Основные характеристики видеокарт
Характеристика устройства и показателей производительности видеокарт - устройства, преобразующего графический образ, хранящийся как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 20.10.2011 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ
НАЦИОНАЛЬНЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
“ХАРЬКОВСКИЙ ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ”
Кафедра "Система информации "
Курсовой проект
по дисциплине «Архитектура персонального компьютера»
Основные характеристики видеокарт
Руководитель проекта
Кропивка В.В.
Выполнил студентка группы КИТ-69
Чистенко А.С.
Харьков 2010
Содержание
1. Введение
2. Видеокарта
2.1 История
2.2 Видеопамять
2.2.1 Для чего используется видеопамять
2.2.2 Производительность текстурных карт
3. Устройство
3.1 Из чего состоит видеокарта
3.2 Основные характеристики видеокарт
4. Практические рекомендации по выбору видеокарты
4.1 Что нового на рынке
Вывод
Список литературы
1. Введение
Необычайно быстрое развитие вычислительной техники приводит к тому, что одновременно в употреблении находится большое количество компьютеров с достаточно разнообразными характеристиками. Поэтому очень полезно знать, каковы основные характеристики узлов компьютера, на что они влияют и как их подбирать. В данном проекте будут рассмотрены параметры одного из основных элементов компьютера, позволяющего ему нормально функционировать - видеокарта.
2. Видеокарта
Видеокамрта (известна также как графимческая пламта, графимческая камрта, видеоадамптер, графический адамптер) (англ. videocard) -- устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора. В настоящее время эта функция утратила основное значение и в первую очередь под графическим адаптером понимают устройство с графическим процессором - графический ускоритель, который и занимается формированием самого графического образа.
Обычно видеокарта является платой расширения и вставляется в разъём расширения, универсальный (PCI-Express, PCI, ISA, VLB, EISA, MCA) или специализированный (AGP), но бывает и встроенной (интегрированной) в системную плату (как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ).
Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения неграфических задач.
Рис.1 Видеокарта Geforce_4200
2.1 История
Одним из первых графических адаптеров для IBM PC стал MDA (Monochrome Display Adapter) в 1981 году. Он работал только в текстовом режиме с разрешением 80Ч25 символов (физически 720Ч350 точек) и поддерживал пять атрибутов текста: обычный, яркий, инверсный, подчёркнутый и мигающий. Никакой цветовой или графической информации он передавать не мог, и то, какого цвета будут буквы, определялось моделью использовавшегося монитора. Обычно они были чёрно-белыми, янтарными или изумрудными. Фирма Hercules в 1982 году выпустила дальнейшее развитие адаптера MDA, видеоадаптер HGC (Hercules Graphics Controller -- графический адаптер Геркулес), который имел графическое разрешение 720Ч348 точек и поддерживал две графические страницы. Но он всё ещё не позволял работать с цветом.
Первой цветной видеокартой стала CGA (Color Graphics Adapter), выпущенная IBM и ставшая основой для последующих стандартов видеокарт. Она могла работать либо в текстовом режиме с разрешениями 40Ч25 и 80Ч25 (матрица символа -- 8Ч8), либо в графическом с разрешениями 320Ч200 или 640Ч200. В текстовых режимах доступно 256 атрибутов символа -- 16 цветов символа и 16 цветов фона (либо 8 цветов фона и атрибут мигания), в графическом режиме 320Ч200 было доступно четыре палитры по четыре цвета каждая, режим высокого разрешения 640Ч200 был монохромным. В развитие этой карты появился EGA (Enhanced Graphics Adapter) -- улучшенный графический адаптер, с расширенной до 64 цветов палитрой, и промежуточным буфером. Было улучшено разрешение до 640Ч350, в результате добавился текстовый режим 80Ч43 при матрице символа 8Ч8. Для режима 80Ч25 использовалась большая матрица -- 8Ч14, одновременно можно было использовать 16 цветов, цветовая палитра была расширена до 64 цветов. Графический режим также позволял использовать при разрешении 640Ч350 16 цветов из палитры в 64 цвета. Был совместим с CGA и MDA.
Стоит заметить, что интерфейсы с монитором всех этих типов видеоадаптеров были цифровые, MDA и HGC передавали только светится или не светится точка и дополнительный сигнал яркости для атрибута текста «яркий», аналогично CGA по трём каналам (красный, зелёный, синий) передавал основной видеосигнал, и мог дополнительно передавать сигнал яркости (всего получалось 16 цветов), EGA имел по две линии передачи на каждый из основных цветов, то есть каждый основной цвет мог отображаться с полной яркостью, 2/3 или 1/3 от полной яркости, что и давало в сумме максимум 64 цвета.
В ранних моделях компьютеров от IBM PS/2, появляется новый графический адаптер MCGA (Multicolor Graphics Adapter -- многоцветный графический адаптер). Текстовое разрешение было поднято до 640x400, что позволило использовать режим 80x50 при матрице 8x8, а для режима 80x25 использовать матрицу 8x16. Количество цветов увеличено до 262144 (64 уровня яркости по каждому цвету), для совместимости с EGA в текстовых режимах была введена таблица цветов, через которую выполнялось преобразование 64-цветного пространства EGA в цветовое пространство MCGA. Появился режим 320x200x256, где каждый пиксел на экране кодировался соответствующим байтом в видеопамяти, никаких битовых плоскостей не было, соответственно с EGA осталась совместимость только по текстовым режимам, совместимость с CGA была полная. Из-за огромного количества яркостей основных цветов возникла необходимость использования уже аналогового цветового сигнала, частота строчной развертки составляла уже 31,5 KГц.
Потом IBM пошла ещё дальше и сделала VGA (Video Graphics Array -- графический видео массив), это расширение MCGA, совместимое с EGA и введённое в средних моделях PS/2. Это фактический стандарт видеоадаптера с конца 80-х годов. Добавлены текстовое разрешение 720x400 для эмуляции MDA и графический режим 640x480, с доступом через битовые плоскости. Режим 640x480 замечателен тем, что в нём используется квадратный пиксел, то есть соотношение числа пикселов по горизонтали и вертикали совпадает со стандартным соотношением сторон экрана -- 4:3. Дальше появился IBM 8514/a с разрешениями 640x480x256 и 1024x768x256, и IBM XGA с текстовым режимом 132x25 (1056x400) и увеличенной глубиной цвета (640x480x65K).
С 1991 года появилось понятие SVGA (Super VGA -- «сверх» VGA) -- расширение VGA с добавлением более высоких режимов и дополнительного сервиса, например возможности поставить произвольную частоту кадров. Число одновременно отображаемых цветов увеличивается до 65 536 (High Color, 16 бит) и 16 777 216 (True Color, 24 бита), появляются дополнительные текстовые режимы. Из сервисных функций появляется поддержка VBE (VESA BIOS Extention -- расширение BIOS стандарта VESA). SVGA воспринимается как фактический стандарт видеоадаптера где-то с середины 1992 года, после принятия ассоциацией VESA стандарта VBE версии 1.0. До того момента практически все видеоадаптеры SVGA были несовместимы между собой.
Графический пользовательский интерфейс, появившийся во многих операционных системах, стимулировал новый этап развития видеоадаптеров. Появляется понятие «графический ускоритель» (graphics accelerator). Это видеоадаптеры, которые производят выполнение некоторых графических функций на аппаратном уровне. К числу этих функций относятся, перемещение больших блоков изображения из одного участка экрана в другой (например при перемещении окна), заливка участков изображения, рисование линий, дуг, шрифтов, поддержка аппаратного курсора и т. п. Прямым толчком к развитию столь специализированного устройства явилось то, что графический пользовательский интерфейс несомненно удобен, но его использование требует от центрального процессора немалых вычислительных ресурсов, и современный графический ускоритель как раз и призван снять с него львиную долю вычислений по окончательному выводу изображения на экран.
2.2 Видеопамять
Для хранения графической информации используется видеопамять. Видеопамять (VRAM) - разновидность оперативного запоминающего устройства, в котором хранятся закодированные изображения. Это ЗУ организовано так, что его содержимое доступно сразу двум устройствам - процессору и дисплею. Поэтому изображение на экране меняется одновременно с обновлением видеоданных в памяти.
Видеопамять выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры UMA в качестве видеопамяти используется часть системной памяти компьютера.
Видеоадаптер, установленный в компьютер, использует часть нижней памяти для вывода графики или текстовой информации на дисплей. Правда, обычно это происходит только в основном режиме VGA.
Видеоадаптер может иметь память емкостью свыше 64 Мбайт, но эта память используется графическим процессором видеоадаптера или же центральным процессором с помощью апертуры памяти, расположенной в верхнем адресном пространстве памяти емкостью 4 Гбайт.
Только в основном режиме VGA, например, при подсказках DOS или при работе Windows в безопасном режиме, процессор может непосредственно обращаться к видеопамяти емкостью до 128 Кбайт в диапазоне адресов AOOOO-BFFFFh. Все современные видеоадаптеры также имеют расположенную на плате BIOS, обычно в пределах адресов от С0000 до C7FFFh; эта часть пространства памяти зарезервирована для базовой системы ввода-вывода видеоадаптера. Вообще, чем выше разрешающая способность и глубина цвета видеоадаптера, тем большее количество системной памяти использует видеоадаптер, но эта дополнительная память (свыше 128 Кбайт) обычно недоступна процессору.
Для увеличения производительности графической подсистемы настолько, насколько это, возможно, приходится снижать до минимума все препятствия на этом пути. Графический контроллер производит обработку графических функций, требующих интенсивных вычислений, в результате разгружается центральный процессор системы. Отсюда следует, что графический контроллер должен оперировать своей собственной, можно даже сказать частной, местной памятью. Тип памяти, в которой хранятся графические данные, называется буфер кадра (frame buffer). В системах, ориентированных на обработку 3D-приложений, требуется еще и наличие специальной памяти, называемой z-буфер (z-buffer), в котором хранится информация о глубине изображаемой сцены. Также, в некоторых системах может иметься собственная память текстур (texture memory), т.е. память для хранения элементов, из которых формируются поверхности объекта. Наличие текстурных карт ключевым образом влияет на реалистичность изображения трехмерных сцен.
Появление насыщенных мультимедиа и видеорядом приложений, так же, как и увеличение тактовой частоты современных центральных процессоров, сделало невозможным и дальше использовать стандартную динамическую память со случайным доступом (DRAM). Современные мультимедиа контроллеры требуют от основной системной памяти большей пропускной способности и меньшего времени доступа, чем когда-либо ранее до этого. Идя навстречу новым требованиям, производители предлагают новые типы памяти, разработанные с помощью обычных и революционных методов. Впечатляющие усовершенствования делают проблему правильного выбора типа памяти для приложения особенно актуальной и сложной.
Производители улучшили технологии и создали новые архитектуры в ответ на требования более высоких скоростей работы памяти. Широкий выбор новых типов памяти ставит перед производителем видеоадаптеров проблему, для какого сегмента рынка или каких приложений выбрать тот или иной тип.
Под воздействием требований перемен полупроводниковая индустрия предлагает множество новых интерфейсов. Некоторые объединили в себе свойства существующих интерфейсов с ограниченным набором изменений, другие имеют совершенно новый дизайн и оригинальную архитектуру.
Существующие типы памяти, доступные производителям видеоадаптеров, перечислены в нижеследующей таблице.
2.2.1 Для чего используется видеопамять
Скорость, с которой информация поступает на экран, и количество информации, которое выходит из видеоадаптера и передается на экран - все зависит от трех факторов:
разрешение вашего монитора
количество цветов, из которых можно выбирать при создании изображения
частота, с которой происходит обновление экрана
Разрешение определяется количеством пикселов на линии и количеством самих линий. Поэтому на дисплее с разрешением 1024х768, типичном для систем, использующих ОС Windows, изображение формируется каждый раз при обновлении экрана из 786,432 пикселов информации.
Обычно частота обновления экрана имеет значение не менее 75Hz, или циклов в секунду. Следствием мерцания экрана является зрительное напряжение и усталость глаз при длительном наблюдении за изображением. Для уменьшения усталости глаз и улучшения эргономичности изображения значение частоты обновления экрана должно быть достаточно высоким, не менее 75 Hz.
Число допускающих воспроизведение цветов, или глубина цвета - это десятичный эквивалент двоичного значения количества битов на пиксел. Так, 8 бит на пиксел эквивалентно 28 или 256 цветам, 16-битный цвет, часто называемый просто high-color, отображает более 65,000 цветов, а 24-битный цвет, также известный, как истинный или true color, может представить 16.7 миллионов цветов. 32-битный цвет с целью избежания путаницы обычно означает отображение истинного цвета с дополнительными 8 битами, которые используются для обеспечения 256 степеней прозрачности. Так, в 32-битном представлении каждый из 16.7 миллионов истинных цветов имеет дополнительные 256 степеней доступной прозрачности. Такие возможности представления цвета имеются только в системах высшего класса и графических рабочих станциях.
Ранее настольные компьютеры были оснащены в основном мониторами с диагональю экрана 14 дюймов. VGA разрешение 640х480 пикселов вполне и хорошо покрывало этот размер экрана. Как только размер среднего монитора увеличился до 15 дюймов, разрешение увеличилось до значения 800х600 пикселов. Так как компьютер все больше становится средством визуализации с постоянно улучшающейся графикой, а графический интерфейс пользователя (GUI) становится стандартом, пользователи хотят видеть больше информации на своих мониторах. Мониторы с диагональю 17 дюймов становятся стандартным оборудованием для систем на базе ОС Windows, и разрешение 1024х768 пикселов адекватно заполняет экран с таким размером. Некоторые пользователи используют разрешение 1280х1024 пикселов на 17 дюймовых мониторах.
Современной графической подсистеме для обеспечения разрешения 1024x768 требуется 1 Мегабайт памяти. Несмотря на то, что только три четверти этого объема памяти необходимо в действительности, графическая подсистема обычно хранит информацию о курсоре и ярлыках в буферной памяти дисплея (off-screen memory) для быстрого доступа. Пропускная способность памяти определяется соотношением того, как много мегабайт данных передаются в память и из нее за секунду времени. Типичное разрешение 1024х768, при 8-битной глубине представления цвета и частоте обновления экрана 75 Hz, требует пропускной способности памяти 1118 мегабайт в секунду. Добавление функций обработки 3D графики требует увеличения размера доступной памяти на борту видеоадаптера. В современных видеоакселераторах для систем на базе Windows типичен размер установленной памяти в 4 Мб. Дополнительная память сверх необходимой для создания изображения на экране используется для z-буфера и хранения текстур. [6], [7].
Шина персонального компьютера (PC) претерпела множество изменений в связи с повышаемыми к ней требованиями. Исходным расширением шины PC была Industry Standard Architecture (ISA), которая, несмотря на свои ограничения, все еще используется для периферийных устройств с преимущественно низкой шириной полосы пропускания, как, например, звуковые карты типа Sound Blaster. Шина Peripherals Connection Interface (PCI), стандарт пришедший на смену спецификации VESA VL bus, стала стандартной системной шиной для таких быстродействующих периферийных устройств, как, например, дисковые контроллеры и графические платы. Тем не менее, внедрение 3D графики угрожает перегрузить шину PCI.
Ускоренный графический порт (AGP) -- это расширение шины PCI, чье назначение - обработка больших массивов данных 3D графики. Intel разрабатывала AGP для решения двух проблем перед внедрением 3D графики на PCI. Во-первых, 3D графике требуется как можно больше памяти информации текстурных карт (texture maps) и z-буфера (z-buffer). Чем больше текстурных карт доступно для 3D приложений, тем лучше выглядит конечный результат. При нормальных обстоятельствах z-буфер, который содержит информацию, относящуюся к представлению глубины изображения, использует ту же память, что и текстуры. Этот конфликт предоставляет разработчикам 3D множество вариантов для выбора оптимального решения, которое они привязывают к большой значимости памяти для текстур и z-буфера, и результаты напрямую влияют на качество выводимого изображения.
Разработчики PC имели ранее возможность использовать системную память для хранения информации о текстурах и z-буфера, но ограничением в этом подходе была передача такой информации через шину PCI. Производительность графической подсистемы и системной памяти ограничиваются физическими характеристиками шины PCI. Кроме того, ширина полосы пропускания PCI, или ее емкость, не достаточна для обработки графики в режиме реального времени. Чтобы решить эти проблемы, Intel разработала AGP.
Если определить кратко, что такое AGP, то это - прямое соединение между графической подсистемой и системной памятью. Это решение позволяет обеспечить значительно лучшие показатели передачи данных, чем при передаче через шину PCI, и явно разрабатывалось, чтобы удовлетворить требованиям вывода 3D графики в режиме реального времени. AGP позволит более эффективно использовать память страничного буфера (frame buffer), тем самым увеличивая производительность 2D графики также, как увеличивая скорость прохождения потока данных 3D графики через систему.
Определением AGP, как вида прямого соединения между графической подсистемой и системной памятью, является соединение point-to-point. В действительности, AGP соединяет графическую подсистему с блоком управления системной памятью, разделяя этот доступ к памяти с центральным процессором компьютера (CPU).
Через AGP можно подключить только один тип устройств - это графическая плата. Графические системы, встроенные в материнскую плату и использующие AGP, не могут быть улучшены.
2.2.2 Производительность текстурных карт
Определение Intel, подтверждающее, что после реализации AGP становится стандартом, следует из того, что без такого решения достижение оптимальной производительности 3D графики в PC будет очень трудным. 3D графика в режиме реального времени требует прохождения очень большого потока данных графическую подсистему. Без AGP для решения этой проблемы требуется применение нестандартных устройств памяти, которые являются дорогостоящими. При применении AGP текстурная информация и данные z-буфера могут хранится в системной памяти. При более эффективном использовании системной памяти графические платы на базе AGP не требуют собственной памяти для хранения текстур и могут предлагаться уже по значительно более низким ценам.
Теоретически PCI могла бы выполнять те же функции, что и AGP, но производительность была бы недостаточной для большинства приложений. Intel разрабатывала AGP для функционирования на частоте 133 MHz и для управления памятью по совершенно другому принципу, чем это осуществляет PCI. В случае с PCI, любая информация, находящаяся в системной памяти, не является физически непрерывной. Это означает, что существует задержка при исполнении, пока информация считывается по своему физическому адресу в системной памяти и передается по нужному пути в графическую подсистему. В случае с AGP Intel создала механизм, в результате действия которого, физический адрес, по которому информация хранится в системной памяти, совершенно не важен для графической подсистемы. Это ключевое решение, когда приложение использует системную память, чтобы получать и хранить необходимую информацию. В системе на основе AGP не имеет значения, как и где хранятся данные о текстурах, графическая подсистема имеет полный и беспроблемный доступ к требуемой информации.
3. Устройство
Видеокамрта (известна также как графимческая пламта, графимческая камрта, видеоадамптер, графический адамптер) (англ. videocard) -- устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера или самого адаптера, в иную форму, предназначенную для дальнейшего вывода на экран монитора. В настоящее время эта функция утратила основное значение и в первую очередь под графическим адаптером понимают устройство с графическим процессором - графический ускоритель, который и занимается формированием самого графического образа.
3.1 Из чего состоит видеокарта
Современная видеокарта состоит из следующих частей:
Графический процессор (Graphics processing unit -- графическое процессорное устройство) -- занимается расчётами выводимого изображения, освобождая от этой обязанности центральный процессор, производит расчёты для обработки команд трёхмерной графики. Является основой графической платы, именно от него зависят быстродействие и возможности всего устройства. Современные графические процессоры по сложности мало чем уступают центральному процессору компьютера, и зачастую превосходят его как по числу транзисторов, так и по вычислительной мощности, благодаря большому числу универсальных вычислительных блоков. Однако, архитектура GPU прошлого поколения обычно предполагает наличие нескольких блоков обработки информации, а именно: блок обработки 2D-графики, блок обработки 3D-графики, в свою очередь, обычно разделяющийся на геометрическое ядро (плюс кэш вершин) и блок растеризации (плюс кэш текстур) и др.
Видеоконтроллер -- отвечает за формирование изображения в видеопамяти, даёт команды RAMDAC на формирование сигналов развёртки для монитора и осуществляет обработку запросов центрального процессора. Кроме этого, обычно присутствуют контроллер внешней шины данных (например, PCI или AGP), контроллер внутренней шины данных и контроллер видеопамяти. Ширина внутренней шины и шины видеопамяти обычно больше, чем внешней (64, 128 или 256 разрядов против 16 или 32), во многие видеоконтроллеры встраивается ещё и RAMDAC. Современные графические адаптеры (ATI, nVidia) обычно имеют не менее двух видеоконтроллеров, работающих независимо друг от друга и управляющих одновременно одним или несколькими дисплеями каждый.
Видеопамять -- выполняет роль кадрового буфера, в котором хранится изображение, генерируемое и постоянно изменяемое графическим процессором и выводимое на экран монитора (или нескольких мониторов). В видеопамяти хранятся также промежуточные невидимые на экране элементы изображения и другие данные. Видеопамять бывает нескольких типов, различающихся по скорости доступа и рабочей частоте. Современные видеокарты комплектуются памятью типа DDR, DDR2, GDDR3, GDDR4 и GDDR5. Следует также иметь в виду, что помимо видеопамяти, находящейся на видеокарте, современные графические процессоры обычно используют в своей работе часть общей системной памяти компьютера, прямой доступ к которой организуется драйвером видеоадаптера через шину AGP или PCIE. В случае использования архитектуры UMA в качестве видеопамяти используется часть системной памяти компьютера.
Цифро-аналоговый преобразователь (ЦАП, RAMDAC -- Random Access Memory Digital-to-Analog Converter) -- служит для преобразования изображения, формируемого видеоконтроллером, в уровни интенсивности цвета, подаваемые на аналоговый монитор. Возможный диапазон цветности изображения определяется только параметрами RAMDAC. Чаще всего RAMDAC имеет четыре основных блока -- три цифроаналоговых преобразователя, по одному на каждый цветовой канал (красный, зелёный, синий, RGB), и SRAM для хранения данных о гамма-коррекции. Большинство ЦАП имеют разрядность 8 бит на канал -- получается по 256 уровней яркости на каждый основной цвет, что в сумме дает 16,7 млн цветов (а за счёт гамма-коррекции есть возможность отображать исходные 16,7 млн цветов в гораздо большее цветовое пространство). Некоторые RAMDAC имеют разрядность по каждому каналу 10 бит (1024 уровня яркости), что позволяет сразу отображать более 1 млрд цветов, но эта возможность практически не используется. Для поддержки второго монитора часто устанавливают второй ЦАП. Стоит отметить, что мониторы и видеопроекторы, подключаемые к цифровому DVI выходу видеокарты, для преобразования потока цифровых данных используют собственные цифроаналоговые преобразователи и от характеристик ЦАП видеокарты не зависят.
Видео-ПЗУ (Video ROM) -- постоянное запоминающее устройство, в которое записаны видео-BIOS, экранные шрифты, служебные таблицы и т. п. ПЗУ не используется видеоконтроллером напрямую -- к нему обращается только центральный процессор. Хранящийся в ПЗУ видео-BIOS обеспечивает инициализацию и работу видеокарты до загрузки основной операционной системы, а также содержит системные данные, которые могут читаться и интерпретироваться видеодрайвером в процессе работы (в зависимости от применяемого метода разделения ответственности между драйвером и BIOS). На многих современных картах устанавливаются электрически перепрограммируемые ПЗУ (EEPROM, Flash ROM), допускающие перезапись видео-BIOS самим пользователем при помощи специальной программы.
Система охлаждения -- предназначена для сохранения температурного режима видеопроцессора и видеопамяти в допустимых пределах.
Правильная и полнофункциональная работа современного графического адаптера обеспечивается с помощью видеодрайвера -- специального программного обеспечения, поставляемого производителем видеокарты и загружаемого в процессе запуска операционной системы. Видеодрайвер выполняет функции интерфейса между системой с запущенными в ней приложениями и видеоадаптером. Так же как и видео-BIOS, видеодрайвер организует и программно контролирует работу всех частей видеоадаптера через специальные регистры управления, доступ к которым происходит через соответствующую шину.
3.2 Основные характеристики видеокарт
видеокарта компьютер монитор графический
Современные графические процессоры содержат множество функциональных блоков, от количества и характеристик которых зависит и итоговая скорость рендеринга, влияющая на комфортность игры. По сравнительному количеству этих блоков в разных видеочипах можно примерно оценить, насколько быстр тот или иной GPU. Характеристик у видеочипов довольно много, в этом разделе мы рассмотрим самые важные из них.
Тактовая частота видеочипа
Рабочая частота GPU измеряется в мегагерцах, в миллионах тактов в секунду. Эта характеристика прямо влияет на производительность видеочипа, чем она выше, тем больший объем работы чип может выполнить в единицу времени, обработать большее количество вершин и пикселей. Пример из реальной жизни: частота видеочипа, установленного на плате RADEON HD 4870 равна 750 МГц, а точно такой же чип на RADEON HD 4850 работает на частоте в 625 МГц. Соответственно будут отличаться и все основные характеристики производительности. Но далеко не только рабочая частота чипа однозначно определяет производительность, на его скорость сильно влияет и архитектура: количество исполнительных блоков, их характеристики и т.п.
В некоторых случаях тактовая частота отдельных блоков GPU отличается от частоты работы остального чипа. То есть, разные части GPU работают на разных частотах, и сделано это для увеличения эффективности, ведь некоторые блоки способны работать на повышенных частотах, а другие -- нет. Из свежих примеров можно назвать семейства GeForce GTX от NVIDIA, видеочип модели GTX 285 работает на частоте 648 МГц, но универсальные шейдерные блоки тактуются на значительно более высокой частоте -- 1476 МГц.
Скорость заполнения (филлрейт)
Скорость заполнения показывает, с какой скоростью видеочип способен отрисовывать пиксели. Различают два типа филлрейта: пиксельный (pixel fill rate) и текстурный (texel rate). Пиксельная скорость заполнения показывает скорость отрисовки пикселей на экране и зависит от рабочей частоты и количества блоков ROP (блоков операций растеризации и блендинга), а текстурная -- это скорость выборки текстурных данных, которая зависит от частоты работы и количества текстурных блоков.
Например, пиксельный филлрейт у GeForce GTX 275 равен 633 (частота чипа) * 28 (количество блоков ROP) = 17724 мегапикселей в секунду, а текстурный -- 633 * 80 (кол-во блоков текстурирования) = 50640 мегатекселей/с. Чем больше первое число -- тем быстрее видеокарта может отрисовывать готовые пиксели, а чем больше второе -- тем быстрее производится выборка текстурных данных. Оба параметра важны для современных игр, но они должны быть сбалансированы. Именно поэтому количество блоков ROP в современных чипах обычно меньше количества текстурных блоков.
Количество блоков пиксельных шейдеров (или пиксельных процессоров)
Пиксельные процессоры -- это одни из главных блоков видеочипа, которые выполняют специальные программы, известные также как пиксельные шейдеры. По числу блоков пиксельных шейдеров и их частоте можно сравнивать шейдерную производительность разных видеокарт. Так как большая часть игр сейчас ограничена производительностью исполнения пиксельных шейдеров (см. технологические обзоры игр), то количество этих блоков очень важно! Если одна модель видеокарты основана на GPU с 8 блоками пиксельных шейдеров, а другая из той же линейки -- 16 блоками, то при прочих равных вторая будет вдвое быстрее обрабатывать пиксельные программы, и в целом будет производительнее. Но на основании одного лишь количества блоков делать однозначные выводы нельзя, обязательно нужно учесть и тактовую частоту и разную архитектуру блоков разных поколений и производителей чипов. Чисто по этим цифрам прямо можно сравнивать чипы только в пределах одной линейки одного производителя: AMD(ATI) или NVIDIA. В других же случаях нужно обращать внимание на тесты производительности в интересующих играх.
Количество блоков вершинных шейдеров (или вершинных процессоров)
Аналогично предыдущему пункту, эти блоки выполняют программы шейдеров, но уже вершинных. Данная характеристика важна для некоторых игр, но не так явно, как предыдущая, так как даже современными играми блоки вершинных шейдеров почти никогда не бывают загружены даже наполовину. И, так как производители балансируют количество разных блоков, не позволяя возникнуть большому перекосу в распределении сил, количеством вершинных процессоров при выборе видеокарты вполне можно пренебречь, учитывая их только при прочих равных характеристиках.
Количество унифицированных шейдерных блоков (или универсальных процессоров)
Унифицированные шейдерные блоки объединяют два типа перечисленных выше блоков, они могут исполнять вершинные, пиксельные, геометрические программы (также и другие типы, которые появятся в DirectX 11). Впервые унифицированная архитектура была применена в видеочипе игровой консоли Microsoft Xbox 360, этот графический процессор был разработан компанией ATI. А в видеочипах для персональных компьютеров унифицированные шейдерные блоки появились в плате NVIDIA GeForce 8800. Все DirectX 10 совместимые видеочипы основаны на подобной унифицированной архитектуре. Унификация блоков шейдеров значит, что код разных шейдерных программ (вершинных, пиксельных и геометрических) универсален, и соответствующие унифицированные процессоры могут выполнить любые программы из вышеперечисленных. Соответственно, в новых архитектурах число пиксельных, вершинных и геометрических шейдерных блоков как бы сливается в одно число -- количество универсальных процессоров.
Блоки текстурирования (TMU)
Эти блоки работают совместно с шейдерными процессорами всех указанных типов, ими осуществляется выборка и фильтрация текстурных данных, необходимых для построения сцены. Число текстурных блоков в видеочипе определяет текстурную производительность, скорость выборки из текстур. И хотя в последнее время большая часть расчетов осуществляется блоками шейдеров, нагрузка на блоки TMU до сих пор довольно велика, и с учетом упора некоторых игр в производительность блоков текстурирования, можно сказать, что количество блоков TMU и соответствующая высокая текстурная производительность являются одними из важнейших параметров видеочипов. Особое влияние этот параметр оказывает на скорость при использовании трилинейной и анизотропной фильтраций, требующих дополнительных текстурных выборок.
Блоки операций растеризации (ROP)
Блоки растеризации осуществляют операции записи рассчитанных видеокартой пикселей в буферы и операции их смешивания (блендинга). Как мы уже отмечали выше, производительность блоков ROP влияет на филлрейт и это -- одна из основных характеристик видеокарт всех времен. И хотя в последнее время её значение несколько снизилось, еще попадаются случаи, когда производительность приложений сильно зависит от скорости и количества блоков ROP (см. технологические обзоры игр). Чаще всего это объясняется активным использованием фильтров постобработки и включенным антиалиасингом при высоких игровых настройках.
Нужно еще раз отметить, что современные видеочипы нельзя оценивать только числом разнообразных блоков и их частотой. Каждая серия GPU использует новую архитектуру, в которой исполнительные блоки сильно отличаются от старых, да и соотношение количества разных блоков может отличаться. Компания ATI первой применила архитектуру, в которой количество блоков пиксельных шейдеров было в разы больше числа блоков текстурирования. В некоторых архитектурах нет отдельных пиксельных конвейеров, пиксельные процессоры не «привязаны» к блокам TMU.
Объем видеопамяти
Собственная память используется видеочипами для хранения необходимых данных: текстур, вершин, буферов и т.п. Казалось бы, что чем её больше -- тем лучше. Но не всё так просто, оценка мощности видеокарты по объему видеопамяти -- это наиболее распространенная ошибка! Значение объема памяти неопытные пользователи переоценивают чаще всего, используя его для сравнения разных моделей видеокарт. Оно и понятно -- раз параметр, указываемый во всех источниках одним из первых, в два раза больше, то и скорость у решения должна быть в два раза выше, считают они. Реальность же от этого мифа отличается тем, что рост производительности растет до определенного объема и после его достижения попросту останавливается.
В каждой игре есть определенный объем видеопамяти, которого хватает для всех данных, и хоть 4 ГБ туда поставь -- у нее не появится причин для ускорения рендеринга, скорость будут ограничивать исполнительные блоки, о которых речь шла выше. Именно поэтому во многих случаях видеокарта с 1 ГБ видеопамяти будет работать с той же скоростью, что и карта с 2 ГБ (при прочих равных условиях).
Ситуации, когда больший объем памяти приводит к видимому увеличению производительности, существуют, это очень требовательные игры в высоких разрешениях и при максимальных настройках. Но такие случаи до сих пор редки, поэтому, объем памяти учитывать нужно, но не забывая о том, что выше определенного объема производительность просто не растет, есть более важные параметры, такие как ширина шины памяти и ее рабочая частота. Подробнее о выборе объема видеопамяти читайте в последующих частях материала.
Ширина шины памяти
Ширина шины памяти является важнейшей характеристикой, влияющей на пропускную способность памяти (ПСП). Большая ширина позволяет передавать большее количество информации из видеопамяти в GPU и обратно в единицу времени, что положительно влияет на производительность в большинстве случаев. Теоретически, по 128-битной шине можно передать в два раза больше данных за такт, чем по 64-битной. На практике разница в скорости рендеринга хоть и не достигает двух раз, но весьма близка к этому во многих случаях с упором в пропускную способность видеопамяти.
Современные видеокарты используют разную ширину шины: от 64 до 512 бит, в зависимости от ценового диапазона и времени выпуска конкретной модели GPU. Для самых дешёвых low-end видеокарт чаще всего используется 64- и (значительно реже) 128-бит, для среднего уровня 128-бит и иногда 256-бит, ну а high-end видеокарты используют шины от 256 до 512 бит шириной. Частично потери в ПСП могут быть скомпенсированы установкой современных типов памяти (см. далее).
Частота видеопамяти
Еще одним параметром, влияющим на пропускную способность памяти, является её тактовая частота. А как мы поняли выше, повышение ПСП прямо влияет на производительность видеокарты в 3D приложениях. Частота шины памяти на современных видеокартах бывает от 500 МГц до 2000 МГц, то есть может отличаться в четыре раза. И так как ПСП зависит и от частоты памяти и от ширины ее шины, то память с 256-битной шиной, работающая на частоте 1000 МГц, будет иметь большую пропускную способность, по сравнению с 1400 МГц памятью с 128-битной шиной.
Рассмотрим относительную производительность видеокарт с разной пропускной способностью на примере видеокарт RADEON X1900 XTX и RADEON X1950 XTX, которые используют почти одинаковые GPU с одними характеристиками и частотой. Основные их отличия состоят в типе и частоте используемой памяти -- GDDR3 на частоте 775(1550) МГц и GDDR4 на 1000(2000) МГц, соответственно.
Хорошо видно, как отстает карта с меньшей пропускной способностью памяти, хотя разница никогда не достигает теоретических 29%. Разница между достигнутой частотой кадров растет с увеличением разрешения, начинаясь с 8% в 1024x768 и достигая 12-13% в максимальных режимах. Но это сравнение видеокарт с небольшой разницей в ПСП, а особенное внимание на параметры ширины шины памяти и частоты ее работы следует уделять при покупке недорогих видеокарт, на многие из которых ставят лишь 64-битные интерфейсы, что сильно сказывается на их производительности. Вообще, покупка решений на базе 64-бит шины для игр вовсе не рекомендуется.
Типы памяти
На видеокарты устанавливают несколько различных типов памяти. Старую SDR память с одинарной скоростью передачи мы рассматривать не будем, её уже почти нигде не встретишь. Все современные типы памяти DDR и GDDR позволяют передавать в два или четыре раза большее количество данных на той же тактовой частоте за единицу времени, поэтому цифру её рабочей частоты зачастую указывают удвоенной или учетверённой (умножают на 2 или 4). Так, если для DDR памяти указана частота 1400 МГц, то эта память работает на физической частоте в 700 МГц, но указывают так называемую «эффективную» частоту, то есть ту, на которой должна работать SDR память, чтобы обеспечить такую же пропускную способность.
Основное преимущество DDR2 памяти заключается в возможности работы на больших тактовых частотах, а соответственно -- увеличении пропускной способности по сравнению с предыдущими технологиями. Это достигается за счет увеличенных задержек, которые, впрочем, не так важны для видеокарт. Первой платой, использующей DDR2 память, стала NVIDIA GeForce FX 5800 Ultra. По сути, на ней стояла GDDR2 память, которая не настоящая DDR2, а нечто среднее между технологиями DDR и DDR2. После применения GDDR2 в серии GeForce FX 5800, последующие видеокарты NVIDIA использовали DDR память, но эта память получила дальнейшее распространение в GeForce FX 5700 Ultra и в некоторых более поздних mid-end видеокартах. С тех пор технологии графической памяти продвинулись дальше, был разработан стандарт GDDR3, который близок к спецификациям DDR2, с некоторыми изменениями, сделанными специально для видеокарт.
GDDR3 -- это специально предназначенная для видеокарт память, с теми же технологиями, что и DDR2, но с улучшениями характеристик потребления и тепловыделения, что позволило создать микросхемы, работающие на более высоких тактовых частотах. И опять же, несмотря на то, что стандарт был разработан в ATI, первой видеокартой, ее использующей, стала вторая модификация NVIDIA GeForce FX 5700 Ultra, а следующей стала GeForce 6800 Ultra.
GDDR4 -- это дальнейшее развитие «графической» памяти, работающее почти в два раза быстрее, чем GDDR3. Основными отличиями GDDR4 от GDDR3, существенными для пользователей, являются в очередной раз повышенные рабочие частоты и сниженное энергопотребление. Технически, память GDDR4 не сильно отличается от GDDR3, это дальнейшее развитие тех же идей. Первыми видеокартами с чипами GDDR4 на борту стали ATI RADEON X1950 XTX, а от компании NVIDIA продукты на базе этого типа памяти не выходили вовсе. Преимущества новых микросхем памяти перед GDDR3 в том, что энергопотребление модулей может быть примерно на треть ниже. Это достигается за счет более низкого номинального напряжения для GDDR4.
Впрочем, GDDR4 не получила широкого распространения даже у AMD(ATI). Начиная с GPU семейства RV7x0, контроллерами памяти видеокарт поддерживается новый тип памяти GDDR5, работающий на эффективно учетверённой частоте до 4 ГГц и выше (теоретически предполагается до 7 ГГц), что даёт пропускную способность до 120 ГБ/с с применением 256-битного интерфейса. Если для повышения ПСП у GDDR3/GDDR4 памяти приходилось использовать 512-битную шину, переход на использование GDDR5 позволяет увеличить производительность вдвое при меньших размерах чипов и меньшем потреблении энергии. Первые чипы поддерживают напряжение 1.5 В (в отличие от 2.0 В для GDDR3, к примеру) и предлагают скорости до 1000*4=4.0 ГГц.
Итак, видеопамять самых современных типов: GDDR3 и GDDR5, отличается от DDR некоторыми деталями, но также работает с удвоенной/учетверённой передачей данных. В ней применяются некоторые специальные технологии, позволяющие поднять частоту работы. Так, GDDR2 память обычно работает на более высоких частотах, по сравнению с DDR, GDDR3 -- на еще более высоких, а GDDR5 обеспечивает максимальную частоту и пропускную способность на данный момент.
4. Практические рекомендации по выбору видеокарты
В этом разделе мы постараемся помочь определиться с выбором, если вы уже решили, какой ценовой диапазон лучше подходит для вас. Еще лучше, если вы определились с производителем видеочипа: AMD или NVIDIA, в зависимости от своих личных предпочтений и некоторых тонкостей, таких как поддержка CUDA и PhysX у решений NVIDIA, или поддержка DirectX 10.1, полностью аппаратное воспроизведение видеоформата VC-1 и интегрированный на видеокарту аудиокодек для вывода звука по HDMI у ATI RADEON, например.
Но даже если этот выбор вы еще не сделали, практическая часть статьи тоже может быть полезной, в ней сравниваются наиболее интересные видеокарты, отдельно по ранее определенным нами ценовым диапазонам. И даже в том случае, если ценовой диапазон окончательно не выбран, цифры этого раздела могут помочь. Но сначала настоятельно рекомендуется ознакомиться со всеми предшествующими разделами, справочными материалами и таблицами чипов, если это еще не сделано.
Из всех видеокарт, участвующих в наших ежемесячных материалах i3D-Speed, для каждого из рассматриваемых ценовых диапазонов были выбраны по четыре достойных представителя, если они находились в таком количестве. Причем, они по возможности выбирались так, чтобы в сравнении участвовало по две видеокарты от каждого из основных производителей: AMD и NVIDIA. На момент написания текущей версии путеводителя, это сделать удалось во всех ценовых диапазонах, с некоторыми оговорками (см. ниже по тексту). Прямого сравнения не получится разве что в верхнем high-end секторе. Решения от AMD стоят дешевле сравниваемых с ними решений NVIDIA.
Мы стараемся рассматривать, прежде всего, модели с номинальными тактовыми частотами, объемом памяти и т.п. Но и модели, которые разогнаны фабрично и/или с нестандартным объемом памяти, в путеводителе упоминаются, особенно если их выпуск приобрел массовый характер, и такие модели есть в широкой продаже, и желательно от нескольких производителей сразу. Данные об основных параметрах видеокарт в каждом ценовом секторе для удобства вынесены в таблицы.
Из всех результатов, определяемых в i3D-Speed, было выбрано по несколько игр, преимущества одних карт над другими в которых хорошо видны. Набор игр для каждого ценового диапазона свой, также, для каждого из диапазонов использовались и разные настройки разрешения и сглаживания, близкие к тем, которые используются игроками в реальности. Если читателей интересуют остальные цифры, то все полноценные сравнения можно найти в i3D-Speed, а по результатам нашего упрощенного сравнения мы лишь будем советовать примеры наиболее выгодных карт в каждой ценовой нише на момент написания конкретной версии путеводителя.
Чтобы быть полезной для читателя, эта часть путеводителя периодически обновляется, так как ситуация на рынке видеокарт меняется порой очень быстро, и выводы, казавшиеся ранее справедливыми, через пару месяцев могут вызывать недоумение. Планируемая периодичность обновления составляет примерно три месяца, более частая редакция будет производиться при крайней надобности, так как материал лишь дополняет i3D-Speed, по которым можно сделать более точный анализ и выводы.
4.1 Что нового на рынке
Для начала, остановимся на произошедших за прошедший с момента последнего обновления путеводителя событиях на рынке видеокарт. С марта этого года появилось несколько новых моделей, а также слегка обновленные решения и от AMD, и от NVIDIA. Среди новых можно отметить RADEON HD 4770, а из обновленных: GeForce GTS 250, GTX 275 и RADEON HD 4890. К сожалению, продукт на основе нового 40 нм чипа RV740, носящий название HD 4770, был выпущен крайне малым тиражом, на данный момент не очень выгоден для приобретения и на рынке распространён слабо, поэтому в данном обновлении путеводителя он не рассматривается.
Мы много писали о том, что компания AMD с самого начала ведёт довольно жёсткую ценовую политику, продавая свои решения значительно дешевле конкурирующих продуктов от NVIDIA. На что тем также приходится отвечать снижением цен. Средняя цена видеокарт значительно снизилась, и видеокарты, совсем недавно входящие в верхние ценовые диапазоны, спустились вниз. Теперь довольно мощные решения можно приобрести менее чем за $200 (GeForce GTX 260 и RADEON HD 4870).
Также можно отметить, что получают всё большее распространение модели видеокарт с увеличенным объёмом видеопамяти. У многих видеокарт базовым объёмом становится уже не 512 мегабайт, а 896-1024 МБ. И теперь уже не встретить плат с 256 мегабайтами локальной памяти, даже на моделях низшего уровня. Это хорошо для индустрии, так как снимает некоторые ограничения и развязывает руки игровым разработчикам.
Low-End (<$100)
За время, прошедшее с предыдущего обновления путеводителя, в этот диапазон вошли некоторые из моделей, бывших ранее в среднем ценовом диапазоне, к примеру, RADEON HD 4830 и GeForce 9800 GT. GeForce 9500 GT, хотя пока ещё продаётся, подешевела ещё сильнее, и её мы рассматривать не будем, т.к. есть варианты интереснее. То же самое относится и к RADEON HD 4650, которая стала стоить ещё дешевле и почти ушла с рынка.
Такие модели пока что можно найти в продаже, но смысла в них никакого не осталось, особенно, если игровой системой предусматривается регулярный запуск современных 3D игр. В иных случаях проще приобрести системную плату с современным интегрированным чипсетом. RADEON HD 4670 и GeForce 9600 GT пока ещё остаются в списке интересных предложений за свою цену.
Как и раньше, приобретение отдельных low-end видеокарт имеет смысл лишь с цены около $70-75, всё остальное переходит в сферу интересов интегрированных чипсетов. Решения с меньшей ценой просто не могут конкурировать с видеоядрами, встроенными в чипсеты. От таких дешевых видеокарт обычно ведь не требуется сколько-нибудь высокая производительность в играх, чаще всего нужно 2D и ускорение видеодекодирования в некоторых случаях, а мощь 3D тут не является слишком важным фактором, так как для современных игр ни те, ни другие не годятся всё равно.
А отдельные решения с ценой менее $100 имеют определенный смысл для бюджетных домашних вариантов, хотя для игр их советовать можно лишь в случае крайней экономии, которая, впрочем, сейчас приветствуется везде. Но всё же, для запуска современных 3D, даже мультиплатформенных, категорически рекомендуется подкопить денег хотя бы на нижний mid-end. Но рассмотрим, что у нас сейчас наиболее выгодно в low-end секторе:
ATI RADEON HD 46705127502000~7075
ATI RADEON HD 48305125751800~90100
NVIDIA GeForce 9600 GT5126501800~7075
NVIDIA GeForce 9800 GT5126001800~100100
Все представленные видеокарты обладают аналогичными характеристиками по объему памяти, на них установлено по 512 МБ памяти, что очень хорошо, как мы говорили выше. Меньший объём остался лишь в самых дешевых вариантах, которые уходят с рынка, и в вариантах вроде GeForce 9600 GSO, на которой урезана шина памяти.
И по рабочей частоте памяти и её пропускной способности, отличий почти нет. Как нет необходимости компенсации 64-битной шины, у всех решений она 128-битная. Из рассматриваемых моделей самой слабой будет, скорее всего, RADEON HD 4670 -- это довольно старое решение. Недалека от неё и GeForce 9600 GT, но она должна быть несколько быстрее. А за первенство в данном ценовом диапазоне будут бороться GeForce 9800 GT и RADEON HD 4830, обладающие одинаковой стоимостью и весьма близкими характеристиками.
Подобные документы
Характеристика работы видеокарты - устройства, преобразующего графический образ в форму, предназначенную для вывода на экран монитора. Понятие контроллера, буфера кадра и памяти текстур. Проведение тестов синтетических испытаний и на производительность.
курсовая работа [1,5 M], добавлен 09.07.2011Виды персональных компьютеров. Сущность понятия "процессор". Типы оперативной памяти. Особенности различных модулей SDRAM. Характеристики CD-R и CD-RW дисководов. Устройства управления ПЭВМ. Типы видеокарт: PCI, AGP. Звук в персональном компьютере.
реферат [22,8 K], добавлен 10.11.2009История видеокарт, их назначение и устройство. Принципы обеспечения работы графического адаптера. Характеристики и интерфейс видеокарт. Сравнительный анализ аналогов производства компаний NVIDIA GeForce и AMD Radeon. Направления их совершенствования.
контрольная работа [295,6 K], добавлен 04.12.2014История PC-совместимых персональных компьютеров с адаптером Monochrome Display Adapter. Устройство и основные характеристики видеокарты. Разъёмы для подключения устройств вывода. Описание видеокарт 3DMark, Metro 2033 Benchmark, Unigine Tropics Demo.
курсовая работа [7,9 M], добавлен 11.12.2014Обработка информации компьютерами. Средства преобразования информации в цифровую форму и обратно. Основные устройства компьютера: системный блок, жесткий диск, материнская плата. Устройства ввода и вывода информации: клавиатура и манипулятор мышь.
курсовая работа [18,4 K], добавлен 25.11.2010Классические принципы построения электронных вычислительных машин, их основные блоки: арифметико-логический, устройства управления, ввода-вывода и памяти. Автоматизация перевода информации. Двоичное кодирование и организация оперативной памяти компьютера.
презентация [55,2 K], добавлен 22.02.2015Базовая конфигурация персонального компьютера и минимальный комплект аппаратных средств. Внутренние и внешние устройства ввода и вывода. Назначение и функции системного блока, клавиатуры, "мыши", принтера, микрофона, монитора, колонок и наушников.
реферат [19,3 K], добавлен 20.01.2010Вопросы усовершенствования видеокарт, их недостатки, виды охлаждения ПК. Выбор вентилятора и его установка на видеокарту. Сравнительные характеристики видеокарт до усовершенствования и после. Расчеты вентиляции, природного и искусственного освещения.
дипломная работа [4,4 M], добавлен 18.07.2010Мониторы на электронно-лучевых трубках. Типы матриц жидкокристаллического монитора. Проекторы на основе DLP- технологии. Принцип действия лазерных проекторов. Типы видеокарт компьютера. Интерфейсы программирования приложений. Виды видео интерфейсов.
курсовая работа [1,3 M], добавлен 25.03.2015Анализ истории и перспектив развития видеокарт; видеосистема как часть компьютера: последние технологические разработки. Тесты сравнения видеокарт, экономический расчет их стоимости. Выбор наиболее оптимальной видеокарты для дизайнерского моделирования.
дипломная работа [718,1 K], добавлен 16.07.2010