"Растяжение пластины с малым круглым отверстием (Задача Кирша)"
Рассматриваемая задача - плоская задача теории упругости и ее решение методом конечных элементов. Компоненты тензора напряжений. Аналитическое решение задачи Кирша. Графики зависимости значений компонент тензора напряжения от R. Изменение пластины.
Рубрика | Физика и энергетика |
Вид | лабораторная работа |
Язык | русский |
Дата добавления | 11.01.2020 |
Размер файла | 946,5 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Поведение полей напряжений в окрестности концентраторов дефектов и неоднородностей среды, полостей и включений. Теоретическое решение задачи Кирша. Концентрации напряжений. Экспериментальный метод исследования напряжённо-деформированного состояния.
контрольная работа [1,4 M], добавлен 24.03.2011Метод конечных элементов (МКЭ) — численный метод решения задач прикладной физики. История возникновения и развития метода, области его применения. Метод взвешенных невязок. Общий алгоритм статического расчета МКЭ. Решение задач методом конечных элементов.
курсовая работа [2,0 M], добавлен 31.05.2012Определяющие соотношения модели нелинейно упругой среды, вычисление компонент тензора напряжений. Определение автомодельного движения. Сведение модельных соотношений к системе дифференциальных уравнений. Краевая задача разгрузки нелинейно упругой среды.
курсовая работа [384,1 K], добавлен 30.01.2013Энергетическая теория прочности Гриффитса. Растяжение и сжатие как одноосные воздействия нагрузки. Деформированное состояние в стержне. Зависимость компонентов тензора напряжения от ориентации осей. Теория Ирвина и Орована для квазехрупкого разрушения.
курс лекций [949,8 K], добавлен 12.12.2011Численная оценка зависимости между параметрами при решении задачи Герца для цилиндра во втулке. Устойчивость прямоугольной пластины, с линейно-изменяющейся нагрузкой по торцам. Определение частот и форм собственных колебаний правильных многоугольников.
диссертация [8,0 M], добавлен 12.12.2013Решение краевых задач методом функции Хартри. Решение уравнения теплопроводности с разрывным коэффициентом и его приложение в электрических контактах. Определение результатов первой граничной задачи с разрывными коэффициентами с помощью функции Хартри.
дипломная работа [998,8 K], добавлен 10.05.2015Дифференциальное уравнение теплопроводности для цилиндра. Начальные и граничные условия, константы интегрирования. Конвективная теплоотдача от цилиндра к жидкости. Условия на оси пластины. Графическое решение уравнения охлаждения и нагревания пластины.
презентация [383,5 K], добавлен 18.10.2013Определение: инвариантов напряженного состояния; главных напряжений; положения главных осей тензора напряжений. Проверка правильности вычисления. Вычисление максимальных касательных напряжений (полного, нормального и касательного) по заданной площадке.
курсовая работа [111,3 K], добавлен 28.11.2009Оценка влияния малых нерегулярностей в геометрии, неоднородности в граничных условиях, нелинейности среды на спектр собственных частот и собственной функции. Построение численно-аналитического решения задачи о внутреннем контакте двух цилиндрических тел.
автореферат [2,3 M], добавлен 12.12.2013Стационарная задача теплопроводности. Понятие термического сопротивления. Вынужденный конвективный теплообмен при обтекании плоской пластины, одиночного цилиндра, сферы и пучков труб. Радиационные свойства газов. Теплообмен при фазовых превращениях.
курсовая работа [2,7 M], добавлен 01.07.2010