Основы информатики
Понятия информации, информационного процесса и информационного общества. Архитектура компьютера, и краткие характеристики его устройства. Классификация программного обеспечения компьютера, возможности и принципы работы с операционной системой Windows XP.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 18.10.2014 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Рис. 2.11. Принципиальное устройство электроннолучевой трубки монитора
В ЭЛТ используется поток электронов, сфокусированных в узкий пучок, управляемый по интенсивности и по положению в пространстве. Электронный пучок испускается электронным прожектором (точнее, катодом), а изменение положения пучка на кране производится отклоняющей системой.
Перемещение электронного луча по экрану ЭЛТ в соответствии с определенным законом называется разверткой, а рисунок, прочерченный следом пучка на экране, - растром. Развертка осуществляется подачей на отклоняющую систему ЭЛТ периодически изменяющихся напряжений. В ходе развертки электронный пучок последовательно обегает по строчкам поверхность экрана ЭЛТ. В процессе сканирования поток электронов движется по зигзагообразной траектории от левого верхнего угла экрана к нижнему правому углу.
Экран покрыт люминофором, поэтому в местах падения электронного пучка появляется свечение, яркость которого пропорциональна интенсивности пучка. Интенсивность потока электронов изменяется в соответствии с сигналами, подаваемыми на управляющий электрод - модулятор. Именно эти сигналы формируют необходимое изображение на экране дисплея. С помощью отклоняющей системы модулированный пучок электронов развертывается в растр, высвечивая на экране строку за строкой. Изображение воспроизводится кадр за кадром. Благодаря инерционности зрения человек видит на экране слитное, динамическое, изображение.
В цветных мониторах для формирования изображения применяют отдельные пушки для каждого из основных цветов (Red - красный, Green - зеленый, Blue - синий), а слой люминофора составляют из близко расположенных группами по три (также в сочетании Red, Green, Blue - RGB) точек цветного люминофора.
Мониторы на ЭЛТ (рис. 2.12) являются источником высокого статического напряжения, электромагнитного излучения и мягкого рентгеновского излучения, которые оказывают неблагоприятное воздействие на пользователя. Наиболее интенсивны электромагнитные и другие излучения в области задней стенки корпуса монитора.
Экраны на плоских панелях могут быть основаны на нескольких технологиях:
ь жидких кристаллах (LCD);
ь плазменных (PDP);
ь светодиодных элементах (LED);
ь электронной эмиссии (FED)
ь и других.
Рис. 2.12. Внешний вид ЭЛТмонитора
Жидкокристаллические мониторы (LCD - Liquid Crystal Display) имеют панели, ячейки (пикселы) которых содержат жидкие вещества, обладающие некоторыми свойствами, присущими кристаллам (рис. 2.13). Молекулы жидких кристаллов под воздействием электрического поля могут изменять свою ориентацию и вследствие этого изменять свойства светового луча, проходящего сквозь них.
Рис. 2.13. Внешний вид ЖКмонитора
ЖКпанель имеет несколько слоев, среди которых ключевую роль играют две стеклянные подложки и находящийся между ними слой жидких кристаллов. На подложках проделаны параллельные бороздки, определяющие ориентацию жидких кристаллов. Бороздки двух подложек перпендикулярны между собой. Молекулы жидких кристаллов в отсутствие напряжения под воздействием источника проходящего или падающего света поворачивают плоскость поляризации на угол 90°, что обеспечивает совпадение с ориентацией бороздок. При появлении электрического поля ЖК-молекулы выстраиваются вдоль поля, и угол поворота плоскости поляризации света становится отличным от 90°. Поворот плоскости поляризации светового луча незаметен для глаза, поэтому на панели устанавливают несколько поляризационных фильтров. Они пропускают только ту компоненту светового потока, у которой ось поляризации соответствует заданной. В отсутствие напряжения на сегменте углы поляризации света после прохождения ЖК-ячеек и второй подложки совпадают, и потому пиксел выглядит прозрачным. Важнейшим параметром плоско панельных дисплеев является стандартное (Native) разрешение. Оно соответствует числу пикселов по горизонтали и вертикали. Именно в стандартном разрешении ЖК-монитор воспроизводит изображение наиболее качественно. Разрешение определяется размером ячеек и диагональю панели. В настоящее время производятся панели с ячейками размером 0,24-0,3 мм.
Яркость и контрастность определяют комфортность работы с ЖК-монитором. Цветовой охват современных ЖК-панелей достигает 16,7 млн цветов. Таким образом, к преимуществам ЖК-мониторов можно отнести небольшое питающее напряжение, малую глубину панели, действительно плоское изображение (без геометрических искажений), высокие значения яркости, низкое энергопотребление, отсутствие электромагнитных излучений. Существенных недостатков четыре: высокая цена (которая динамично снижается), искажение цветов, единственный режим разрешения, обеспечивающий хорошее качество, малые углы комфортного обзора.
Мониторы, основанные на плазменных технологиях, светодиодных элементах и электронной эмиссии, пока используются редко.
2.3.6.2 Принтеры
Принтер предназначен для вывода текстовой и графической информации на твердый носитель, в основном - на бумагу. Для уменьшения загруженности компьютера, под управлением которого они работают, принтеры имеют собственный узкоспециализированный процессор и оперативную память (буфер), в которую помещается полностью или частично информация, выводимая на печать.
Принтеры классифицируются по пяти основным позициям:
ь принципу работы печатающего механизма,
ь максимальному формату листа бумаги,
ь использованию цветной печати,
ь наличию или отсутствию аппаратной поддержки языка PostScript (см. пункт 1.5.4),
ь рекомендуемой месячной нагрузке, которая взаимосвязана со скоростью печати.
По принципу действия принтеры делятся на:
ь матричные,
ь струйные,
ь лазерные,
ь и другие.
Струйные и лазерные принтеры могут быть монохромными или цветными. Для каждого класса принтеров существуют основные стандарты протокола обмена и систем команд. Для матричных принтеров основными являются стандарты фирм IBM и Epson, для струйных - фирмы Hewlett Packard, для лазерных - фирмы Hewlett Packard и язык описания страниц PostScript.
Матричные принтеры являются принтерами ударного действия. Печатающая головка матричного принтера состоит из вертикального столбца маленьких стержней, которые под воздействием магнитного поля «выталкиваются» из головки и ударяют по бумаге через красящую ленту. Перемещаясь, печатающая головка оставляет на бумаге строку символов. Недостатками матричных принтеров являются медленная печать, много шума при печати и качество печати. Достоинства матричных принтеров определяются способностью работать с любой бумагой и низкой стоимостью печати.
Рис. 2.14. Разные модели струйных принтеров
В струйных принтерах (рис. 2.14) используется чернильная печатающая головка, которая под давлением выбрасывает чернила из ряда мельчайших отверстий на бумагу. Печатающая головка струйного принтера содержит от 12 до 64 сопел, диаметры которых тоньше человеческого волоса. Перемещаясь вдоль бумаги, печатающая головка оставляет строку символов или полоску изображения.
Известно несколько принципов действия струйных печатающих головок.
В одной из конструкций на входном конце каждого сопла расположен маленький резервуар с чернилами. Позади резервуара располагается нагреватель (тонкопленочный резистор). Когда резистор нагревается проходящим по нему током до температуры 500°С, окружающие его чернила вскипают, образуя пузырек пара. Этот расширяющийся пузырек выталкивает из сопла капли чернил диаметром 50-85 мкм со скоростью около 700 км/ч.
В другой конструкции печатающей головки источником давления служит мембрана, приводимая в движение пьезоэлектрическим способом.
Во всех конструкциях принтеров электромеханические устройства перемещают печатающие головки и бумагу таким образом, чтобы печать происходила в нужном месте.
Струйные принтеры печатают достаточно быстро, производят мало шума. Качество печати определяется разрешающей способностью струйных принтеров, которая составляет 600 dpi и выше. Символы dpi означают число точек на дюйм (dot per inch). Однако они очень требовательны к бумаге. На бумаге низкого качества чернила расплываются. Также полученное изображение чувствительно к действию влаги.
Свет
Свет
Свет
Свет
В лазерных принтерах (рис. 2.15) используется электрографический принцип создания изображения. Процесс печати включает в себя создание невидимого рельефа электростатического потенциала в слое полупроводника с последующей его визуализацией. Визуализация осуществляется с помощью частиц сухого порошка - тонера, наносимого на бумагу. Тонер представляет собой кусочки железа, покрытые пластиком. Наиболее важными частями лазерного принтера являются полупроводниковый барабан, лазер и прецизионная оптикомеханическая система, перемещающая луч (рис. 2.16).
Рис. 2.15. Внешний вид лазерных принтеров
Рис. 2.16. Принцип работы лазерного принтера
Лазер генерирует тонкий световой луч, который, отражаясь от вращающегося зеркала, формирует электронное изображение на светочувствительном полупроводниковом барабане.
Поверхности барабана предварительно сообщается статический заряд. Для получения изображения на барабане лазер должен включаться и выключаться, что обеспечивается схемой управления. Вращающееся зеркало служит для разворота луча лазера в строку, формируемую на поверхности барабана. Поворот барабана на новую строку осуществляет позиционный шаговый двигатель. Процесс развертки изображения на барабане во многом напоминает построение изображения на экране монитора (создание растра).
Когда луч лазера попадает на предварительно заряженный барабан, заряд «стекает» с освещенной поверхности. Освещаемые и неосвещаемые лазером участки барабана имеют разный заряд. В результате сканирования всей поверхности полупроводникового барабана на нем создается скрытое (электронное, не видимое для человека) изображение.
На следующем этапе работы принтера происходит проявление изображения, т.е. превращение скрытого электронного изображения в видимое изображение. Заряженные частицы тонера притягиваются только к тем местам барабана, которые имеют противоположный заряд по отношению к заряду тонера.
Когда видимое изображение на барабане построено, и он покрыт тонером в соответствии с оригиналом, подаваемый лист бумаги заряжается таким образом, что тонер с барабана притягивается к бумаге. Прилипший порошок закрепляется на бумаге за счет нагрева частиц тонера до температуры плавления. В результате этих операций формируется водоупорный отпечаток.
Цветные лазерные принтеры формируют изображение, последовательно накладывая голубой, пурпурный, желтый и черный тонеры на фоточувствительный барабан. Принтер работает в четырехпроходном режиме, поэтому скорость печати цветного принтера существенно меньше, чем чёрно-белого принтера.
Лазерные принтеры обеспечивают практически бесшумную печать, высокую скорость печати, которая достигается постраничной печатью. Страница печатается целиком. Разрешающая способность лазерных принтеров достигает 1200 dpi и выше.
Кроме лазерных принтеров, существуют так называемые LEDпринтеры (Light Emitting Diode), которые получили свое название изза того, что полупроводниковый лазер в них заменен «гребенкой» (линейкой) светодиодов. Изображение одной строки на полупроводниковом барабане формируется одновременно.
Цветные лазерные принтеры пока не идеальны. Для получения цветного изображения с качеством, близким к фотографическому, используют термические принтеры или, как их еще называют, цветные принтеры высокого класса. В настоящее время распространение получили три технологии цветной термопечати: струйный перенос расплавленного красителя (термопластичная печать); контактный перенос расплавленного красителя (термовосковая печать); термоперенос красителя (сублимационная печать).
Скорость печати термических принтеров вследствие инерционности тепловых эффектов невысокая. Для сублимационных принтеров от 0,1 до 0,8 страниц в минуту, а для термо-восковых - 0,5 - 4 страницы в минуту.
При работе принтера требуется подача команд на перевод строки и возврат каретки, на продвижение бумаги на один шаг, на регулировку величины шага и т.д. Некоторые принтеры допускают обратное перемещение бумаги. Для печати символов используются шрифты, встроенные в постоянную память принтера или загружаемые из компьютера в оперативную память принтера. Встроенные шрифты не обеспечивают разнообразие и не всегда содержат символы кириллицы, поэтому чаще используются загружаемые шрифты.
Принтер может подключаться к последовательному порту, для обеспечения большей скорости печати чаще подключается к параллельному порту.
2.3.6.3 Другие устройства вывода
Плоттером (графопостроителем) называется устройство для вывода широкоформатной графической информации на бумагу (плакатов, чертежей, электрических и электронных схем и т.п.). Принцип действия плоттеров такой же, как и у струйных принтеров. Принципиальным отличием плоттера от принтера является способность наносить непрерывные линии. Плоттеры характеризуются максимальным форматом бумаги и возможностями цветопередачи. Подключаются к компьютеру через параллельный порт.
Вывод звуковой информации осуществляется с помощью акустических колонок и головных телефонов, которые подключаются через специальный адаптер (контроллер, звуковую плату).
Модем - устройство для передачи цифровой информации по телефонным или выделенным каналам связи. Подключается к компьютеру через последовательный порт (внешний модем) или включается в разъем системной платы (внутренний модем). По техническим характеристикам внешние и внутренние модемы практически не отличаются. Модемы обмениваются между собою правилами, набор которых называется протоколом. Наиболее важными параметром модема являются максимальная скорость передачи (пропускная способность) в бодах (1 бод = 1 бит/с), методы коррекции ошибок и сжатия данных. Реальная скорость передачи ограничивается качеством подключенного канала связи и может быть существенно меньше максимальной.
Сетевая карта - устройство для высокоскоростного межкомпьютерного обмена цифровой информацией на небольших расстояниях, включается в системную плату компьютера. Она связана с аналогичным устройством другого компьютера высокочастотной линией. При отсутствии в компьютере загрузочного диска сетевая карта обеспечивает загрузку операционной системы с другого компьютера.
2.3.7 Устройства ввода
Универсальным устройством ввода информации является клавиатура, с помощью которой вводятся алфавитно-цифровые данные и реализуется управление работой компьютера. Стандартная клавиатура имеет 101 клавишу и подключается к специальному разъему на задней панели системного блока.
Для ввода графической информации наиболее распространенными устройствами являются оптико-механические манипуляторы мышь и трекбол. В них рабочим органом является металлический шар, покрытый резиной (рис. 2.17). У мыши он вращается при перемещении ее корпуса по горизонтальной поверхности, а у трекбола вращается непосредственно рукой. Вращение шара передается двум пластмассовым валам, положение которых с большой точностью считывается инфракрасными оптопарами (парами «свето-излучатель - фотоприемник») и затем преобразуется в электрический сигнал, управляющий движением указателя мыши на экране.
Рис. 2.17. Принцип действия манипулятора мышь
Мышь содержит две или три клавиши и датчики перемещения в двух взаимно перпендикулярных направлениях. Имеются мыши с дополнительной кнопкой, которая располагается посередине основных кнопок. Эта кнопка предназначена для прокрутки вверх или вниз изображения и текста. Мышь работает под управлением специальной программы - драйвера, например mouse.com, и подключается либо к последовательному порту компьютера, либо к специальному разъему PS/2, либо к USBпорту.
К устройству ввода относится и TouchPad (тачпад), представляющий собой прямоугольную панель, чувствительную к нажатию, пальцев. Прикоснувшись пальцем к поверхности тачпада и перемещая его, пользователь маневрирует курсором так же, как и при использовании мыши. Нажатие на поверхность тачпада равносильно нажатию кнопки мыши. Это устройство выполняет ту же роль, что и мышь, но не требует пространственного перемещения, обычно используется в портативных компьютерах.
В играх часто используется джойстик - рычаг, с помощью которого можно направлять, например, самолет вправо, влево, вверх, вниз.
При выборе предметов (например, в магазине) человек порой показывает на нужный объект пальцем. Именно таким образом вводится информация в ЭВМ с помощью сенсорных экранов (СЭ).
По принципу действия СЭ разделяются на ультразвуковые, фотоэлектрические, резистивные и емкостные экраны. Главная задача СЭ состоит в определении координаты прикосновения пальца к экрану. Определив координату, дальше можно с помощью меню управлять работой ЭВМ.
В ультразвуковых СЭ по краям экрана размещаются ультразвуковые преобразователи (датчики), которые создают на поверхности экрана акустические волны. Ультразвуковые колебания расходятся по стеклу монитора подобно кругам на воде. Ультразвуковые преобразователи одновременно выполняют функции передатчика и приемника акустических волн. Время прохождения от передатчика до приемника постоянно, если акустическая волна не наталкивается на какой-либо возмущающий объект (палец). Точку прикосновения можно достаточно точно определить методом эхолокации путем измерения времени прихода отраженных волн. Аналогично в аэропорту радиолокатор определяет расстояние до самолета.
В фотоэлектрическом СЭ монитор освещается линейками светодиодов, расположенными по нижнему и правому краям дисплея. С левой и верхней сторон экрана установлены линейки фотодиодов. В результате образуется матрица из световых лучей, затемнение которых позволяет определить вертикальную и горизонтальную координаты прикосновения к экрану.
Емкостные СЭ представляют собой матрицу конденсаторов, которые меняют свою емкость в месте прикосновения к экрану. В резистивных СЭ измеряется электрическое сопротивление двух соприкасающихся пленок.
Световое перо представляет собой устройство в форме карандаша, принимающее свет от люминофора дисплея. Чувствительным элементом является фотодиод или фототранзистор. Подсчет числа строк растра позволяет определить вертикальную координату, а отсчет времени от начала формирования строки до момента срабатывания пера дает координату по горизонтали. Для ввода рисунков сложной формы используется режим, при котором под кончиком светового пера формируется светящаяся траектория (контур).
Цифровые (графические) планшеты - диджитайзеры обеспечивают перенос изображения с накладываемого листа бумаги в ЭВМ с помощью перемещения по планшету специального указателя. Диджитайзеры позволяют создавать чертежи сразу в электронном виде. Работа с графическим планшетом аналогична рисованию карандашом. Особенно они удобны для формирования штриховых рисунков и чертежей.
У графического планшета высокая разрешающая способность (свыше 2500 dpi против 200-400 dpi у мыши).
При контакте с поверхностью планшета указатель обретает чувствительность к нажатию (256 уровней или градаций) и наклону относительно плоскости планшета.
Сканером называется устройство для ввода в компьютер графической информации: фотографий, рисунков, слайдов, а также текстовых документов. В нем яркость (или цветовой оттенок) каждой точки документа преобразуется в цифровой код, при этом формируется точечный графический образ страницы. Сканер исключает утомительную процедуру введения текста с помощью клавиатуры и формирование рисунка с помощью мыши. Полученную копию изображения можно редактировать: изменять масштаб, добавлять и удалять детали, изменять цвет и т.д. Электронную копию изображения можно длительное время хранить на магнитном или оптическом носителе.
Копируемое изображение освещается источником света (как правило, флуоресцентная лампа). При этом луч света осматривает (сканирует, разворачивает) каждый участок оригинала (рис. 2.18). Отраженный от бумажного листа луч света через уменьшающую линзу попадает на прибор зарядовой связи (ПЗС).
Рис. 2.18. Упрощенная конструкция сканера
На поверхности ПЗС за счет сканирования формируется уменьшенное изображение копируемого объекта. ПЗС осуществляет преобразование оптической картинки в электрические сигналы. ПЗС представляет собой матрицу (прямоугольную таблицу), которая содержит большое число полупроводниковых элементов (вплоть до 2000 2000 элементов), чувствительных к световому излучению. При этом в чернобелых штриховых сканерах на выходе освещенных элементов с помощью контроллера формируется сигнал логической единицы, а на выходе неосвещенных элементов - сигнал логического нуля. Штриховые чернобелые сканеры используются для копирования чертежей.
Существуют полутоновые чернобелые сканеры, в которых на выходе каждого элемента ПЗС с помощью аналоговоцифрового преобразователя формируется несколько (например 256) оттенков (уровней) серого цвета. Эта конструкция сканеров позволяет копировать чернобелые фотографии и рисунки.
В цветных сканерах освещение копируемого изображения осуществляется либо от трех разноцветных источников света, либо от источника белого света, но через трехцветный фильтр. При цветном сканировании происходит формирование изображения в полутоновом (сером) режиме с различными фильтрами или источниками света (красным, синим, зеленым). Сигнал с выхода каждого элемента ПЗС кодируется восьмью битами, что дает 256 оттенков серого цвета. В результате такого преобразования можно получить более 16,7 миллиона возможных цветовых оттенков (24битное кодирование, 3 цвета по 8 битов).
По своему конструктивному исполнению сканеры бывают:
ь ручные,
ь планшетные,
ь барабанные,
ь проекционные и др.
Рис. 2.19. Ручной сканер
В ручных сканерах (рис. 2.19) перемещение чувствительного элемента по странице документа производит человек, что приводит к перекосам и ухудшению качества получаемого графического образа.
Гораздо более высокое качество и скорость ввода достигаются в настольных (планшетных) сканерах. Внешне они похожи на ксероксы. Считываемый документ располагается на поверхности стеклянной пластины, под которой перемещается сканирующая головка. С помощью таких сканеров можно сканировать не только листы, но и книги. Такие сканеры рассчитаны на ввод картинок с непрозрачных оригиналов. Сканируемый документ подсвечивается снизу лампой, а сверху накрывается крышкой, дополнительно отражающей и рассеивающей свет.
Барабанные сканеры дороги и сложны в использовании. Используются для высококачественной цветной печати. В качестве светочувствительного элемента в барабанных сканерах используется фотоэлектронный умножитель. Он располагается внутри полого стеклянного цилиндра, на поверхность которого накладывается оригинал. В ходе процесса сканирования цилиндр вращается вокруг своей оси, что дает возможность вводить изображение точка за точкой. Фотоэлектронные умножители чувствительны к незначительным изменениям яркости. Могут различать большое количество оттенков.
Сканеры характеризуются:
ь разрешающей способностью,
ь глубиной цвета,
ь максимальным форматом сканируемого документа,
ь быстродействием и способом подключения.
Разрешающая способность - это количество точек, которые сканер может различить на отрезке единичной длины, измеряется в единицах dpi. Существуют две величины разрешения: в горизонтальном и вертикальном направлениях. Разрешение по ширине определяется свойствами чипа ПЗС (количеством светочувствительных элементов в линейке). В вертикальном направлении разрешающая способность зависит от шага ее перемещения и равна количеству позиций, которые может занимать сканирующая головка. Существуют сканеры, разрешение которых составляет
600 1200 dpi.
Глубина цвета - это число разрядов, отводимых для кодирования цвета каждой точки. Измеряется в битах. От этого зависит количество оттенков, которые можно закодировать двоичным числом соответствующей разрядности.
Скорость процесса сканирования зависит от большого количества факторов. Имеют значения характеристики механизмов сканера и характеристики компьютера, к которому он подключен. Поэтому скорость сканирования обычно измеряется эмпирически.
Полученная от сканера цифровая информация может либо обрабатываться как графический образ, либо преобразовываться в текст.
Использование сканера совмещается с системами распознавания образов типа OCR (Optical Character Recognition). Система OCR распознает считанные сканером с документа мозаичные портреты символов (букв, цифр, знаков препинания) и преобразует их в байты в соответствии с кодовой таблицей. За счет системы OCR можно считывать машинописный и рукописный тексты. Правда, в последнем случае привлекаются сложные алгоритмы распознавания образов, основанные на теории искусственного интеллекта.
Сканеры подключаются к параллельному или USB портам компьютера.
Ввод объемных изображений (зданий, автомобилей и т.д.) в ЭВМ осуществляется с помощью цифровых камер. Цифровые камеры (видеокамеры и фотоаппараты), позволяют получать видеоизображение и фотоснимки непосредственно в цифровом коде. Цифровые видеокамеры могут быть постоянно подключены к компьютеру и обеспечивать запись видеоизображения на жесткий диск или его передачу по компьютерным сетям.
Цифровые фотоаппараты позволяют получать высококачественные фотографии, для хранения которых используются специальные модули памяти или жесткие диски очень маленького размера. Запись изображения на жесткий диск компьютера может осуществляться с помощью подключения камеры к USB порту компьютера.
При установке в компьютер специальной платы -ТВтюнера и подключении его ко входу телевизионной антенны можно просматривать телевизионные передачи непосредственно на компьютере.
В будущем работой ЭВМ будут управлять преимущественно голосом, с помощью микрофона. Звуковая карта (рис. 2.20) преобразовывает звук из аналоговой формы в цифровую. Для ввода звуковой информации используется микрофон, который подключается ко входу звуковой карты. Некоторые звуковые карты имеют GAMEпорт, к которому подключаются джойстики. Обычно звуковая карта может синтезировать звук, в ее памяти хранятся звуки различных музыкальных инструментов, которые она может воспроизводить.
Рис. 2.20. Звуковая карта Sound Blaster Live
На звуковой карте устанавливаются аналого-цифровой и цифроаналоговый преобразователи, аналоговый микшер, усилитель, устройства коммутации сигналов и дополнительный порт для подключения цифрового канала накопителя CD. Звуковые карты отличаются частотой дискретизации сигнала, разрядностью цифрового и наличием/отсутствием аналогового стереоканала.
Термин «мультимедиа» происходит от латинского слова «media» - среда или носитель информации. Таким образом, мультимедиа - это возможность работы со звуком и видеоинформацией. Мультимедиа-программа - это программа, использующая звуковые и анимационные средства. Мультимедийные компьютеры способны выполнять эти программы.
К устройствам мультимедиа относятся накопители на компакт-дисках (лазерные дисководы - CDROM, DVDROM), звуковые карты и графические ускорители.
Практически повсеместным стандартом стало внедрение формата обработки звука Dolby Digital 5.1. Это означает, что компьютер способен работать в звуковой среде, прежде характерной только для аппаратуры класса HiFi. Подключив к звуковой карте по цифровому выходу комплект колонок высокого класса, пользователь получает полноценный звук для домашнего электронного театра по цене ниже, чем самые дешевые системы бытового класса.
2.4 Основные типы компьютеров. Конфигурации персональных компьютеров
На компьютерном рынке сложилось следующее разделение конфигураций персональных компьютеров.
Рабочая станция (Work Station) представляет собой мощный компьютер, основанный обычно на двухпроцессорной платформе, оснащенный максимальным объемом быстрой оперативной памяти, массивом жестких дисков и часто включенный в локальную сеть предприятия. В зависимости от решаемых задач рабочие станции бывают графическими, для научных расчетов или иного назначения.
Графическую рабочую станцию комплектуют 3Dвидеокартой профессионального класса, устройствами оцифровки и захвата сигналов телевизионного формата, высокоточными сканерами и другим необходимым оборудованием.
Настольный компьютер (Desktop) предусматривает самый обширный спектр возможных конфигураций как платформы, так и дополнительных устройств.
Принято классифицировать настольные компьютеры по предназначению или по производительности. По назначению компьютеры подразделяют на
ь офисные,
ь домашние,
ь игровые,
ь дизайнерские.
По производительности различают компьютеры
ь начального уровня (Easy PC),
ь среднего уровня (Mainstream),
ь высшего класса (High End).
Офисный компьютер ориентирован на работу с программами офисного класса, может подключаться к локальной сети. Офисный компьютер не отличается высокой производительностью. Главное требование к нему - надежность.
Домашний компьютер обычно используют для развлечений и выполнения не слишком сложных учебных (рабочих) заданий. Мультимедийная направленность домашнего ПК выражается в оснащении его процессором и видеокартой среднего класса, приводом DVD, качественным монитором и комплектом хорошей акустики. Зачастую предусматривается подключение компьютера к телевизору для просмотра фильмов в форматах MPEG4 и DVD на экране ТВ. Непременным условием является подключение к Интернету через модем или сетевую карту. Дополнительным оборудованием для домашнего компьютера являются ТВтюнер, сканер, струйный фотопринтер, WEBкамера.
Игровой компьютер требует наличия самой мощной графической подсистемы. Поэтому главным его элементом является графическая карта и адекватный потребностям процессор при достаточном объеме оперативной памяти. Игровой компьютер дополнительно комплектуют джойстиком, рулем (штурвалом), педалями, устройствами виртуальной реальности (шлемы, очки, перчатки).
Дизайнерский компьютер предназначен для выполнения сложных графических работ (кроме 3Dграфики кинематографического уровня) и обработки видео в режиме реального времени. По сути, это рабочая станция начального уровня в достаточно компактном исполнении. Конкретная конфигурация дизайнерского ПК зависит от специфики решаемых задач. Для работы с 3Dграфикой требуется мощная видеокарта, для работы с видео -- самый производительный процессор и так далее.
Ноутбук (Notebook) является переносным персональным компьютером. Помимо компактных габаритов ноутбук отличается от настольного компьютера возможностью работы от аккумуляторов. Автономное функционирование обусловило высокие требования к режиму энергопотребления компонентов. Обычно в ноутбуках используют специальные модификации процессоров, графических чипсетов, жестких дисков с низким энергопотреблением и автоматическим регулированием производительности в зависимости от решаемой задачи.
Обычно ноутбуки классифицируют по размеру диагонали дисплея и числу «шпинделей» (отдельных приводов: жесткий диск, дисковод CDROM, дисковод гибких дисков и др.). Например, выражение «двух-шпиндельный» ноутбук подразумевает наличие в компьютере жесткого диска и еще одного дисковода (чаще комбинированного привода DVD/CDRW).
Настольный ноутбук (DeskNote). Этот класс компьютеров возник и развился в 2002 году. Его отличие от ноутбуков заключается в отсутствии аккумуляторов (и, как следствие, невозможности автономной работы), использовании процессоров для обычных настольных ПК, а иногда и адаптеров 3Dграфики высокого класса.
Планшетный ПК (Tablet PC) характеризуется наличием отдельного сенсорного дисплея с возможностью рукописного ввода и специального электронного пера. Некоторые модели комплектуются клавиатурой, трекболом, приводом CDROM, жестким диском.
Карманный ПК (Personal Digital Assistant, PDA) примыкает к товарной нише персональных компьютеров. Невысокая производительность, ограниченный набор программ и неудобный интерфейс пользователя сужают сферу применения КПК. Однако многие КПК позволяют подключаться к настольному компьютеру для переноса данных: телефонного справочника, записной книжки и прочих, позволяют читать литературные произведения в электронном виде, просматривать видео и т.д.
Персональные компьютеры являются наиболее широко используемыми, их мощность постоянно увеличивается, область применения расширяется. Однако их возможности ограничены, и для решения специфичных задач, требующих объемных вычислений, высочайшего быстродействия, применяют «неперсональные» компьютеры: суперЭВМ, большие ЭВМ (мэйнфреймы), миниЭВМ.
3. Программное обеспечение вычислительной техники
3.1 Классификация программного обеспечения
В компьютере уживаются «тело» и «душа». «Тело» компьютера - это его «железная», аппаратная часть (hardware). Аппаратные средства современных персональных компьютеров представляют собой совокупность электронных, электромеханических, электромагнитных и электронно-оптических устройств. «Душа» - это оживляющие эту груду железа прикладные и системные программы (software).
Совокупность программ, необходимых для обработки данных, называется программным обеспечением ПК.
Числовая, текстовая, графическая и звуковая информация должна быть представлена и обработана на компьютере в форме данных. Данные хранятся и обрабатываются на машинном языке, т.е. в виде последовательности нулей и единиц. Данные - это информация, представленная в форме, пригодной для ее передачи и обработки с помощью компьютера.
Программы - это упорядоченные последовательности команд. Команда - это элементарная инструкция, предписывающая компьютеру выполнить ту или иную операцию. Конечная цель любой компьютерной программы - управление аппаратными средствами. Даже если на первый взгляд программа никак не взаимодействует с оборудованием, не требует никакого ввода данных с устройств ввода и не осуществляет вывод данных на устройства вывода, все равно ее работа основана на управлении аппаратными устройствами компьютера.
Программное и аппаратное обеспечение в компьютере работают в неразрывной связи и в непрерывном взаимодействии. Между ними существует диалектическая связь, и раздельное их рассмотрение является условным.
Состав программного обеспечения вычислительной системы называют программной конфигурацией. Между программами, как и между физическими узлами и блоками существует взаимосвязь - многие программы работают, опираясь на другие программы более низкого уровня. Существует межпрограммный интерфейс. Возможность существования такого интерфейса тоже основана на существовании технических условий и протоколов взаимодействия, а на практике он обеспечивается распределением программного обеспечения на несколько взаимодействующих между собой уровней. Уровни программного обеспечения представляют собой пирамидальную конструкцию (рис. 3.1). Каждый следующий уровень опирается на программное обеспечение предшествующих уровней. Такое членение удобно для всех этапов работы с вычислительной системой, начиная с установки программ до практической эксплуатации и технического обслуживания. Каждый вышележащий уровень повышает функциональность всей системы. Так, например, вычислительная система с программным обеспечением базового уровня не способна выполнять большинство функций, но позволяет установить системное программное обеспечение.
Рис. 3.1. Уровни программного обеспечения
Самый низкий уровень программного обеспечения представляет базовое программное обеспечение. Оно отвечает за взаимодействие с базовыми аппаратными средствами. Как правило, базовые программные средства непосредственно входят в состав базового оборудования и хранятся в постоянном запоминающем устройстве (ПЗУ). Программы и данные записываются («прошиваются») в микросхемы ПЗУ на этапе производства и не могут быть изменены в процессе эксплуатации.
В тех случаях, когда изменение базовых программных средств во время эксплуатации является технически целесообразным, вместо микросхем ПЗУ применяют перепрограммируемые постоянные запоминающие устройства (ППЗУ - Erasable and Programmable Read Only Memory, EPROM). В этом случае изменение содержания ПЗУ можно выполнять как непосредственно в составе вычислительной системы (такая технология называется флэштехнологией), так и на специальных устройствах, называемых программаторами.
Системный уровень - переходный. Программы, работающие на этом уровне, обеспечивают взаимодействие прочих программ компьютерной системы с программами базового уровня и непосредственно с аппаратным обеспечением, то есть выполняют «посреднические» функции.
От программного обеспечения этого уровня во многом зависят эксплуатационные показатели всей вычислительной системы в целом. Так, например, при подключении к вычислительной системе нового оборудования на системном уровне должна быть установлена программа, обеспечивающая для других программ взаимосвязь с этим оборудованием. Конкретные программы, отвечающие за взаимодействие с конкретными устройствами, называются драйверами устройств - они входят в состав программного обеспечения системного уровня.
Другой класс программ системного уровня отвечает за взаимодействие с пользователем. Благодаря этим программам пользователь получает возможность вводить данные в вычислительную систему, управлять ее работой и получать результат в удобной для себя форме. Эти программные средства называют средствами обеспечения пользовательского интерфейса. От них напрямую зависит удобство работы с компьютером и производительность труда на рабочем месте.
Совокупность программного обеспечения системного уровня образует ядро операционной системы компьютера. Полное понятие операционной системы мы рассмотрим несколько позже, а здесь только отметим, что если компьютер оснащен программным обеспечением системного уровня, то он уже подготовлен к установке программ более высоких уровней, к взаимодействию программных средств с оборудованием и, самое главное, к взаимодействию с пользователем. То есть наличие ядра операционной системы - непременное условие для возможности практической работы человека с вычислительной системой.
Программное обеспечение служебного уровня взаимодействует как с программами базового уровня, так и с программами системного уровня. Основное назначение служебных программ (утилит) состоит в автоматизации работ по проверке, наладке и настройке компьютерной системы. Во многих случаях они используются для расширения или улучшения функций системных программ. Некоторые служебные программы (как правило, это программы обслуживания) изначально включают в состав операционной системы, но большинство служебных программ являются для операционной системы внешними и служат для расширения ее функций.
В разработке и эксплуатации служебных программ существует два альтернативных направления: интеграция с операционной системой и автономное функционирование. В первом случае служебные программы могут изменять потребительские свойства системных программ, делая их более удобными для практической работы. Во втором случае они слабо связаны с системным программным обеспечением, но предоставляют пользователю больше возможностей для персональной настройки их взаимодействия с аппаратным и программным обеспечением.
Программное обеспечение прикладного уровня представляет собой комплекс прикладных программ, с помощью которых на данном рабочем месте выполняются конкретные задания. Спектр этих заданий необычайно широк - от производственных до творческих и развлекательно-обучающих. Огромный функциональный диапазон возможных приложений средств вычислительной техники обусловлен наличием прикладных программ для разных видов деятельности.
Поскольку между прикладным программным обеспечением и системным существует непосредственная взаимосвязь (первое опирается на второе), то можно утверждать, что универсальность вычислительной системы, доступность прикладного программного обеспечения и широта функциональных возможностей компьютера напрямую зависят от типа используемой операционной системы, от того, какие системные средства содержит ее ядро, как она обеспечивает взаимодействие триединого комплекса человек - программа - оборудование.
Классификация всегда достаточно условна. Часто программное обеспечение компьютера подразделяют на три основные класса (рис. 3.2):
ь системное программное обеспечение (СПО);
ь прикладное программное обеспечение (ППО);
ь инструментальные среды (системы программирования).
Рис. 3.2. Классификация программного обеспечения
К системному программному обеспечению относят программы базового уровня, операционные системы и служебные программные средства. Инструментальные средства предназначены для разработки как системных программ, так и прикладных.
3.2 Файловая система
3.2.1 Диски
Компьютер, как правило, имеет несколько дисков. Каждому диску присваивается имя, которое задается латинской буквой с двоеточием, например, А:, В:, С: и т.д. Стандартно принято, что А: и В: - это накопители на гибких магнитных дисках, а диски С:, D: и т.д. - жесткие диски, накопители на оптических дисках или электронные диски.
Электронные диски представляют собой часть оперативной памяти, которая для пользователя выглядит как ВЗУ. Скорость обмена информации с электронным диском значительно выше, чем с электромеханическим внешним запоминающем устройством. При работе электронных дисков не происходит износ электромеханических деталей. Однако после выключения питания информация на электронном диске не сохраняется.
Физически существующие магнитные диски могут быть разбиты на несколько логических дисков, которые для пользователя будут выглядеть на экране так же, как и физически существующие диски. Логический диск - это часть обычного жесткого диска, имеющая собственное имя.
Диск, на котором записана операционная система, называется системным (или загрузочным) диском. В качестве загрузочного диска чаще всего используется жесткий диск С:. При лечении вирусов, системных сбоях загрузка операционной системы часто осуществляется с гибкого диска. Выпускаются оптические диски, которые также могут быть загрузочными.
Для того чтобы на новый магнитный диск можно было записать информацию, он должен быть предварительно отформатирован. Форматирование - это подготовка диска для записи информации.
Во время форматирования на диск записывается служебная информация (делается разметка), которая затем используется для записи и чтения информации, коррекции скорости вращения диска, а также выделяется системная область, которая состоит из трех частей:
ь загрузочного сектора,
ь таблицы размещения файлов,
ь корневого каталога.
Загрузочный сектор (Boot Record) размещается на каждом диске в логическом секторе с номером 0. Он содержит данные о формате диска, а также короткую программу, используемую в процедуре начальной загрузки операционной системы.
На жестком диске имеется область, которая называется главной загрузочной записью MBR (Master Boot Record) или главным загрузочным сектором. В MBR указывается, с какого логического диска должна производиться загрузка операционной системы.
Таблица размещения файлов (File Allocation Table - сокращенно FAT) располагается после загрузочного сектора и содержит описание порядка расположения всех файлов в секторах данного диска, а также информацию о дефектных участках диска. За FATтаблицей следует ее точная копия, что повышает надежность сохранения этой очень важной таблицы.
Корневой каталог (Root Directory) всегда находится за копией FAT. В корневом каталоге содержится перечень файлов и директорий, находящихся на диске. Непосредственно за корневым каталогом располагаются данные.
Файловая система - это часть операционной системы, обеспечивающая организацию и хранения файлов, а также выполнение операций над файлами.
3.2.2 Файл
При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ (если доступ не обеспечен, то это не хранение). Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру, а при этом образуется «паразитная нагрузка» в виде адресных данных. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру.
Поскольку адресные данные тоже имеют размер и тоже подлежат хранению, хранить данные в виде мелких единиц, таких, как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т.п.), поскольку неполное заполнение одной единицы хранения приводит к неэффективности хранения.
Хранение и поиск информации на внешних запоминающих устройствах имеет важное значение. Внешние запоминающие устройства представляют собой своеобразные информационные склады, где программы и данные хранятся длительное время, до тех пор пока они не понадобятся для решения какой-либо задачи. А теперь представьте себе, что товары на каком-либо складе хранятся без всякой системы. Чем больше склад - тем труднее отыскать нужный товар. Или возьмем, например, шкаф, в котором хранятся различные документы, книги, отчеты, справки и т.д. В случае отсутствия определенной организации хранения поиск нужных документов, особенно если их количество значительно, может оказаться весьма сложной задачей, требующей много времени.
В качестве единицы хранения данных принят объект переменной длины, называемый файлом.
Файлом называется поименованная совокупность данных, имеющая определенную внутреннюю организацию и занимающая некоторый участок носителя информации.
Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.
Поскольку в определении файла нет ограничений на размер, можно представить себе файл, имеющий 0 байтов (пустой файл), и файл, имеющий любое число байтов.
Имя файла должно быть уникальным - без этого невозможно гарантировать однозначность доступа к данным. В средствах вычислительной техники требование уникальности имени обеспечивается автоматически - создать файл с именем, тождественным уже имеющемуся, не может ни пользователь, ни автоматика.
Файл может содержать: программу в машинных кодах, текст программы на алгоритмическом языке, текст документа, отчет, ведомость на зарплату, статью, числовые данные, запись человеческой речи или музыкальной мелодии, рисунок, иллюстрацию, чертеж, фотографию, видеофильм и т.д.
Создание файла осуществляется по указанию пользователя или автоматически, средствами различных программных систем, таких как операционные системы, оболочки, инструментальные системы программирования и т.д. За создаваемым файлом закрепляется некоторое название, ему выделяется место на дисковом носителе, и он определенным образом регистрируется в операционной системе. Вновь созданный файл может быть заполнен какой-либо информацией.
Каждый файл обладает рядом характерных свойств - атрибутов. Важнейшими атрибутами файла являются:
ь название,
ь расширение,
ь длина,
ь время и дата создания.
Имя файла, точно так же как и имя человека, название документа, книги, служит для того, чтобы иметь возможность отличить один файл от другого, указать на нужный файл. В различных операционных системах названия файлов формируются по разным правилам. Например, в операционной системе MS DOS название файла представляет собой
ь последовательность букв латинского алфавита,
ь цифр,
ь некоторых специальных знаков (~, _, , $, &, @, %,",!,(> )> {>}. #).
Название может содержать от одного до восьми (1 … 8) символов и выбирается произвольным образом. Желательно подбирать названия файлам так, чтобы пользователь мог легко вспомнить, что именно хранится в этом файле. Например, файл, содержащий отчет за 4й квартал, можно назвать otchet4, файл с ведомостью на зарплату - vedzarpl, а файл с каким-либо рисунком целесообразно назвать picture.
В операционной системе MS DOS название файла не может содержать
ь пробелов,
ь букв русского алфавита,
ь точек.
Кроме того, оно не может содержать более восьми символов. Вообще говоря, это достаточно существенные ограничения. Например, файл, содержащий отчет предприятия за 4й квартал, который мы назвали otchet4, желательно было бы назвать «Отчет за 4й квартал», в крайнем случае «Otchet za 4 kvartal», применив так называемую транслитерацию, когда слова одного языка записываются буквами другого. В операционных системах Unix и Windows 9.x сняты ограничения на длину названия, использование пробелов и точек в названии. А в операционной системе
Windows 9.x, кроме того, в названии можно использовать русские буквы. Таким образом, файл в Unix может иметь название «Otchet za 4 kvartal», а в Windows 9.x допускается и название «Отчет за 4й квартал».
Кроме названия каждый файл может иметь или не иметь расширение. Расширение используется для того, чтобы определенным образом охарактеризовать содержимое файла. Например, расширения doc и txt указывают на то, что файл содержит какой-либо документ или текст, а расширение bmp имеет файл, содержащий изображение в формате битовой карты. Расширение, если оно есть, отделяется от названия файла точкой. В операционной системе MS DOS расширение может содержать от одного до трех символов, например, otchet4.doc, vedzarpl.txt, picture.bmp, а в системах Unix и Windows 9.x допускается более трех символов. Если расширения нет, то точка в названии файла не ставится.
Если файл создается с помощью какой-либо программной системы, то, как правило, он автоматически получает стандартное для данной системы расширение, и пользователю достаточно выбрать или указать только название. Впоследствии по стандартным расширениям программная система опознает «свои» файлы. В операционных системах предусмотрен целый ряд стандартных расширений (табл. 3.1).
Подобные документы
История развития аппаратных средств и программного обеспечения. Представление данных (числа, символы, графика, звук). Язык двоичных кодов. Устройство компьютера (архитектура). Навыки пользователя в работе с операционной системой, программным обеспечением.
презентация [1,9 M], добавлен 19.10.2014Совместное функционирование всех устройств компьютера и доступ к его ресурсам. Понятие и функции графической операционной системы Windows. Справочная служба Windows. Управление файловой системой. Технология "Plug and Play". Графический интерфейс Windows.
контрольная работа [22,2 K], добавлен 22.01.2011Архитектура современного персонального компьютера. Виды и характеристики центральных и внешних устройств ЭВМ. Структурная и функциональная схемы персонального компьютера. Устройства для ввода информации в системный блок и для отображения информации.
курсовая работа [592,5 K], добавлен 18.01.2012Установка программного обеспечения на компьютер, снабженный операционной системой Microsoft Windows XP Service Pack2: офисных программ, антивируса, программы для работы в Интернете "Opera". Диагностика корректной установки программного обеспечения.
отчет по практике [101,1 K], добавлен 05.07.2009Методы и единицы измерения количества и объема информации. Общее понятие, виды, классификация программного обеспечения. Классическая архитектура электронной вычислительной машины. Основополагающие принципы логического устройства компьютера Фон Неймана.
реферат [272,3 K], добавлен 16.02.2014Архитектура и принцип действия персонального компьютера, понятие и классификация его программного обеспечения. Блок-схема алгоритма расчета квадратного трехчлена. Назначение, возможности, интерфейс и работа Windows. Программирование на Visual Basic.
реферат [33,5 K], добавлен 26.12.2009Внутренние и внешние устройства персонального компьютера. Классификация и характеристики ЭВМ, основы учения и структуры первых поколений. Основные принципы построения ПК. Функции центрального процессора и операционные устройства управления компьютера.
курсовая работа [109,7 K], добавлен 04.11.2010Понятие и внутреннее устройство современного персонального компьютера, особенности взаимосвязи отдельных компонентов. Функциональные возможности, классификация и типы операционных систем. Основные понятия и принципы реализации защиты информации.
курс лекций [1,6 M], добавлен 19.12.2013Общая функциональная схема компьютера. Назначение, основные характеристики устройств. Назначение, основные функции операционной системы. Работа с файлами. Ввод и вывод данных. Состав и назначение программного обеспечения компьютера. Носители информации.
методичка [36,2 K], добавлен 05.10.2008Информационные процессы с точки зрения деятельности человека. Вопросы на знание устройства компьютера, его ключевых характеристик. Основные понятия информатики, определения и сущность. Основы программирования, логические схемы. Основы работы с графикой.
шпаргалка [105,2 K], добавлен 29.05.2009