Модификация генетического алгоритма на основе элитарного отбора для поиска параметров биологически обоснованных моделей нейронов
Применение математического и численного моделирования в нейробиологии. Оптимизация параметров биологически обоснованной модели нейрона методом генетического алгоритма. Основные преимущества элитарного отбора без сходимости решения в локальных оптимумах.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 08.02.2013 |
Размер файла | 416,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Описание принципа работы генетического алгоритма, проверка его работы на функции согласно варианту на основе готовой программы. Основные параметры генетического алгоритма, его структура и содержание. Способы реализации алгоритма и его компонентов.
лабораторная работа [20,2 K], добавлен 03.12.2014Этапы работы генетического алгоритма, область его применения. Структура данных, генерация первоначальной популяции. Алгоритм кроссинговера - поиск локальных оптимумов. Селекция особей в популяции. Техническое описание программы и руководство пользователя.
реферат [1014,2 K], добавлен 14.01.2016Оптимизация показателей эффективности функционирования технологического контура системы управления космическим аппаратом, исследование свойств его показателей. Настройка нейронной сети, гибридизация генетического алгоритма с алгоритмами локального поиска.
дипломная работа [4,5 M], добавлен 02.06.2011Расчет тепловой схемы с применением методов математического моделирования. Разработка алгоритма реализации модели. Составление программы для ПЭВМ, ее отладка и тестирование. Проведение численного исследования и параметрическая оптимизация системы.
курсовая работа [2,8 M], добавлен 01.03.2013Содержание фундаментальной теории гена. Описание простого генетического алгоритма поиска оптимальных решений. Сущность понятий "кроссинговер", "сайт", "иллегальная рекомбинация". Этапы реализации алгоритма Девиса по перераспределению участков хромосом.
контрольная работа [23,7 K], добавлен 17.09.2010Описание формальной модели алгоритма на основе рекурсивных функций. Разработка аналитической и программной модели алгоритма для распознающей машины Тьюринга. Разработка аналитической модели алгоритма с использованием нормальных алгоритмов Маркова.
курсовая работа [1,5 M], добавлен 07.07.2013Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями.
дипломная работа [979,1 K], добавлен 30.05.2015Разработка алгоритма решения задачи численного интегрирования методом трапеции. Словесное описание и блок-схема разработанного алгоритма программы. Описание интерфейса, главного окна и основных форм программы. Проверка работоспособности программы.
курсовая работа [1,4 M], добавлен 16.03.2012Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.
дипломная работа [1,9 M], добавлен 21.06.2014Сущность интеллектуальных систем. Запись математического выражения в виде ориентированного графа. Особенности разработки генетического алгоритма для решения задачи аппроксимации логического вывода экспертной системы на основе метода сетевого оператора.
дипломная работа [1,0 M], добавлен 17.09.2013