Теория информации

Определение информационной двоичной энтропии для независимых случайных событий. Выражение неуверенности реализации случайной переменной мерой энтропии Шеннона. Единицы измерения информации: бит, трит, нат, хартли. Математическая теория коммуникации.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 28.01.2012
Размер файла 214,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Формальные определения

Информационная двоичная энтропия для независимых случайных событий x с n возможными состояниями (от 1 до n, p -- функция вероятности) рассчитывается по формуле:

Эта величина также называется средней энтропией сообщения. Величина называется частной энтропией, характеризующей только i-e состояние.

Таким образом, энтропия события x является суммой с противоположным знаком всех произведений относительных частот появления события i, умноженных на их же двоичные логарифмы[1]. Это определение для дискретных случайных событий можно расширить для функции распределения вероятностей.

Определение по Шеннону

Шеннон предположил, что прирост информации равен утраченной неопределённости, и задал требования к её измерению:

1. мера должна быть непрерывной; то есть изменение значения величины вероятности на малую величину должно вызывать малое результирующее изменение функции;

2. в случае, когда все варианты (буквы в приведённом примере) равновероятны, увеличение количества вариантов (букв) должно всегда увеличивать значение функции;

3. должна быть возможность сделать выбор (в нашем примере букв) в два шага, в которых значение функции конечного результата должно являться суммой функций промежуточных результатов.

Поэтому функция энтропии H должна удовлетворять условиям:

1. определена и непрерывна для всех , где для всех и . (Нетрудно видеть, что эта функция зависит только от распределения вероятностей, но не от алфавита.)

2. Для целых положительных n, должно выполняться следующее неравенство:

3. Для целых положительных bi, где , должно выполняться равенство:

Шеннон показал, что единственная функция, удовлетворяющая этим требованиям, имеет вид:

где K -- константа (и в действительности нужна только для выбора единиц измерения).

Шеннон определил, что измерение энтропии (), применяемое к источнику информации, может определить требования к минимальной пропускной способности канала, требуемой для надёжной передачи информации в виде закодированных двоичных чисел. Для вывода формулы Шеннона необходимо вычислить математическое ожидание "количества информации", содержащегося в цифре из источника информации. Мера энтропии Шеннона выражает неуверенность реализации случайной переменной. Таким образом, энтропия является разницей между информацией, содержащейся в сообщении, и той частью информации, которая точно известна (или хорошо предсказуема) в сообщении. Примером этого является избыточность языка -- имеются явные статистические закономерности в появлении букв, пар последовательных букв, троек и т. д. (см. цепи Маркова).

Определение энтропии Шеннона связано с понятием термодинамической энтропии. Больцман и Гиббс проделали большую работу по статистической термодинамике, которая способствовала принятию слова "энтропия" в информационную теорию. Существует связь между термодинамической и информационной энтропией. Например, демон Максвелла также противопоставляет термодинамическую энтропию информации, и получение какого-либо количества информации равно потерянной энтропии.

Определение с помощью собственной информации

Также можно определить энтропию случайной величины, введя предварительно понятия распределения случайной величины X, имеющей конечное число значений:

и собственной информации:

I(X) = ? log PX(X).

Тогда энтропия определяется как:

От основания логарифма зависит единица измерения информации и энтропии: бит, трит, нат или хартли.

Свойства

Энтропия является количеством, определённым в контексте вероятностной модели для источника данных. Например, кидание монеты имеет энтропию ? 2(0,5log 20,5) = 1 бит на одно кидание (при условии его независимости). У источника, который генерирует строку, состоящую только из букв "А", энтропия равна нулю: . Так, например, опытным путём можно установить, что энтропия английского текста равна 1,5 бит на символ, что конечно будет варьироваться для разных текстов. Степень энтропии источника данных означает среднее число битов на элемент данных, требуемых для её зашифровки без потери информации, при оптимальном кодировании.

1. Некоторые биты данных могут не нести информации. Например, структуры данных часто хранят избыточную информацию, или имеют идентичные секции независимо от информации в структуре данных.

2. Количество энтропии не всегда выражается целым числом бит.

Математические свойства

1. Неотрицательность: .

2. Ограниченность:

информационный энтропия математический коммуникация

,

что вытекает из неравенства Йенсена для вогнутой функции f(gi) = log 2gi и . Если все n элементов из X равновероятны, H(X) = log 2n.

3. Если независимы, то .

4. Энтропия -- выпуклая вверх функция распределения вероятностей элементов.

5. Если имеют одинаковое распределение вероятностей элементов, то H(X) = H(Y).

Эффективность

Алфавит может иметь вероятностное распределение далекое от равномерного. Если исходный алфавит содержит n символов, тогда его можно сравнить с "оптимизированным алфавитом", вероятностное распределение которого равномерное. Соотношение энтропии исходного и оптимизированного алфавита -- это эффективность исходного алфавита, которая может быть выражена в процентах. Эффективность исходного алфавита с n символами может быть также определена как его n-арная энтропия. Энтропия ограничивает максимально возможное сжатие без потерь (или почти без потерь), которое может быть реализовано при использовании теоретически -- типичного набора или, на практике, -- кодирования Хаффмана, кодирования Лемпеля -- Зива -- Велча или арифметического кодирования.

Вариации и обобщения

b-арная энтропия

В общем случае b-арная энтропия (где b равно 2, 3, …) источника с исходным алфавитом и дискретным распределением вероятности где pi является вероятностью ai (pi = p(ai)), определяется формулой:

Условная энтропия

Если следование символов алфавита не независимо (например, во французском языке после буквы "q" почти всегда следует "u", а после слова "передовик" в советских газетах обычно следовало слово "производства" или "труда"), количество информации, которую несёт последовательность таких символов (а, следовательно, и энтропия), очевидно, меньше. Для учёта таких фактов используется условная энтропия.

Условной энтропией первого порядка (аналогично для Марковской модели первого порядка) называется энтропия для алфавита, где известны вероятности появления одной буквы после другой (то есть, вероятности двухбуквенных сочетаний):

где i -- это состояние, зависящее от предшествующего символа, и pi(j) -- это вероятность j при условии, что i был предыдущим символом.

Например, для русского языка без буквы "ё" [3].

Через частную и общую условные энтропии полностью описываются информационные потери при передаче данных в канале с помехами. Для этого применяются так называемые канальные матрицы. Для описания потерь со стороны источника (то есть известен посланный сигнал) рассматривают условную вероятность получения приёмником символа bj при условии, что был отправлен символ ai. При этом канальная матрица имеет следующий вид:

b1

b2

bj

bm

a1

a2

ai

am

Очевидно, вероятности, расположенные по диагонали, описывают вероятность правильного приёма, а сумма всех элементов столбца даёт вероятность появления соответствующего символа на стороне приёмника -- p(bj). Потери, приходящиеся на передаваемый сигнал ai, описываются через частную условную энтропию:

Для вычисления потерь при передаче всех сигналов используется общая условная энтропия:

означает энтропию со стороны источника, аналогично рассматривается -- энтропия со стороны приёмника: вместо всюду указывается (суммируя элементы строки можно получить p(ai), а элементы диагонали означают вероятность того, что был отправлен именно тот символ, который получен, то есть вероятность правильной передачи).

Взаимная энтропия

Взаимная энтропия или энтропия объединения предназначена для расчёта энтропии взаимосвязанных систем (энтропии совместного появления статистически зависимых сообщений) и обозначается H(AB), где A характеризует передатчик, а B -- приёмник.

Взаимосвязь переданных и полученных сигналов описывается вероятностями совместных событий p(aibj), и для полного описания характеристик канала требуется только одна матрица:

p(a1b1)

p(a1b2)

p(a1bj)

p(a1bm)

p(a2b1)

p(a2b2)

p(a2bj)

p(a2bm)

p(aib1)

p(aib2)

p(aibj)

p(aibm)

p(amb1)

p(amb2)

p(ambj)

p(ambm)

Для более общего случая, когда описывается не канал, а в целом взаимодействующие системы, матрица необязательно должна быть квадратной. Очевидно, сумма всех элементов столбца с номером j даёт p(bj), сумма строки с номером i есть p(ai), а сумма всех элементов матрицы равна 1. Совместная вероятность p(aibj) событий ai и bj вычисляется как произведение исходной и условной вероятности:

Условные вероятности производятся по формуле Байеса. Таким образом, имеются все данные для вычисления энтропий источника и приёмника:

Взаимная энтропия вычисляется последовательным суммированием по строкам (или по столбцам) всех вероятностей матрицы, умноженных на их логарифм:

H(AB) = ?

?

?

p(aibj)log p(aibj).

i

j

Единица измерения -- бит/два символа, это объясняется тем, что взаимная энтропия описывает неопределённость на пару символов: отправленного и полученного. Путём несложных преобразований также получаем

Взаимная энтропия обладает свойством информационной полноты -- из неё можно получить все рассматриваемые величины.

История

В 1948 году, исследуя проблему рациональной передачи информации через зашумлённый коммуникационный канал, Клод Шеннон предложил революционный вероятностный подход к пониманию коммуникаций и создал первую, истинно математическую, теорию энтропии. Его сенсационные идеи быстро послужили основой разработки двух основных направлений: теории информации, которая использует понятие вероятности и эргодическую теорию для изучения статистических характеристик данных и коммуникационных систем, и теории кодирования, в которой используются главным образом алгебраические и геометрические инструменты для разработки эффективных кодов.

Понятие энтропии, как меры случайности, введено Шенноном в его статье "A Mathematical Theory of Communication", опубликованной в двух частях в Bell System Technical Journal в 1948 году.

Размещено на Allbest.ru


Подобные документы

  • Вычисление количества информации, приходящейся на один символ по формуле Шеннона. Изменения информационной энтропии в текстах экономического, естественнонаучного и литературного содержания. Максимальное количество информации на знак по формуле Хартли.

    лабораторная работа [28,2 K], добавлен 06.12.2013

  • Механизм передачи информации, ее количество и критерии измерения. Единицы информации в зависимости от основания логарифма. Основные свойства и характеристики количества информации, ее энтропия. Определение энтропии, избыточности информационных сообщений.

    реферат [33,9 K], добавлен 10.08.2009

  • Количество информации и ее мера. Определение количества информации, содержащегося в сообщении из ансамбля сообщений источника. Свойства количества информации и энтропии сообщений. Избыточность, информационная характеристика источника дискретных сообщений.

    реферат [41,4 K], добавлен 08.08.2009

  • Бит, неопределенность, количество информации и энтропия. Формула Шеннона. Формула Хартли. Логарифмы. Количество информации, получаемой в процессе сообщения. Взаимодействие источника и приемника информации. Количество, информационная емкость ячеек памяти.

    реферат [579,6 K], добавлен 17.07.2008

  • Объединение как совокупность нескольких ансамблей дискретных, случайных событий. Безусловная энтропия - среднее количество информации, приходящееся на один символ. Описание информационных свойств непрерывного источника. Понятие дифференциальной энтропии.

    контрольная работа [106,8 K], добавлен 28.07.2009

  • Предмет и задачи теории информации, ее функции при создании АСУ. Определение пропускной способности дискретных (цифровых) каналов при отсутствии шумов. Расчет скорости передачи информации. Вычисление значения энтропии - среднего количества информации.

    контрольная работа [112,0 K], добавлен 18.01.2015

  • Способы передачи и хранения информации наиболее надежными и экономными методами. Связь между вероятностью и информацией. Понятие меры количества информации. Энтропия и ее свойства. Формула для вычисления энтропии. Среднее количество информации.

    реферат [99,7 K], добавлен 19.08.2015

  • Понятие вероятности случайного события. Зависимость количества информации в сообщении о некотором событии от вероятности этого события. Формула Хартли, которая определяет зависимость количества информации в битах от количества равновероятных событий.

    презентация [1,4 M], добавлен 01.12.2015

  • Информатика - техническая наука, определяющая сферу деятельности, связанную с процессами хранения, преобразования и передачи информации с помощью компьютера. Формы представления информации, ее свойства. Кодирование информации, единицы ее измерения.

    презентация [117,7 K], добавлен 28.03.2013

  • Понятие электронной информационной системы, ее сущность и особенности, разновидности и характеристика. Взаимосвязь организованности совокупности элементов информационного пространства. Определение состава единиц в документе, описание единицы информации.

    контрольная работа [35,3 K], добавлен 25.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.