної нейронної мережі з розпаралелюванням процесів.
дипломная работа [2,8 M], добавлен 24.07.2013Характеристика особливостей побудови біологічних та штучних нейронних мереж. Вивчення їх активіаційних функцій: порогової бінарної, лінійної обмеженої, гіперболічного тангенса. Персептрони і зародження штучних нейромереж. Багатошарові нейронні мережі.
реферат [1,2 M], добавлен 11.06.2010Використання методів обробки сигналів, які базуються на використанні малохвильової теорії. Вимоги до алгоритмів компресії та критерії порівняння алгоритмів. Застосування вейвлет-перетворень. Критерії оцінювання оптимальності вибору малохвильових функцій.
реферат [1,1 M], добавлен 26.05.2019Ознайомлення із загальною структурою системи автоматичного розпізнавання мовлення. Визначення особливостей нейронних мереж. Дослідження та характеристика процесу побудови системи розпізнавання мовлення. Вивчення специфіки прихованої моделі Маркова.
дипломная работа [1,1 M], добавлен 25.07.2022Призначення пакету Forecast Expert, його використання для прогнозування однофакторної залежності та оцінка її довірчого інтервалу. Створення фінансової моделі підприємства за допомогою Project Expert. Практична робота з програмою "Бізнес-прогноз 2.0".
контрольная работа [1,7 M], добавлен 24.05.2009Характеристика інструментів MatLab - пакету прикладних програм для числового аналізу. Основні функції та можливості програмного комплексу. Скриптова мова програмування. Побудова моделі штучної нейронної мережі за допомогою команди NNTool та її тестування.
лабораторная работа [215,8 K], добавлен 11.06.2015