Формулировка и доказательство теоремы Нётер

Асимптотическая аддитивность интегралов движения. Формулировка и доказательство теоремы Нётер, позволяющей при заданном виде функции Лагранжа найти аддитивные интегралы движения в виде явных функций координат и скоростей, не интегрируя никаких уравнений.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 23.04.2010
Размер файла 55,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

14

Министерство образования Украины

Донбасский горно-металлургический институт

Кафедра Общей и прикладной физики

Курсовая работа

на тему:

Теорема Нётер

выполнил:

студент группы ПФ-99

Антропов Иван Иванович

руководитель:

доцент кафедры ОПФ

Мурга В.В.

Алчевск 2001

Содержание

  • Введение 3
  • 1. Асимптотическая аддитивность интегралов движения. Формулировка теоремы Нётер. 4
  • 2. Доказательство теоремы Нётер 5
  • 3. Некоторые замечания относительно теоремы Нётер 12
  • Вывод 14
  • Список использованной литературы

Введение

Всякое равенство вида называется интегралом движения. Для замкнутой системы с n степенями свободы всего существует независимых интегралов движения. Если считать в уравнениях движения новыми переменными, не зависящими от , то полный набор уравнений движения запишется в виде

, (1)

причем для замкнутой системы время здесь войдет только в виде явно выписанных дифференциалов. Поэтому исключая из этих уравнений dt, мы получим уравнений, не содержащих времени. Их интегрирование приведет к интегралам движения.

1. Асимптотическая аддитивность интегралов движения. Формулировка теоремы Нётер

Среди всех интегралов движения особое значение имеют аддитивные или асимптотически аддитивные интегралы движения, для которых существует специальное название - законы сохранения. Если рассмотреть две системы, находящиеся очень далеко друг от друга, то физически очевидно, что процессы в одной системе совсем никак не должны влиять на движение другой. Поскольку, с другой стороны ничто не мешает нам рассматривать две такие системы как две части, I и II, единой общей системы, то мы приходим к условию асимптотической аддитивности, который заключается в следующем: если некоторая система (I + II) разделяется на две подсистемы таким образом, что минимум расстояния между материальными точками разных подсистем , то ее функция Лагранжа распадается на сумму функций Лагранжа обеих подсистем:

. (2)

Законы сохранения имеют глубокое происхождение, связанное с инвариантностью описания механической системы относительно некоторой группы преобразований времени и координат. Существует теорема Нётер, утверждающая, что для системы дифференциальных уравнений, которые могут быть получены как уравнения Эйлера из некоторого вариационного принципа, из инвариантности вариационного функционала относительно однопараметрической непрерывной группы преобразований следует существование одного закона сохранения. Если группа содержит l параметров, то из инвариантности функционала будет следовать существование l законов сохранения.

Наличие входящих в требуемую теоремой Нётер группу преобразований симметрии зависит от природы физической системы. Для рассматриваемых замкнутых систем действие должно быть инвариантным относительно семипараметрической группы преобразований - зависящего от одного сдвига по времени, зависящих от трех параметров пространственных сдвигов и зависящих от трех параметров вращения пространства. В соответствии с этим у всякой замкнутой системы должны существовать 7 сохраняющихся величин, отвечающих указанным преобразованиям. Если система такова, что она допускает еще и другие преобразования симметрии, то сохраняющихся величин может оказаться больше.

2. Доказательство теоремы Нётер

Точно сформулируем и докажем теорему Нётер.

Рассмотрим некоторую систему, описываемую функцией Лагранжа

. (3)

Форма уравнений Лагранжа-Эйлера, получаемых из вариационного принципа с такой функцией Лагранжа, инвариантна относительно преобразований вида , а также и относительно более общих преобразований

(4)

включающих замену независимой переменной. Однако конкретный вид для нового выражения для действия, как функционала новых координат, зависящих от нового времени, может претерпеть при таком изменении любые изменения.

Теорема Нётер интересуется только тем случаем, когда таких изменений не происходит.

Итак, будем считать, что мы ввели совокупность зависящих от (для простоты) одного параметра преобразований обобщенных координат и времени.

Используя (4), получим:

(5)

Пусть преобразования такие, что

(6)

т.е. образующих однопараметрическую группу. Рассмотрим бесконечно малое преобразование, отвечающее параметру .

Тогда

(7)

Собственно вариации обобщенных координат, происходящие при рассматриваемом преобразовании, - это разность значений новых координат в некоторый момент нового времени и значений старых координат в соответствующий момент старого времени, т.е.

. (8)

Наряду с ними удобно ввести в рассмотрение вариации формы

(9)

зависимости координат от времени, которые отличны от нуля, даже если наше преобразование затрагивает только время, а не координаты.

Для любой функции справедливо соотношение:

.

Тогда между двумя введенными видами вариаций есть соотношение, которое можно получить следующим образом: вычтем из (8) уравнение (9), получим:

,

примем во внимание, что

,

тогда имеем:

(10)

Вариации без звездочек, относящиеся к одному значению аргумента, перестановочны с дифференцированием по времени

,

в то время, как для вариаций со звездочками это, вообще говоря, неверно.

Соответствующие два вида вариаций можно ввести и для любой динамической переменной. Например, для функции Лагранжа

(11)

причем

(12)

где включает дифференцирование как по явно входящему времени, так и по времени, входящему неявно, через координаты и скорости.

Потребуем теперь, чтобы интеграл действия не менялся бы при нашем преобразовании, - это и есть тот исключительный случай, который требуется условием теоремы, - т.е. чтобы было

, (13)

где Т' - та же область интегрирования, что и Т во втором интеграле, но выраженная через новые переменные. Тогда подставив (11) в (13), получим

(14)

Выражаем в (15) через (11) и учитывая соотношение

,

переходя к интегрированию по t вместо t', получим:

Учитывая, что

,

получим:

(15)

Но

(16)

Найдем дифференциал

,

отсюда

(17)

Подставив (17) в (16), получим:

Под знаком первой суммы стоит уравнение Лагранжа, т.е.

Тогда имеем:

(18)

Подставим полученное значение вариации функции Лагранжа в (15), имеем:

Из (10) выразим через и :

Тогда вариация действия

(19)

Мы должны потребовать равенства этой вариации нулю. В силу произвольности области интегрирования Т из равенства нулю интеграла следует равенство нулю подынтегрального выражения, т.е. мы приходим к тому, что необходимым и достаточным условием инвариантности действия относительно преобразования (7) служит удовлетворение уравнения

.

Заменим и , используя соотношения (7) и (8), имеем:

Вынесем за скобки и разделим на нее обе части уравнения. Окончательно получим необходимое условие:

(20)

Другими словами, из инвариантности действия относительно (7) мы получили то следствие, что величина

(21)

остается постоянной во времени. Это и есть точное утверждение теоремы Нётер.

3. Некоторые замечания относительно теоремы Нётер

1. Величина (21) еще не является динамической величиной - кроме обобщенных координат, скоростей и времени она зависит еще и от задающих преобразований функций . (21) станет динамическим законом только тогда, когда сами задающие (7) функции будут (помимо параметров) зависеть только от .

2. Обратим внимание на разный характер двух членов в (21). Первый из них включает саму функцию Лагранжа, поэтому обязательно перепутывает все степени свободы системы и поэтому может обладать самое большое асимптотической аддитивностью (2). Напротив, второй имеет явную форму суммы по отдельным степеням свободы. Таким образом, если преобразование, относительно которого действие инвариантно, затрагивает время, то мы можем надеяться на сохранение только асимптотически аддитивной величины, если же преобразование меняет лишь координаты, то сохраняться будет точно аддитивная величина.

Вывод

Таким образом, была сформулирована и доказана теорема Нётер. Существенно то, что теорема Нётер позволяет, при заданном виде функции Лагранжа, найти аддитивные интегралы движения в виде явных функций координат и скоростей, не интегрируя никаких уравнений, ведь в общем случае каждый из интегралов движения находится только интегрированием системы, число уравнений которой только на одно меньше полной системы уравнений движения.

Список использованной литературы

1. Медведев Б.В. Начала теоретической физики. Механика. Теория поля. Элементы квантовой механики: Учебн. Пособие для вузов. - М.: Наука, 1977. - 496 с.

2. Ландау Л.Д., Лифшиц Е.М. Механика. Электродинамика: Краткий курс теоретической физики. Кн. 1. - М.: Наука, 1969 - 271 с.

3. Рымкевич П.А. Курс физики [Для физ-мат фак. пед. институтов] Изд. 2-е, перераб и доп. М.: Высшая школа, 1975.


Подобные документы

  • Формулировка и доказательство теоремы Котельникова. Свойства функций отсчетов. Аспекты использования теоремы Котельникова, недостатки ее применения по отношению к реальным сигналам. Определение практической ширины спектра сигнала и энергии погрешности.

    лекция [79,6 K], добавлен 19.08.2013

  • Изучение основных теорем о движении материальной точки. Расчет момента количества движения точки относительно центра и в проекции на оси. Первые интегралы в случае центральной силы. Закон площадей. Примеры работы силы в виде криволинейных интегралов.

    презентация [557,8 K], добавлен 28.09.2013

  • Применение дифференциальных уравнений к изучению движения механической системы. Описание теоремы об изменении кинетической энергии, принципа Лагранжа–Даламбера (общего уравнения динамики), уравнения Лагранжа второго рода, теоремы о движении центра масс.

    курсовая работа [701,6 K], добавлен 15.10.2014

  • Использование теоремы об изменении кинетической энергии при интегрировании системы уравнений движения. Получение дифференциальных уравнений движения диска. Анализ динамики ускорения движения стержня при падении. Расчет начальных давлений на стену и пол.

    презентация [597,5 K], добавлен 02.10.2013

  • Характеристика движения простейшего тела и способы его задания. Определение скорости и ускорение точки при векторном, координатном, естественном способе задания движения. Простейшие движения твердого тела, теоремы о схождении скоростей и ускорений.

    курс лекций [5,1 M], добавлен 23.05.2010

  • Построение уравнений движения системы в виде уравнений Лагранжа второго рода. Изучение стационарных движений механической системы. Получение уравнения первого приближения. Составление функции Рауса. Анализ устойчивых и неустойчивых положений равновесия.

    курсовая работа [1,7 M], добавлен 05.01.2013

  • Определение реакций опор твердого тела, скорости и ускорения точки. Интегрирование дифференциальных уравнений движения материальной точки. Теоремы об изменении кинетической энергии механической системы. Уравнение Лагранжа второго рода и его применение.

    курсовая работа [1,3 M], добавлен 15.10.2011

  • Свойства силовых линий. Поток вектора напряженности электрического поля. Доказательство теоремы Гаусса. Приложение теоремы Гаусса к расчету напряженности электрических полей. Силовые линии на входе и на выходе из поверхности. Обобщенный закон Кулона.

    реферат [61,6 K], добавлен 08.04.2011

  • Математическая модель невозмущенного движения космических аппаратов. Уравнения, определяющие относительные движения тел-точек в барицентрической системе координат. Исследование системы уравнений с точки зрения теории невозмущенного кеплеровского движения.

    презентация [191,8 K], добавлен 07.12.2015

  • Теоремы об изменении кинетической энергии для материальной точки и системы; закон сохранения механической энергии. Динамика поступательного и вращательного движения твердого тела. Уравнение Лагранжа; вариационный принцип Гамильтона-Остроградского.

    презентация [1,5 M], добавлен 28.09.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.