Застосування нейронних мереж у сучасних методах прогнозування енергоспоживання
Розгляд використання нейронних мереж для прогнозування енергоспоживання. Введення основних моделей нейронної мережі, яка здійснює ідентифікацію графіків. Додаткові шляхи підвищення точності прогнозування. Поточні режими електроенергетичної системи.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | украинский |
Дата добавления | 27.07.2016 |
Размер файла | 460,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.
Подобные документы
Часовий ряд як сукупність значень будь-якого показника за декілька послідовних моментів або періодів часу. Знайомство з методами для прогнозування часового ряду за допомогою штучних нейронних мереж. Розгляд головних задач дослідження часового ряду.
контрольная работа [1,1 M], добавлен 14.09.2014Застосування нейронних мереж при вирішенні різних технічних проблем. Архітектура штучних нейронних мереж. Дослідження штучного інтелекту. Гіпотеза символьних систем. Представлення за допомогою символів. Синтаксичний та семантичний аналіз розуміння мови.
курсовая работа [985,8 K], добавлен 14.01.2010Навчання штучних нейронних мереж, особливості їх використання для вирішення практичних завдань. Рецепторна структура сприйняття інформації. Перцептрон як модель розпізнавання. Задача моделювання штучної нейронної мережі з розпаралелюванням процесів.
дипломная работа [2,8 M], добавлен 24.07.2013Специфіка застосування нейронних мереж. Огляд програмних засобів, що використовують нейронні мережі. Побудова загальної моделі згорткової нейронної мережі. Реалізація нейромережного модулю розпізнавання символів на прикладі номерних знаків автомобілів.
дипломная работа [3,4 M], добавлен 15.03.2022Топології нейронної мережі та їх застосування, варіанти вибору архітектури мереж, число проміжних шарів і число елементів, архітектури мереж користувачів. Мережі для задач з багатьма класами, операція додавання матриці втрат, багатошаровий перцептрон.
контрольная работа [227,3 K], добавлен 21.06.2011Вивчення архітектури, методів тактування, режимів зниженого енергоспоживання сучасних мікроконтролерів. Організація та режим роботи послідовних периферійних інтерфейсів. Розгляд функціонального призначенням програмного забезпечення Monitor для УНМС-2.
отчет по практике [933,6 K], добавлен 15.02.2010Характеристика інструментів MatLab - пакету прикладних програм для числового аналізу. Основні функції та можливості програмного комплексу. Скриптова мова програмування. Побудова моделі штучної нейронної мережі за допомогою команди NNTool та її тестування.
лабораторная работа [215,8 K], добавлен 11.06.2015Характеристика особливостей побудови біологічних та штучних нейронних мереж. Вивчення їх активіаційних функцій: порогової бінарної, лінійної обмеженої, гіперболічного тангенса. Персептрони і зародження штучних нейромереж. Багатошарові нейронні мережі.
реферат [1,2 M], добавлен 11.06.2010Історія досліджень, пов’язаних з розпізнаванням образів, його практичне використання. Методи розпізнавання образів: метод перебору, глибокий аналіз характеристик образу, використання штучних нейронних мереж. Характерні риси й типи завдань розпізнавання.
реферат [61,7 K], добавлен 23.12.2013Основні поняття теорії нечіткої логіки. Прогнозування економічних процесів та курсу валюти на фінансовому ринку. Системи та алгоритми нечіткого виводу. Адаптивні системи нейро-нечіткого виводу. Процес розробки і перевірки нечіткої моделі гібридної мережі.
курсовая работа [3,1 M], добавлен 19.06.2014