Формулировка и доказательство теоремы Нётер

Асимптотическая аддитивность интегралов движения. Формулировка и доказательство теоремы Нётер, позволяющей при заданном виде функции Лагранжа найти аддитивные интегралы движения в виде явных функций координат и скоростей, не интегрируя никаких уравнений.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.04.2010
Размер файла 55,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Формулировка и доказательство теоремы Котельникова. Свойства функций отсчетов. Аспекты использования теоремы Котельникова, недостатки ее применения по отношению к реальным сигналам. Определение практической ширины спектра сигнала и энергии погрешности.

    лекция [79,6 K], добавлен 19.08.2013

  • Изучение основных теорем о движении материальной точки. Расчет момента количества движения точки относительно центра и в проекции на оси. Первые интегралы в случае центральной силы. Закон площадей. Примеры работы силы в виде криволинейных интегралов.

    презентация [557,8 K], добавлен 28.09.2013

  • Применение дифференциальных уравнений к изучению движения механической системы. Описание теоремы об изменении кинетической энергии, принципа Лагранжа–Даламбера (общего уравнения динамики), уравнения Лагранжа второго рода, теоремы о движении центра масс.

    курсовая работа [701,6 K], добавлен 15.10.2014

  • Использование теоремы об изменении кинетической энергии при интегрировании системы уравнений движения. Получение дифференциальных уравнений движения диска. Анализ динамики ускорения движения стержня при падении. Расчет начальных давлений на стену и пол.

    презентация [597,5 K], добавлен 02.10.2013

  • Характеристика движения простейшего тела и способы его задания. Определение скорости и ускорение точки при векторном, координатном, естественном способе задания движения. Простейшие движения твердого тела, теоремы о схождении скоростей и ускорений.

    курс лекций [5,1 M], добавлен 23.05.2010

  • Построение уравнений движения системы в виде уравнений Лагранжа второго рода. Изучение стационарных движений механической системы. Получение уравнения первого приближения. Составление функции Рауса. Анализ устойчивых и неустойчивых положений равновесия.

    курсовая работа [1,7 M], добавлен 05.01.2013

  • Определение реакций опор твердого тела, скорости и ускорения точки. Интегрирование дифференциальных уравнений движения материальной точки. Теоремы об изменении кинетической энергии механической системы. Уравнение Лагранжа второго рода и его применение.

    курсовая работа [1,3 M], добавлен 15.10.2011

  • Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.

    реферат [61,6 K], добавлен 08.04.2011

  • Математическая модель невозмущенного движения космических аппаратов. Уравнения, определяющие относительные движения тел-точек в барицентрической системе координат. Исследование системы уравнений с точки зрения теории невозмущенного кеплеровского движения.

    презентация [191,8 K], добавлен 07.12.2015

  • Теоремы об изменении кинетической энергии для материальной точки и системы; закон сохранения механической энергии. Динамика поступательного и вращательного движения твердого тела. Уравнение Лагранжа; вариационный принцип Гамильтона-Остроградского.

    презентация [1,5 M], добавлен 28.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.