Модификация генетического алгоритма на основе элитарного отбора для поиска параметров биологически обоснованных моделей нейронов
Применение математического и численного моделирования в нейробиологии. Оптимизация параметров биологически обоснованной модели нейрона методом генетического алгоритма. Основные преимущества элитарного отбора без сходимости решения в локальных оптимумах.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 08.02.2013 |
Размер файла | 416,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Описание принципа работы генетического алгоритма, проверка его работы на функции согласно варианту на основе готовой программы. Основные параметры генетического алгоритма, его структура и содержание. Способы реализации алгоритма и его компонентов.
лабораторная работа [20,2 K], добавлен 03.12.2014Этапы работы генетического алгоритма, область его применения. Структура данных, генерация первоначальной популяции. Алгоритм кроссинговера - поиск локальных оптимумов. Селекция особей в популяции. Техническое описание программы и руководство пользователя.
реферат [1014,2 K], добавлен 14.01.2016Оптимизация показателей эффективности функционирования технологического контура системы управления космическим аппаратом, исследование свойств его показателей. Настройка нейронной сети, гибридизация генетического алгоритма с алгоритмами локального поиска.
дипломная работа [4,5 M], добавлен 02.06.2011Расчет тепловой схемы с применением методов математического моделирования. Разработка алгоритма реализации модели. Составление программы для ПЭВМ, ее отладка и тестирование. Проведение численного исследования и параметрическая оптимизация системы.
курсовая работа [2,8 M], добавлен 01.03.2013Содержание фундаментальной теории гена. Описание простого генетического алгоритма поиска оптимальных решений. Сущность понятий "кроссинговер", "сайт", "иллегальная рекомбинация". Этапы реализации алгоритма Девиса по перераспределению участков хромосом.
контрольная работа [23,7 K], добавлен 17.09.2010Описание формальной модели алгоритма на основе рекурсивных функций. Разработка аналитической и программной модели алгоритма для распознающей машины Тьюринга. Разработка аналитической модели алгоритма с использованием нормальных алгоритмов Маркова.
курсовая работа [1,5 M], добавлен 07.07.2013Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями.
дипломная работа [979,1 K], добавлен 30.05.2015Разработка алгоритма решения задачи численного интегрирования методом трапеции. Словесное описание и блок-схема разработанного алгоритма программы. Описание интерфейса, главного окна и основных форм программы. Проверка работоспособности программы.
курсовая работа [1,4 M], добавлен 16.03.2012Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.
дипломная работа [1,9 M], добавлен 21.06.2014Сущность интеллектуальных систем. Запись математического выражения в виде ориентированного графа. Особенности разработки генетического алгоритма для решения задачи аппроксимации логического вывода экспертной системы на основе метода сетевого оператора.
дипломная работа [1,0 M], добавлен 17.09.2013