Способы представления графической информации

Достоинства и недостатки растровой и векторной графики. Основные параметры, определяющие качество LCD-мониторов. Форматы графических файлов. Визуализация графической информации. Архитектура графической подсистемы ПК. Разрешение экранного изображения.

Рубрика Программирование, компьютеры и кибернетика
Вид курсовая работа
Язык русский
Дата добавления 13.02.2011
Размер файла 137,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Иркутский государственный технический университет

Факультет кибернетики

Кафедра вычислительной техники

Курсовая работа

СПОСОБЫ ПРЕДСТАВЛЕНИЯ ГРАФИЧЕСКОЙ ИНФОРМАЦИИ

по курсу «Информатика»

Выполнил

студент группы ЭВМ-08-1

Заборских Р.А

Проверил:

Горохов Анатолий Григорьевич

Иркутск 2009г.

Графическая информация

Под термином графика обычно понимается визуальное (то есть воспринимаемое зрением) представление каких-либо реальных или воображаемых объектов. Графика рассматривается как язык визуальной культуры и грамотности человека, как язык проектирования (дизайна), как язык техники и технологии, как самое простое и естественное для человека средство осмысления и познания окружающего его мира и как язык профессионального (технического и художественно-технического) и непрофессионального общения между людьми. Она является средством развития творческих способностей учащегося, его пространственных представлений, воображения и мышления, глазомера, зрительной памяти, смекалки и догадки, средством развития политехнического и образного мышления, эстетического вкуса и проектного мышления, средством выражения его идей и замыслов.

Информация, описываемая графическими объектами, соответственно называется графической. Она может быть представлена, картиной, рисунком, мозаикой, чертежом, буквами в книге, изображением на экране телевизора и др. Для представления графической информации в виде всякого графического изображения, существует свой определенный способ создания: картину можно нарисовать кистью отдельными мазками, контур рисунка очертить фломастером и закрасить его акварелью, а чертеж выполнить линиями, проведенными карандашом. В последние десятилетия самым популярным и распространенным способом представления графической информации становится цифровой метод, где графические данные хранятся неопределенное время в виде файлов на цифровых носителях, а визуализация наступает, когда данные файлов поступают на устройства вывода: монитор принтер, плоттер и др.

Такие методы, средства создания, обработки и визуализации графической и информации с помощью программно-аппаратных вычислительных комплексов изучает специальная область информатики - компьютерная графика.

Компьютерная графика охватывает все виды и формы представления изображений, доступных для восприятия человеком либо на экране монитора, либо в виде копии на внешнем носителе (бумага, кинопленка, ткань и прочее). Без компьютерной графики невозможно представить себе не только компьютерный, но и обычный, вполне материальный мир. Визуализация данных находит применение в самых разных сферах человеческой деятельности. Для примера назовем медицину (компьютерная томография), научные исследования (визуализация строения вещества, векторных полей и других данных), моделирование тканей и одежды, опытно-конструкторские разработки.

В зависимости от способа формирования изображений компьютерную графику принято подразделять на растровую и векторную. Отдельным предметом считается трехмерная (3D) графика, изучающая приемы и методы построения объемных моделей объектов в виртуальном пространстве. Как правило, в ней сочетаются векторный и растровый способы формирования изображений.

Особенности цветового охвата характеризуют такие понятия, как черно-белая и цветная графика. На специализацию в отдельных областях указывают названия некоторых разделов: инженерная графика, научная графика, Web-графика, компьютерная полиграфия и прочие. На стыке компьютерных, телевизионных и кинотехнологий зародилась и стремительно развивается сравнительно новая область компьютерной графики и анимации.

Представление графических данных

Растровая графика

Растровая графика оперирует с изображениями в виде растров. Неформально можно сказать, что растр - это описание изображения на плоскости путем разбиения всей плоскости или ее части на одинаковые квадраты и присвоение каждому квадрату своего атрибута. Иногда понятие растра определяют более широко: как разбиение плоскости (или ее участка) на равные элементы (т.е. "замощение"). Такие элементы растра называются пикселями (pixel - picture element). Каждому пикселю может быть задан определенный атрибут, это, как правило, цвет или яркость. В растровой графике пиксели выстраиваются в виде прямоугольной матрицы (bitmap), где из них, как из крохотных точек собрано мозаичное изображение. Благодаря маленькому размеру и большой концентрации таких пикселей-точек, отдельные точки становятся невидны (или малозаметны), и создаётся впечатление однородной картины.

Растровый способ представления изображений прекрасно подходит для хранения фотографий и видеофрагментов и позволяет создать (воспроизвести) практически любой рисунок, вне зависимости от сложности.

Векторная графика

Другой способ представления графической информации в компьютере векторная графика (или геометрическое моделирование). Элементарными объектами векторной графики являются простые геометрические фигуры, такие как линия, окружность, которые хранятся в памяти компьютера в виде математических формул и числовых параметров. Из простейших фигур складываются более сложные. Каждая фигура обладает свойствами: формой (прямая, кривая), толщиной, цветом, начертанием. Охватываемое фигурами пространство может быть заполнено другими объектами (текстуры, карты), цветом или особым способом (например, заштрихована).

Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет -- трассировка растра обычно не обеспечивает высокого качества векторного рисунка.

Векторная графика используется для создания иллюстраций и рисунков в издательском деле, карт в компьютерной топографии (геоинформационных системах). СAD-системы (системы автоматизированного проектирования) используют векторный подход для рисования чертежей.

При помощи векторной графики можно задать не только двумерные, но и трёхмерные фигуры. Все современные редакторы трёхмерной графики являются векторными, и лишь при создании итогового изображения или видеоролика происходит преобразование в растровую графику.

Векторное изображение проще анимировать, поэтому, сегодня векторная графика используется для создания анимации и компьютерных игр. Например, программа Macromedia Flash, предназначенная для создания анимации на веб-страницах, основана на векторном представлении графики, хотя и поддерживает использование растровых изображений.

Необходимо отметить, что в процессе визуализации векторная графика всегда преобразовывается в растровую форму.

Достоинства и недостатки растровой и векторной графики

Каждый из видов графики имеет свои достоинства и недостатки, следует отметить определенную "зеркальность" их достоинств и недостатков.

Среди достоинств растровой графики можно рассматривать два принципиальных и одно относительное:

· аппаратная реализуемость;

· программная независимость;

· фотореалистичность изображений.

Следуют обратить особое внимание на недостатки растровой графики:

· значительный объем файлов;

· трансформирования с потерей качества (пикселизация, зернистость);

· аппаратная зависимость -- причина многих погрешностей;

· отсутствие объектов.

Достоинства и недостатки растровой графики являются зеркальным отражением достоинств и недостатков векторной графики.

Достоинства:

· минимальный объем файла,

· полная свобода трансформаций;

· аппаратная независимость;

· объектно-ориентированный характер.

Два принципиальных и один условный недостаток векторной графики:

· отсутствие аппаратной реализуемости;

· программная зависимость;

· жесткость изображений.

Представление цвета

Системы цвета

Некоторые предметы видимы потому, что излучают свет, а другие - потому, что его отражают. Когда предметы излучают свет, они приобретают в нашем восприятии тот цвет, который видит глаз человека. Когда предметы отражают свет, то их цвет определяется цветом падающего на них света и цветом, который эти объекты отражают. Излучаемый свет выходит из активного источника, например, экрана монитора. Отраженный свет отражается на поверхности объекта, например, листа бумаги. Поэтому существуют два метода описания цвета: система аддитивных и субтрактивных цветов.

Аддитивный цвет (от англ. add -- добавлять, складывать) получается при соединении лучей света разных цветов. В этой системе отсутствие всех цветов представляет собой черный цвет, а присутствие всех цветов -- белый. Система аддитивных цветов (RGB) работает с излучаемым светом, например, от монитора компьютера. В этой системе используются три основных цвета: красный (Red), зеленый (Green) и синий (Blue). Если их смешать друг с другом в равной пропорции, они образуют белый цвет, а при смешивании в разных пропорциях -- любой другой.

В системе субтрактивных цветов (от англ. subtract -- вычитать) происходит обратный процесс: вы получаете какой-либо цвет, вычитая другие цвета из общего луча отраженного света. В этой системе белый цвет появляется в результате отсутствия всех цветов, тогда как их присутствие дает черный цвет. Система субтрактивных цветов работает с отраженным светом, например, от листа бумаги. Белая бумага отражает все цвета, окрашенная -- некоторые поглощает, а остальные отражает. В системе субтрактивных цветов основными являются голубой, пурпурный и желтый цвета (CMY) -- противоположные красному, зеленому и синему. Когда эти цвета смешиваются на белой бумаге в равной пропорции, получается черный цвет. То есть, предполагается, что должен получиться черный цвет. В действительности типографские краски поглощают свет не полностью, поэтому комбинация трех основных цветов выглядит темно-коричневой. Чтобы исправить возникающую неточность, для представления тонов истинно черного принтеры добавляют немного черной краски. Систему цветов, основанную на таком процессе четырехцветной печати, принято обозначать аббревиатурой CMYK.

Цветовая модель RGB

Монитор компьютера создает цвет непосредственно излучением света и использует, таким образом, систему цветов RGB. Поверхность монитора представляет растр из мельчайших точек красного, зеленого и синего цветов, форма точек варьируется в зависимости от типа электронно-лучевой трубки (ЭЛТ). Пушка ЭЛТ подает сигнал различной мощности на экранные пиксели. Каждая точка имеет один из трех цветов, при попадании на нее луча из пушки, она окрашивается в определенный оттенок своего цвета, в зависимости от силы сигнала. Поскольку точки маленькие, уже с небольшого расстояния они визуально смешиваются друг с другом и перестают быть различимы. Комбинируя различные значения основных цветов, можно создать любой оттенок более чем из 16 миллионов доступных в RGB.

Лампа сканера светит на поверхность захватываемого изображения (или сквозь слайд); отраженный или прошедший через слайд свет, с помощью системы зеркал, попадает на чувствительные датчики, которые передают данные в компьютер так же в системе RGB.

Система RGB адекватна цветовому восприятию человеческого глаза, рецепторы которого тоже настроены на красный, зеленый и синий цвета.

Цветовая модель CMYK

Система цветов CMYK была широко известна задолго до того, как компьютеры стали использоваться для создания графических изображений. Триада основных печатных цветов: голубой (Cyan), пурпурный (Magenta) и желтый (Yellow) является, по сути, наследником трех основных цветов живописи (синего, красного и желтого). Изменение оттенка первых двух связано с отличным от художественных химическим составом печатных красок, но принцип смешения тот же самый. И художественные, и печатные краски, несмотря на провозглашаемую самодостаточность, не могут дать очень многих оттенков. Поэтому художники используют дополнительные краски на основе чистых пигментов, а печатники добавляют, как минимум, черную краску.

Система CMYK создана и используется для печати. Все файлы, предназначенные для вывода в типографии, должны быть конвертированы в CMYK. Этот процесс называется цветоделением.

Цветовая модель HSB

Системы цветов RGB и CMYK базируются на ограничениях, накладываемых аппаратным обеспечением (мониторами и сканерами в случае с RGB и типографскими красками в случае с CMYK). Более интуитивным способом описания цвета является представление его в виде тона, насыщенности и яркости -- система HSB (Hue Saturation Brightness - тон, насыщенность, яркость). Она же известна как системы HSL (Hue Saturation Lightness - тон, насыщенность, освещенность) и HSV (Hue Saturation Value - тон, насыщенность, яркость).

Тон представляет собой конкретный оттенок цвета, отличный от других: красный, зеленый, голубой и т. п. Насыщенность цвета характеризует его относительную интенсивность (или чистоту). Уменьшая насыщенность, например, красного, мы делаем его более пастельным, приближаем к серому. Яркость (или освещенность) цвета показывает величину черного оттенка, добавленного к цвету, что делает его более темным.

Система HSB имеет перед другими системами важное преимущество: она больше соответствует природе цвета, хорошо согласуется с моделью восприятия цвета человеком.

Цветовая модель CIE Lab

В 1920 году была разработана цветовая пространственная модель CIE Lab (Communication Internationale de I'Eclairage - международная комиссия по совещанию. L, a, b - обозначения осей координат в этой системе). Система является аппаратно независимой и потому часто применяется для переноса данных между устройствами. В модели CIE Lab любой цвет определяется светлотой (L) и хроматическими компонентами: параметром а, изменяющимся в диапазоне от зеленого до красного, и параметром b, изменяющимся в диапазоне от синего до желтого. Цветовой охват модели CIE Lab значительно превосходит возможности мониторов и печатных устройств, поэтому перед выводом изображения, представленного в этой модели, его приходится преобразовывать. Данная модель была разработана для согласования цветных фотохимических процессов с полиграфическими. Цветовое пространство LAB представляет цвет в трех каналах: один канал выделен для значений яркости (L - Lightness) и два других - для цветовой информации (А и В). Цветовые каналы соответствуют шкале, а не какому-нибудь одному цвету. Канал А представляет непрерывный спектр от зеленого к красному, в то время как канал В - от синего к желтому. Средние значения для А и В соответствуют реальным оттенкам серого.

Множественность моделей говорит о сложности попыток представления цвета. Несмотря на явные достижения и практическое использование работа в этом направлении продолжается в связи с постоянным повышением требований к качеству воспроизведения изображений при экранной демонстрации и получении печатной продукции.

Кодирование цвета

Кодируется цвет графических изображений с помощью бит. Количество бит, с помощью которых закодирован цвет называют битовой глубиной изображения. Обычно принимают глубину в 1, 4, 8, 16, 24 и 32 бита, что соответствует (21,24,28,216,224, 232) 2, 16, 256, 65.536 (High color), 16.777.216 (True color), 4.294.967.296 возможным цветовым оттенкам. Кодирование осуществляется в соответствии с определенной цветовой моделью. В RGB для каждого из трех цветов выделяется канал в 1 байт (8 бит), где интенсивность каждого из цветов может принимать значения от 0 до 255.

Разрешение

Для растровых изображений, состоящих из точек, особую важность имеет понятие разрешения, выражающее количество точек, приходящихся на единицу длины. При этом следует различать:

· разрешение оригинала;

· разрешение экранного изображения;

· разрешение печатного изображения.

Разрешение оригинала

Разрешение оригинала измеряется в точках на дюйм (dots per inch - dpi) и зависит от требований к качеству изображения и размеру файла, способу оцифровки и создания исходной иллюстрации, избранному формату файла и другим параметрам. В общем случае действует правило: чем выше требование к качеству, тем выше должно быть разрешение оригинала.

Разрешение экранного изображения.

Для экранных копий изображения элементарную точку растра принято называть пикселем. Размер пикселя варьируется в зависимости от выбранного экранного разрешения (из диапазона стандартных значений), разрешение оригинала и масштаб отображения.

Мониторы для обработки изображений с диагональю 20-21 дюйм, как правило, обеспечивают стандартные экранные разрешения 640х480, 800х600, 1024х768,1280х1024,1600х1200,1600х1280, 1920х1200, 1920х1600 точек. Расстояние между соседними точками люминофора у качественного монитора составляет 0,22 - 0,25 мм. Для экранной копии достаточно разрешения 72 dpi, для распечатки на цветном или лазерном принтере 150-200 dpi, для вывода на фотоэкспонирующем устройстве 200-300 dpi. Установлено эмпирическое правило, что при распечатке величина разрешения оригинала должна быть в 1,5 раза больше, чем линиатура растра устройства вывода. В случае, если твердая копия будет увеличена по сравнению с оригиналом, эти величины следует умножить на коэффициент масштабирования.

Разрешение печатного изображения

Разрешение печатного изображения и понятие линиатуры. Размер точки растрового изображения как на твердой копии (бумага, пленка и т. д.), так и на экране зависит от примененного метода и параметров растрирования оригинала. При растрировании на оригинал как бы накладывается сетка линий, ячейки которой образуют элемент растра. Частота сетки растра измеряется числом линий на дюйм (lines per inch - lpi) и называется линиатурой.

Размер точки растра рассчитывается для каждого элемента и зависит от интенсивности тона в данной ячейке. Чем больше интенсивность, тем плотнее заполняется элемент растра. То есть, если в ячейку попал абсолютно черный цвет, размер точки растра совпадет с размером элемента растра. В этом случае говорят о 100% заполняемости. Для абсолютно белого цвета значение заполняемости составит 0%. На практике заполняемость элемента на отпечатке обычно составляет от 3 до 98%. При этом все точки растра имеют одинаковую оптическую плотность, в идеале, приближающуюся к абсолютно черному цвету. Иллюзия более темного тона создается за счет увеличения размеров точек и, как следствие, сокращения пробельного поля между ними при одинаковом расстоянии между центрами элементов растра. Такой метод называют растрированием с амплитудной модуляцией.

При выводе копии изображения на принтере или полиграфическом оборудовании линиатуру растра выбирают, исходя из компромисса между требуемым качеством, возможностями аппаратуры и параметрами печатных материалов

Для лазерных принтеров рекомендуемая линиатура составляет 65 - 100 lpi, для газетного производства - 65-85 lpi, для книжно-журнального - 85 - 133 lpi, для художественных и рекламных работ - 133 - 300 lpi.

При печати изображений с наложением растров друг на друга, например многоцветных, каждый последующий растр поворачивается на определенный угол. Традиционными для цветной печати считаются углы поворота: 105 градусов для голубой печатной формы, 75 градусов для пурпурной, 90 градусов для желтой и 45 градусов для черной. При этом ячейка растра становится косоугольной, и для воспроизведения 256 градаций тона с линиатурой 150 lpi уже недостаточно разрешения 16*150=2400 dpi. Поэтому для фотоэкспонирующих устройств профессионального класса принято минимальное стандартное разрешение 2540 dpi, обеспечивающее качественное растрирование при разных углах поворота растра.

Масштабирование

Масштабирование заключается в изменении вертикального и горизонтального размеров изображения. Масштабирование может быть пропорциональным - в этом случае соотношение между высотой и шириной рисунка не изменяется, а меняется общий размер, и непропорциональным - в этом случае оба измерения изменяются по-разному.

Масштабирование векторных рисунков выполняется просто и без потери качества. Так как объекты векторной графики создаются по их описаниям, то для изменения масштаба векторного объекта, достаточно изменить его описание. Например, чтобы увеличить в два раза векторный объект, следует удвоить значение, описывающее его размер.

Масштабирование растровых рисунков является намного более сложным процессом, чем для векторной графики, и часто сопровождается потерей качества. При изменении размеров растрового изображения выполняется одно из следующих действий:

· одновременное изменение размеров всех пикселов (в большую или меньшую сторону);

· добавление или убавление пикселов из рисунка для отражения производимых в нем изменений, называемых выборкой пикселов в изображении.

По своей сути масштабирование не меняет физические размеры графического файла, поскольку не воздействует ни на один из параметров (число точек, глубина цвета), от которых зависит его значение, а только меняет экранное или печатное разрешение изображения.

Дискретизация

В отличие от масштабирования дискретизация - это операция, которая вмешивается в структуру изображения, изменяя число точек.

В растровой графике получили распространение три основных метода дискретизации, которые различаются между собой скоростью работы и точностью результатов.

Nearest Neighbor (Метод ближайшего соседа). Самый простой метод интерполяции, обладающий высокой скоростью работы и результатами не самого высокого качества. В качестве образца для нового пикселя берутся характеристики его ближайшего фактического соседа. Метод дает неплохие результаты для областей с регулярной геометрией, например прямых линий, прямоугольников и пр.

Bilinear (Билинейная интерполяция). Этот метод несколько сложнее в реализации, но дает лучшие результаты по сравнению с методом Nearest Neighbor. Параметры новой точки рассчитываются усреднением цветовых или тоновых характеристик соседних действительных пикселов изображения. Свои преимущества метод показывает при уменьшении количества точек изображения. Рациональной областью его применения является обработка изображений среднего качества. Bicubic (Бикубическая интерполяция). Это лучший метод интерполяции. Новые точки рассчитываются по существующим соседям на основе несколько более сложных алгоритмов, чем в предыдущем методе.В результате дискретизация выполняет глубокую перестройку изображения, при определенных условиях воздействуя на каждый его пиксель.

Форматы графических файлов

Данные об изображении хранятся в графических файлах. Эти файлы организованы определенным образом. К примеру, для растрового изображения в файле необходимо хранить информацию о цвете для каждого пикселя, а так же порядок и количество пикселей по ширине и высоте. Для векторного же изображения в файле необходимо хранить лишь координаты и задаваемые параметры примитивов, фигур и объектов и взаимосвязи между ними.

Такие способы хранения информации в файле, а также форму хранения информации (используемый алгоритм сжатия) определяют форматы графических файлов. Сжатие применяется для растровых графических файлов, так как они имеют достаточно большой объем. Существуют различные алгоритмы сжатия, причем для различных типов изображения целесообразно применять подходящие типы алгоритмов сжатия.

Формат BMP

Формат BMP (Windows Bitmap - растровое изображение Windows) является собственным форматом графического редактора Microsoft Paint, поставляемого вместе с операционной системой Windows. Он поддерживается многими приложениями DOS, Windows и OS/2, но не поддерживается Mac OS. Формат BMP допускает применение алгоритма последовательного сжатия без потерь RLE и может представлять до 16 млн. цветов. Однако не все графические программы распознают сжатые BMP-файлы. Несжатые BMP-файлы имеют большой объем. Файлы данного формата имеют расширение bmp.

Обычно BMP-файлы используются для иллюстраций в справочных системах, пиктограмм, а также в качестве так называемых обоев (фоновой картинки) для рабочего стола Windows.

Формат GIF (CompuServe Graphics Interchange Format)

Независящий от аппаратного обеспечения формат GIF был разработан в 1987 году фирмой CompuServe для передачи растровых изображений по сетям. GIF использует LZW-компрессию, что позволяет неплохо сжимать файлы, в которых много однородных заливок (логотипы, надписи, схемы).

Метод сжатия LZW (Lempel-Ziv-Welch) разработан в 1978 году израильтянами Лемпелом и Зивом и доработан позднее в США. Сжимает данные путем поиска одинаковых последовательностей (они называются фразы) во всем файле. Выявленные последовательности сохраняются в таблице, им присваиваются более короткие маркеры (ключи). Так, если в изображении имеются наборы из розового, оранжевого и зеленого пикселов, повторяющиеся 50 раз, LZW выявляет это, присваивает данному набору отдельное число (например, 7) и затем сохраняет эти данные 50 раз в виде числа 7.

GIF позволяет записывать изображение "через строчку" (Interlaced), благодаря чему, имея только часть файла, можно увидеть изображение целиком, но с меньшим разрешением. Это достигается за счет записи, а затем подгрузки, сначала 1, 5, 10 и т.д. строчек пикселов и растягивания данных между ними, вторым проходом следуют 2, 6, 11 строчки, разрешение изображения в интернетовском браузере увеличивается. Таким образом, задолго до окончания загрузки файла может понять содержимое изображения. Чересстрочная запись незначительно увеличивает размер файла, но это, как правило, оправдывается приобретаемым свойством.

В GIF'e можно назначить один или более цветов прозрачными, они станут невидимыми в интернетовских браузерах и некоторых других программах. Прозрачность обеспечивается за счет дополнительного Alpha-канала, сохраняемого вместе с файлом. Кроме того файл GIF может содержать не одну, а несколько растровых картинок, которые браузеры могут подгружать одну за другой с указанной в файле частотой. Так достигается иллюзия движения (GIF-анимация).

Основное ограничение формата GIF состоит в том, что цветное изображение может быть записано только в режиме 256 цветов.

Формат JPG (jpeg) (Joint Photographic Experts Group)

Строго говоря, JPEG'ом называется не формат, а алгоритм сжатия, основанный не на поиске одинаковых элементов, как в RLE и LZW, а на разнице между пикселями. Кодирование данных происходит в несколько этапов. Сначала графические данные конвертируются в цветовое пространство типа LAB, затем отбрасывается половина или три четверти информации о цвете (в зависимости от реализации алгоритма). Далее анализируются блоки 8х8 пикселов. Для каждого блока формируется набор чисел. Первые несколько чисел представляют цвет блока в целом, в то время, как последующие числа отражают тонкие детали. Спектр деталей базируется на зрительном восприятии человека, поэтому крупные детали более заметны.

На следующем этапе, в зависимости от выбранного уровня качества, отбрасывается определенная часть чисел, представляющих тонкие детали. На последнем этапе используется кодирование методом Хаффмана для более эффективного сжатия конечных данных. Восстановление данных происходит в обратном порядке.

Таким образом, чем выше уровень компрессии, тем больше данных отбрасывается, тем ниже качество. Используя JPEG можно получить файл в 1 500 раз меньше, чем ВМР. Формат аппаратно независим, полностью поддерживается на РС и Macintosh, однако он относительно нов и не понимается старыми программами (до 1995 года). JPEG не поддерживает индексированные палитры цветов.

JPEG'ом лучше сжимаются растровые картинки фотографического качества, чем логотипы или схемы - в них больше полутоновых переходов, среди однотонных заливок же появляются нежелательные помехи. Лучше сжимаются и с меньшими потерями большие изображения для web или с высокой печатной резолюцией (200-300 и более dpi), чем с низкой (72-150 dpi), т.к. в каждом квадрате 8х8 пикселов переходы получаются более мягкие, за счет того, что их (квадратов) в таких файлах больше. Нежелательно сохранять с JPEG-сжатием любые изображения, где важны все нюансы цветопередачи (репродукции), так как во время сжатия происходит отбрасывание цветовой информации. В JPEG'е следует сохранять только конечный вариант работы, потому что каждое пересохранение приводит потерям (отбрасыванию) данных и превращении исходного изображения в «кашу».

Формат PNG (Portable Network Graphics)

PNG - разработанный относительно недавно формат для Сети, призванный заменить собой устаревший GIF. Использует сжатие без потерь Deflate, сходное с LZW. Сжатые индексированные файлы PNG, как правило, меньше аналогичных GIF'ов, RGB PNG меньше соответствующего файла в формате TIFF.

Глубина цвета файлах PNG может быть любой, вплоть до 48 бит. Используется двумерный interlacing (не только строк, но и столбцов), который, так же, как и в GIF'е, слегка увеличивает размер файла. В отличие от однозначной прозрачности в GIF'e PNG поддерживает также полупрозрачные пиксели (то есть в диапазоне прозрачности от 0 до 99%) за счет Альфа-канала с 256 градациями серого.

В файл формата PNG записывается информация о гамма-коррекции. Гамма представляет собой некое число, характеризующее зависимость яркости свечения экрана вашего монитора от напряжения на электродах кинескопа. Это число, считанное из файла, позволяет ввести поправку яркости при отображении. Нужно оно для того, чтобы картинка, созданная на Мас'е, выглядела одинаково и на РС и на Silicon Graphics. Таким образом, эта особенность помогает реализации основной идеи WWW - одинакового отображения информации независимо от аппаратуры пользователя.

Формат PDF (Portable Document Format)

PDF первоначально проектировался как компактный формат электронной документации. Поэтому все данные в нем могут сжиматься, причем к разного типа информации применяются разные, наиболее подходящие для них типы сжатия: JPEG, RLE, CCITT, ZIP. Формат позволяет расставлять гиперссылки, заполняемые поля, включать в файл PDF видео, звук и другие действия.

Файл PDF может быть оптимизирован. Из него удаляются повторяющиеся элементы, устанавливается постраничный порядок загрузки страниц через web, с приоритетом сначала для текста, потом графика, наконец шрифты.

Все больше PDF используется для передачи по сетям в компактном виде графики и верстки. Он может сохранять всю информацию для выводного устройства, которая была в исходном PostScript-файле.

Формат DXF

Формат DXF активно применяется фирмой AutoDESC в пакете AutoCAD и является стандартом обмена векторной графикой; DXF-файл является текстовым, поддерживает определения сложных объектов, вложенность блоков и др. Текстовый формат этих файлов способствовал их широкому распространению, так как (относительно) несложно разрабатывать пользовательские программы для считывания, анализа и создания DXF-файлов. Специально для применения в сети Internet фирма AutoDESC разработала формат DWF (Drawing WEB File).

Формат WMF

Формат WMF (Windows Metafiles Format) поддерживает векторную графику и позиционируется как средство поддержания объектов галереи кадров (Microsoft Clip Gallery).

Знание файловых форматов и их возможностей является одним из ключевых факторов в компьютерной графике. Выше был приведен основной и далеко не весь список форматов изображений, каждый, из утвердившихся сегодня форматов, прошел естественный отбор, доказал свою жизнеспособность и нужность. Все они имеют свои характерные особенности и возможности, делающие их незаменимыми в работе.

Визуализация графической информации

Архитектура графической подсистемы ПК

За вывод графической информации на дисплей в ПК отвечает специальный набор микросхем, обычно помещаемый на отдельную плату, которая называется видеоплатой или видеокартой. Основной задачей является преобразование образа экрана, находящегося в памяти, т.н. кадрового буфера (frame buffer), в набор сигналов, понятных дисплею. Для подключения дисплеев к компьютерам используются стандарты, устанавливающие логические и физические параметры соединения. В настоящее время два самых распространенных из них - это аналоговый VGA и цифровой DVI. Первый используется для подключения как аналоговых по сути дисплеев на ЭЛТ, так и цифровых ЖК-дисплеев (аналого-цифровое преобразование в этом случае происходит в самом дисплее), второй - исключительно для ЖК-дисплеев.

растровый векторный графика

На видеокарте присутствует видеопамять, характерной особенностью которой является то, что она двухпортовая - подсоединена как к шине, по которой передаются данные от центрального процессора, так и к микросхеме, отвечающей за вывод на дисплей, и они могут одновременно обращаться к ней. В дешевых устройствах в качестве видеопамяти используется часть основной памяти, что значительно замедляет обработку данных на видеокарте. Объем памяти должен быть достаточным для хранения данных кадрового буфера, а желательно еще и вторичного буфера (back buffer), если используется технология двойной буферизации. Дело в том, что если менять значения пикселей прямо в момент вывода их на экран, то при высокой частоте обновления могут возникать артефакты, связанные с тем, что на экран выводится еще не отрисованное до конца изображение. Чтобы этого избежать, при двойной буферизации во время вывода изображения из области видеопамяти, которая назначена кадровым буфером (называемым в этом случае также первичным буфером (front buffer)), изображение следующего кадра строится во вторичном буфере, а при показе следующего кадра эти области памяти меняются ролями. Эта технология используется для показа динамичных изображений, таких как игры. Дополнительная видеопамять также ускоряет обработку графики, позволяя держать дополнительные графические элементы, которые отображаются в кадровом буфере с помощью блиттинга.

Доступ к видеопамяти со стороны процессора может быть организован двояко - либо видеопамять, как часть адресов, включается в адресное пространство процессора, либо для копирования данных между основной и видеопамятью контроллеру на видеокарте посылается специальная команда и копирование происходит с помощью DMA (Direct Memory Access - микросхема, позволяющая осуществлять передачу данных в/из оперативной памяти периферийным устройствам без участия центрального процессора).

Микросхема, отвечающая за вывод на дисплей, постоянно сканирует видеопамять, преобразует ее в форму, соответствующую интерфейсу дисплея, и формирует выходной сигнал, передаваемый по кабелю на дисплей. Если видеоплата оснащена аналоговым выходом, то в нее должен быть встроен цифро-аналоговый преобразователь (RAMDAC - Random Access Memory Digital to Analog Converter). Так как информация о пикселях передается последовательно, то RAMDAC должен обладать достаточно высокой тактовой частотой, чтобы позволять выводить изображения высокого разрешения с достаточной частотой обновления. Например, изображение 1600?1200 для вывода с частотой 75 Гц требует частоты RAMDAC равной 1600?1200?75 = 144 МГц. Частота работы RAMDAC является важной характеристикой видеокарты.

Также на видеоплате содержится графический процессор, способный быстро выполнять основные операции по работе с изображениями в видеопамяти, которые могут быть разделены на несколько классов.

Работа с прямоугольными блоками. Эта микросхема называется блиттер, потому что основная операция которую она производит - это BitBlt (Bit Block Transfer), то есть копирование прямоугольного блока изображения в другое изображение с возможным применением побитовых логических операций (И, ИЛИ, ИСКЛЮЧАЮЩЕЕ ИЛИ). Это часто используемая операция для помещения объектов произвольной формы, т.н. спрайтов, на изображение. Также видеокарта может поддерживать операцию StretchBlt, - это то же самое, что и BitBlt, но с растяжением по осям.

Растеризация примитивов позволяет производить растеризацию простейших объектов, таких как отрезки, окружности, эллипсы, прямоугольники, многоугольники. Также может поддерживаться заливка одноцветных зон другим цветом или по шаблону. При этом может использоваться и аппаратный антиалиасинг. К этой группе также можно отнести аппаратную поддержку отрисовки курсора.

Поддержка вывода символов. Этот блок отвечает за вывод символов на экран определенным шрифтом. Иногда шрифт можно варьировать или загружать из основной памяти свой. Данный блок активно используется, когда видеокарта находится в текстовом режиме, когда дисплей логически делится на определенное количество прямоугольных ячеек, чаще всего 80?25, в каждую из которых может быть помещен один символ из ограниченного поднабора ASCII. Вид каждого из этих символов определяется в специальной таблице видеокарты, которая может быть изменена. В настоящее время этот режим используется при загрузке ПК, а также при работе в режиме терминала (чаще используется в ОС Linux).

Аппаратное ускорение видео и фильтрация изображения. Кодирование и декодирование видео - очень ресурсоемкая операция, связанная с обработкой больших объемов данных. Некоторые видеокарты способны аппаратно декодировать видеопоток, т.е. последовательность сжатых видеоданных, которая соответствует определенному формату. Чаще всего это стандарт MPEG-2, которым закодированы фильмы на DVD. В современных видеокартах также начинает появляться поддержка Телевидения высокой четкости (HDTV - High Definition Television). Также возможно и аппаратное масштабирование видео. Аппаратное отображение видео в части экрана носит название оверлея (overlay).

Некоторые видеокарты также могут аппаратно производить фильтрацию изображений, а также осуществлять гамма-коррекцию.

CRT (ЭЛТ) - мониторы

Монитор получает сигнал от видеокарты и передает его на электронно лучевую пушку, которая формирует луч, передающий совокупность сигналов: красный, зеленый, синий (RGB) на переднюю панель трубки.

Луч направляется отклоняющей системой проходит через отверстия в теневой маске, теневая маска направляет луч на флуоресцирующий материал; соударение луча с фосфоресцирующим экраном и вызывает свечение, видимое глазу.

Кроме точечной маски, применяются также полосовые маски и апертурные решетки. Апертурная решетка обеспечивает повышенную четкость изображения благодаря технологии, в соответствии с которой (для горизонтальной изоляции пикселов) используются тонкие вертикальные проволочки. В частности, апертурная решетка используется в мониторах Sony Trinitron.

Наиболее существенное различие между теневой маской и апертурной решеткой состоит в заметном увеличении яркости при использовании последней. Это происходит потому, что на красный, зеленый или голубой люминофор через вертикальные полосы апертурной решетки попадает луч большей интенсивности, так как решетка ограничивает лучи только по горизонтали. При этом нельзя однозначно утверждать, что технология, использующая апертурную решетку, лучше - поскольку ответ на этот вопрос зависит от того, требуют ли приложения, более четкой картинки или более насыщенных цветов. Дело в том, что использование апертурной решетки позволяет получить пиксели большего размера и меньшее общее разрешение, но яркость в целом увеличивается, а при использовании решетки с теневой маской пиксели получаются меньшего размера, разрешение больше, но при этом снижается яркость. В любом случае качество маски определяется тем, насколько тесно на ней расположены отверстия или щели, и измеряется так называемым шагом (dot pitch) теневой маски и шагом апертурной решетки.

Расстояние между соседними отверстиями теневой маски влияет на величину зерна изображения. Обычно у мониторов хорошего качества шаг не превышает 0,28 мм в моделях с теневой маской и 0,3 мм - в мониторах с апертурной решеткой. Наименьшие значения шага - 0,25 мм - использует компания Sony.

Некоторые параметры мониторов CRT

Одним из основных параметров CRT-монитора является размер диагонали трубки. Различают непосредственно размер диагонали трубки и видимый размер, который обычно примерно на 1 дюйм меньше, чем диагональ трубки, частично закрывающаяся корпусом монитора.

Коэффициент светопередачи определяется как отношение полезной световой энергии, излучаемой вовне, к энергии, излучаемой внутренним фосфоресцирующим слоем. Обычно этот коэффициент лежит в пределах 50-60%. Чем выше коэффициент светопередачи, тем меньший требуется уровень видеосигнала для обеспечения необходимой яркости. Однако при этом снижается контрастность изображения в силу снижения перепада между излучающими и неизлучающими участками поверхности экрана. При низком коэффициенте светопередачи улучшаются фокусировка изображения, однако требуется более мощный видеосигнал и соответственно усложняется схема монитора. Конкретное значение коэффициента светопередачи можно найти в документации производителя. Обычно 15-дюймовые мониторы имеют коэффициент светопередачи в пределах 56-58%, а 17-дюймовые - 52-53%.

Периодом горизонтальной развертки называют время, за которое луч проходит расстояние от левого до правого края экрана. Соответственно величина, обратная данной, называется частотой горизонтальной развертки и измеряется в килогерцах. При увеличении частоты кадров частота горизонтальной развертки должна быть также увеличена.

Вертикальной разверткой называется количество обновлений изображения на экране в секунду, этот параметр также называют частотой кадров. Горизонтальная и вертикальная развертка связаны между собой соотношением: горизонтальная развертка = (число строк) x (верт. разв.) x 1,05 Чем выше величина вертикальной развертки, тем меньше соответственно заметен для глаза эффект смены кадра, который проявляется в мерцании экрана. Считается, что при частоте 75 Гц мерцание практически незаметно для глаза, однако стандарт VESA рекомендует работу на частоте 85 Гц.

Разрешающая способность характеризуется числом пикселов и числом строк. Например, разрешение монитора 1024 x 768 указывает на количество точек в строке - 1024 и на количество строк - 768.

Равномерность определяется постоянством яркости по всей поверхности экрана монитора. Различают "равномерность яркости" и равномерность белого. Обычно мониторы имеют различную яркость в разных участках экрана. Отношения яркости в областях с максимальным и минимальным значением яркости называют равномерностью распределения яркости. Равномерность белого определяется как различие яркости белого цвета (при выводе изображения белого цвета).

Термин "несведение лучей" означает отклонение красного и синего от центрирующего зеленого. Подобное отклонение препятствует получению чистых цветов и четкого изображения. Различают статическое и динамическое несведение. Под первым понимается несведение трех цветов по всей поверхности экрана, которое обычно связано с погрешностями при сборке электронно-лучевой трубки. Динамическое несведение характеризуется погрешностями на краях при четком изображении в центре.

Оптимальной чистоты и четкости изображения можно добиться, когда каждый из RGB-лучей достигает поверхности в точно установленной точке, что обеспечивается при строгой взаимосвязи между электронной пушкой, отверстиями теневой маски и точками люминофора. Смещение луча, смещение центра пушки вперед или назад, а также отклонение луча, вызванное влиянием внешних магнитных полей, - все это может влиять на ухудшение чистоты и четкости изображения.

Муар - это вид дефекта, который воспринимается глазом как волнообразные разводы изображения, связанные с неправильным взаимодействием теневой маски и сканирующего луча. Фокус и муар являются связанными параметрами для CRT-мониторов, поэтому небольшой муар допускается при хорошем фокусе.

Под дрожанием обычно понимают колебательные изменения изображения с частотой выше 30 Гц. Они могут быть вызваны вибрацией отверстий маски монитора, что, в частности, может быть обусловлено неправильной организацией заземления. При частотах менее 30 Гц употребляется термин "плавание", а ниже 1 Гц - "дрейф". Незначительное дрожание присуще всем мониторам. В соответствии со стандартом ISO допускается диагональное отклонение точки не более чем на 0,1 мм.

Все мониторы с теневой маской в той или иной степени подвержены искажениям, связанным с термической деформацией маски. Термическое расширение материала, из которого выполнена маска, приводит к ее деформации и соответственно к смещению отверстий маски. Предпочтительным материалом для маски является инвар - сплав, имеющий малый коэффициент линейного расширения.

Экраны CRT-монитора могут иметь различные покрытия, улучшающие качество изображения и потребительские свойства монитора.

Антистатическое покрытие представляет собой тонкий слой специального химического состава, который предотвращает накопление электростатического заряда.

Полированная панель имеет максимальную яркость и минимальные антибликовые свойства.

Кварцевое покрытие - недорогое покрытие, которое уменьшает блики на экране, но ограничивает резкость изображения.

Многослойное антибликовое покрытие обеспечивает высокую резкость при отсутствии бликов, но имеет высокую цену. Помимо антибликового покрытия используют также антибликовые панели, которые минимизируют отражающие свойства экрана и уменьшают электромагнитное излучение экрана, не ухудшая качества изображения.

LCD (ЖК) - мониторы

Технология LCD-дисплеев основана на уникальных свойствах жидких кристаллов, которые одновременно обладают определенными свойствами как жидкости (например, текучестью), так и твердых кристаллов (в частности, анизотропией). В LCD-панелях используют так называемые нематические кристаллы, молекулы которых имеют форму продолговатых пластин, объединенных в скрученные спирали. LCD-элемент, помимо кристаллов, включает в себя прозрачные электроды и поляризаторы. При приложении напряжения к электродам спирали распрямляются. Используя на входе и выходе поляризаторы, можно использовать такой эффект раскручивания спирали, как электрически управляемый вентиль, который то пропускает, то не пропускает свет.

Экран LCD-дисплея состоит из матрицы LCD-элементов. Для того чтобы получить изображение, нужно адресовать отдельные LCD-элементы. Различают два основных метода адресации и соответственно два вида матриц: пассивную и активную. В пассивной матрице точка изображения активируется подачей напряжения на проводники-электроды строки и столбца. При этом электрическое поле возникает не только в точке пересечения адресных проводников, но и на всем пути распространения тока, что препятствует достижению высокого контраста. В активной матрице каждой точкой изображения управляет свой электронный переключатель, что обеспечивает высокий уровень контрастности. Обычно активные матрицы реализованы на основе тонкопленочных полевых транзисторов (Thin Film Transistor, TFT). TFT-экраны, иначе называемые экранами с активной матрицей, обладают самым высоким среди плоскопанельных устройств разрешением, широко используются в ноутбуках, автомобильных навигационных устройствах и разнообразных цифровых приставках.

LCD-дисплей не излучает, а работает как оптический затвор. Поэтому для воспроизведения изображения ему требуется источник света, который располагается позади LCD-панели. Время жизни внутреннего источника света TFT LCD-монитора зависит от его типа. Как правило, источники света для 15-дюймовых мониторов теряют около 50% первоначальной яркости за 20 000 часов.

Основные параметры, определяющие качество LCD-мониторов

Относительное отверстие - отношение площади изображения к общей площади матрицы LCD-дисплея. Чем это отношение больше, тем большая площадь занята цветовыми элементами и соответственно тем ярче дисплей.

Пропускная способность жидкого кристалла зависит от угла наклона падающего света. Поэтому если смотреть на LCD-дисплей не строго перпендикулярно, а сбоку, то происходит затемнение изображения или искажение цвета. Некоторые фирмы предлагают различные технологии для устранения этого эффекта. В Apple Studio Display, например, используют особое пленочное покрытие, которое увеличивает качество изображения при "боковом" чтении. Существуют и другие технологии, однако в целом ряде случаев приемы, увеличивающие угол обзора, снижают динамические параметры отображения информации. Небольшой угол обзора - это серьезная проблема, и стоит она тем острее, чем больше размер экрана. По свидетельству основных производителей, сегодняшняя технология позволяет увеличить этот угол до 120-130 градусов в горизонтальной и 80° - в вертикальной плоскости.

Интерференция проявляется за счет влияния активизированных пикселов на соседние пассивные. Это явление в меньшей степени проявляется в мониторах с активной матрицей и в большей - в мониторах с пассивной матрицей.

Яркость дисплея определяется яркостью заднего освещения и пропускной способностью панели. Пропускная способность жидкого кристалла мала, поэтому для увеличения яркости изображения применяют апертурную решетку с большим относительным отверстием и цветовые фильтры с высокой пропускной способностью.

Программная реализация

Практической частью в рамках данной курсовой работы явилось, создание программы иллюстрирующей представление в компьютерной графике растровых и векторных изображений.

Для реализации программного приложения была использована программа Macromedia Flash MX. Она представляет собой специализированную редакторскую среду разработки векторной графики, главным образом для создания быстро загружаемой анимации на web-сайтах глобальной сети Internet. Кроме того она поддерживает работу с различными форматами растровой графики, аудио и видео информации. Одним из основных инструментом Flash MX является встроенный язык программирования Action Script 2.0, который предназначен для управления Flash проектами, но кроме того является самостоятельным полнофункциональным языком программирования высокого уровня. В связи со всем этим Macromedia Flash MX служит мощным инструментом для создания Web-анимации, мультсериалов, игр, музыкального видео, проигрывателей, разнообразных презентаций и многих других мультимедийных приложений.


Подобные документы

  • Преобразование графической информации из аналоговой формы в цифровую. Количество цветов, отображаемых на экране монитора. Расчет объема видеопамяти для одного из графических режимов. Способы хранения информации в файле. Формирование векторной графики.

    презентация [2,1 M], добавлен 22.05.2012

  • Технология обработки графической информации с помощью ПК, применение в научных и военных исследованиях: формы, кодирование информации, ее пространственная дискретизация. Создание и хранение графических объектов, средства обработки векторной графики.

    реферат [20,7 K], добавлен 28.11.2010

  • Стандартное устройство вывода графической информации в компьютере IBM - система из монитора и видеокарты. Основные компоненты видеокарты. Графическое и цветовое разрешение экрана. Виды мониторов и видеокарт. Мультимедиа-проекторы, плазменные панели.

    контрольная работа [38,7 K], добавлен 09.06.2010

  • Виды и способы представления компьютерной информации в графическом виде. Отличительные особенности растровой и векторной графики. Масштабирование и сжатие изображений. Форматы графических файлов. Основные понятия трехмерной графики. Цветовые модели.

    контрольная работа [343,5 K], добавлен 11.11.2010

  • Характеристика растровой, векторной и демонстрационной графики. Способы формирования изображений. Обзор современных программ обработки и просмотра графической информации: Paint, Adobe Photoshop, MS Power Point. Основные функции графических редакторов.

    курсовая работа [36,8 K], добавлен 07.04.2015

  • Компьютерная графика как разные виды графических изображений, создаваемых или обрабатываемых с помощью компьютера. Оборудование, используемое для ввода графической информации. Программа растровой графики Adobe Photoshop, векторной графики CorelDraw.

    презентация [549,3 K], добавлен 14.05.2014

  • Представление графической информации в компьютере. Графические форматы и их преобразование. Информационные технологии обработки графической информации. Формирование и вывод изображений. Файлы векторного формата и растровый графический редактор.

    курсовая работа [1,0 M], добавлен 25.04.2013

  • Суть принципа точечной графики. Изображения в растровой графике, ее достоинства. Обзор наиболее известных редакторов векторной графики. Средства для работы с текстом. Программы фрактальной графики. Форматы графических файлов. Трехмерная графика (3D).

    дипломная работа [764,7 K], добавлен 16.07.2011

  • Общие сведения о графической информации. Характеристика растровой, векторной и демонстрационной графики. Обзор программ обработки и просмотра графических изображений Paint, Adobe Photoshop, MS Power Point, ACDSee. Возможности графических редакторов.

    курсовая работа [55,7 K], добавлен 01.07.2010

  • Сферы применения машинной графики. Использование растровой, векторной и фрактальной графики. Цветовое разрешение и модели. Создание, просмотр и обработка информации. Форматы графических файлов. Программы просмотра. Компьютерное моделирование и игра.

    презентация [661,5 K], добавлен 24.03.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.