Застосування нейронних мереж у сучасних методах прогнозування енергоспоживання

Розгляд використання нейронних мереж для прогнозування енергоспоживання. Введення основних моделей нейронної мережі, яка здійснює ідентифікацію графіків. Додаткові шляхи підвищення точності прогнозування. Поточні режими електроенергетичної системи.

Рубрика Программирование, компьютеры и кибернетика
Предмет Електрифікація та автоматизація гірничих робіт
Вид статья
Язык украинский
Прислал(а) Тишевич Б.
Дата добавления 27.07.2016
Размер файла 460,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Часовий ряд як сукупність значень будь-якого показника за декілька послідовних моментів або періодів часу. Знайомство з методами для прогнозування часового ряду за допомогою штучних нейронних мереж. Розгляд головних задач дослідження часового ряду.

    контрольная работа [1,1 M], добавлен 14.09.2014

  • Застосування нейронних мереж при вирішенні різних технічних проблем. Архітектура штучних нейронних мереж. Дослідження штучного інтелекту. Гіпотеза символьних систем. Представлення за допомогою символів. Синтаксичний та семантичний аналіз розуміння мови.

    курсовая работа [985,8 K], добавлен 14.01.2010

  • Навчання штучних нейронних мереж, особливості їх використання для вирішення практичних завдань. Рецепторна структура сприйняття інформації. Перцептрон як модель розпізнавання. Задача моделювання штучної нейронної мережі з розпаралелюванням процесів.

    дипломная работа [2,8 M], добавлен 24.07.2013

  • Специфіка застосування нейронних мереж. Огляд програмних засобів, що використовують нейронні мережі. Побудова загальної моделі згорткової нейронної мережі. Реалізація нейромережного модулю розпізнавання символів на прикладі номерних знаків автомобілів.

    дипломная работа [3,4 M], добавлен 15.03.2022

  • Топології нейронної мережі та їх застосування, варіанти вибору архітектури мереж, число проміжних шарів і число елементів, архітектури мереж користувачів. Мережі для задач з багатьма класами, операція додавання матриці втрат, багатошаровий перцептрон.

    контрольная работа [227,3 K], добавлен 21.06.2011

  • Вивчення архітектури, методів тактування, режимів зниженого енергоспоживання сучасних мікроконтролерів. Організація та режим роботи послідовних периферійних інтерфейсів. Розгляд функціонального призначенням програмного забезпечення Monitor для УНМС-2.

    отчет по практике [933,6 K], добавлен 15.02.2010

  • Характеристика інструментів MatLab - пакету прикладних програм для числового аналізу. Основні функції та можливості програмного комплексу. Скриптова мова програмування. Побудова моделі штучної нейронної мережі за допомогою команди NNTool та її тестування.

    лабораторная работа [215,8 K], добавлен 11.06.2015

  • Характеристика особливостей побудови біологічних та штучних нейронних мереж. Вивчення їх активіаційних функцій: порогової бінарної, лінійної обмеженої, гіперболічного тангенса. Персептрони і зародження штучних нейромереж. Багатошарові нейронні мережі.

    реферат [1,2 M], добавлен 11.06.2010

  • Історія досліджень, пов’язаних з розпізнаванням образів, його практичне використання. Методи розпізнавання образів: метод перебору, глибокий аналіз характеристик образу, використання штучних нейронних мереж. Характерні риси й типи завдань розпізнавання.

    реферат [61,7 K], добавлен 23.12.2013

  • Основні поняття теорії нечіткої логіки. Прогнозування економічних процесів та курсу валюти на фінансовому ринку. Системи та алгоритми нечіткого виводу. Адаптивні системи нейро-нечіткого виводу. Процес розробки і перевірки нечіткої моделі гібридної мережі.

    курсовая работа [3,1 M], добавлен 19.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.