Предмет гидродинамики

Изучение основных задач гидродинамики: определения элементов движения жидкости р и u, установления взаимосвязи между ними и законов изменения их при различных случаях ее движения. Рассмотрение уравнения Даниила Бернулли для элементарной струйки.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 18.03.2014
Размер файла 907,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.1 Основные понятия гидродинамики

Причинами движения жидкости являются действующие на нее силы: объемные или массовые силы (сила тяжести, инерционные силы) и поверхностные силы (давление, трение). В отличие от гидростатики, где основной величиной, характеризующей состояние покоя жидкости, является гидростатическое давление, которое определяется только положением точки в пространстве, т.е. , в гидродинамике основными элементами, характеризующими движение жидкости, будут два: гидродинамическое давление и скорость движения (течения) жидкости.

Гидродинамическое давление р - это внутреннее давление. развивающееся при движении жидкости. Скорость движения жидкости в данной точке и - это скорость перемещения находящейся в данной точке частицы жидкости, определяемая длиной пути l, пройденного этой частицей за единицу времени t.

В общем случае основные элементы движения жидкости р и и для данной точки зависят от ее положения в пространстве (координат точки) и могут изменяться во времени. Аналитически это положение гидродинамики записывается так:

,

.

Задачей гидродинамики и является определение основных элементов движения жидкости р и u, установление взаимосвязи между ними и законов изменения их при различных случаях движения жидкости.

Если в массе движущейся жидкости взять какую-либо частицу жидкости и проследить ее путь за какой-то промежуток времени (конечный, достаточно большой), то можно получить некоторую линию, выражающую геометрическое место этой точки в пространстве за время .

Если в массе движущейся жидкости в данный момент времени t взять какую-либо точку 1 (рис. 12), то можно в этой точке построить вектор скорости и1, выражающий величину и направление скорости движения частицы жидкости в данной точке 1 в этот момент времени.

В тот же момент времени t можно взять и другие точки в движущейся жидкости, например, точки 2, 3, 4,. ..... в которых также можно построить векторы скоростей u2, u3, и4,… выражающие скорость движения других частиц жидкости в тот же момент.

Можно выбрать точки 1, 2, 3, 4. . . и провести через них плавную кривую, к которой векторы скоростей будут всюду касательны. Эта линия и называется линией тока.

Таким образом, линией тока называется линия, проведенная через ряд точек в движущейся жидкости так, что в данный момент времени векторы скорости частиц жидкости, находящихся в этих точках, направлены по касательной к этой линии. В отличие от траектории, которая показывает путь движения одной частицы жидкости за определенный промежуток времени , линия тока соединяет разные частицы и дает некоторую мгновенную характеристику движущейся жидкости в момент времени t. Через заданную точку в данный момент времени можно провести только одну линию тока.

Если в данных точках движущейся жидкости величина и направление скорости и гидродинамическое давление с течением времени не изменяются (такое движение называется установившимся), то и линия тока, и траектория частицы, оказавшейся на ней, совпадают и со временем не изменяются. В этом случае траектории частиц являются и линиями тока.

Если в движущейся жидкости выделить весьма малую элементарную площадку , перпендикулярную направлению течения, и по контуру ее провести линии тока, то полученная поверхность называется трубкой тока, а совокупность линий тока, проходящих сплошь через площадку , образует так называемую элементарную струйку (рис. 13).

Элементарная струйка характеризует состояние движения жидкости в данный момент времени t. При установившемся движении элементарная струйка имеет следующие свойства:

1. форма и положение элементарной струйки с течением времени остаются неизменными, так как не изменяются линии тока;

2. приток жидкости в элементарную струйку и отток из нее через боковую поверхность невозможен, так как по контуру элементарной струйки скорости направлены по касательной;

3. скорость и гидродинамическое давление во всех точках поперечного лечения элементарной струйки можно считать одинаковым ввиду малости площади .

Совокупность элементарных струек движущейся жидкости, проходящих через площадку достаточно больших размеров, называется потоком жидкости. Поток ограничен твердыми поверхностями, по которым происходит движение жидкости (труба), и атмосферой (река, лоток, канал и т.п.).

1.2 Понятие о потоке жидкости

Живым сечением называется поверхность в пределах потока, проведенная перпендикулярно к линиям тока (элементарным струйкам). В общем случае эта поверхность криволинейная (на рис. 14 поверхность ABC). Однако в большинстве случаев практической гидравлики поток жидкости можно представить параллельно-струйным или с очень малым углом расхождения струек, а за живое сечение принять плоское поперечное сечение потока (на рис. 14 плоскость АС). Площадь живого сечения обозначается буквой s.

Смоченным периметром называется длина части периметра живого сечения, в пределах которой поток соприкасается с твердыми внешними стенками. Смоченный периметр обозначают буквой П.

Гидравлическим радиусом называется отношение площади живого сечения к смоченному периметру:

.(67)

Для кругового сечения, заполненного жидкостью полностью (рис. 15, в):

; ; .

Расходом жидкости называется количество жидкости, проходящей через данное живое сечение потока в единицу времени.

Расход потока жидкости обозначают Q, а элементарной струйки - . Единицами измерения расхода являются: м3/сек, м3/ч или л/сек, л/ч и др.

Рассмотрим элементарную струйку (рис. 13) с поперечным сечением и постоянной скоростью движения частицы жидкости и. Через промежуток времени t частицы переместятся из сечения 1-1 в сечение 2-2 на расстояние l. При этом через сечение 1-1 пройдет элементарный объем жидкости . Разделив обе части уравнения на t, получим

,

но - расход элементарной струйки (объем, прошедший через элемент живого сечения 1-1 в единицу времени); - скорость движения частиц жидкости (путь, пройденный частицами жидкости за единицу времени).

Отсюда

,(67a)

т. е. расход элементарной струйки равен площади ее поперечного сечения, умноженной на скорость в этом сечении. Поток жидкости в данном живом сечении представляет совокупность (сумму) большого числа элементарных струек, заполняющих сплошь площадь живого сечения, поэтому для определения расхода потока через живое сечение s необходимо взять сумму расходов элементарных струек, т.е.

.(67б)

В общем случае, чтобы воспользоваться формулой (67б) для определения расхода потока, надо знать закон распределения скоростей по живому сечению, который очень сложен или вообще неизвестен. Поэтому для практических расчетов вводится понятие средней скорости потока.

На рис. 16 представлен график (эпюра) распределения действительных скоростей в точках живого сечения потока, из которого видно, что скорости по сечению распределяются неравномерно. При действительных скоростях через живое сечение проходит определенный расход Q. Можно найти некоторую постоянную для всех точек сечения фиктивную скорость, при которой через данное сечение проходил бы тот же самый расход, что и при действительных скоростях движения жидкости. Эта скорость v будет средней из действительных скоростей. Подставляя в формулу (67б) скорость v получим , но , , поэтому

,(68)

т. е. расход жидкости в данном сечении потока равен произведению средней скорости движения жидкости, умноженной на площадь живого сечения.

Итак, средней скоростью потока в данном сечении v называется такая одинаковая для всех точек живого сечения скорость движения жидкости, при которой через это живое сечение проходит тот же расход Q, что и при действительных скоростях движения жидкости и.

Из формулы (68) можно написать

,(68/)

.(68//)

Формулы (68), (68') и (68") используются при решении основных гидравлических задач, связанных с потоком жидкости. Их следует четко знать и запомнить.

1.3 Виды движения жидкости

Установившимся стационарным движением жидкости называется такое движение, при котором в каждой данной точке основные элементы движения жидкости - скорость движения и и гидродинамическое давление р не изменяются с течением времени, т.е. зависят только от координат точки. Аналитически это условие запишется так:

и .

Неустановившимся (нестационарным) движением жидкости называется такое движение, при котором в каждой данной точке основные элементы движения жидкости - скорость движения и и гидродинамическое давление р - постоянно изменяются, т.е. зависят не только от положения точки в пространстве, но и от времени . Аналитически это условие запишется так:

и .

Примером установившегося движения может быть: движение жидкости в канале, в реке при неизменных глубинах, истечение жидкости из резервуара при постоянном уровне жидкости в нем и др. Неустановившееся движение - это движение жидкости в канале или реке при переменном уровне или при опорожнении резервуара, когда уровень жидкости в нем непрерывно изменяется.

В дальнейшем будет изучаться главным образом установившееся движение жидкости и в отдельных случаях будут разбираться примеры неустановившегося движения.

Установившееся движение в свою очередь подразделяется на равномерное и неравномерное.

Равномерным называется такое установившееся движение, при котором живые сечения вдоль потока не изменяются: в этом случае ; средние скорости по длине потока также не изменяются, т.е. . Примером равномерного движения является: движение жидкости в цилиндрической трубе, в канале постоянного сечения при одинаковых глубинах.

Установившееся движение называется неравномерным, когда распределение скоростей в различных поперечных сечениях неодинаково; при этом средняя скорость и площадь поперечного сечения потока могут быть и достоянными вдоль потока. Примером неравномерного движения может быть движение жидкости в конической трубе или в речном русле переменной ширины.

Напорным называется движение жидкости, при котором поток полностью заключен в твердые стенки и не имеет свободной поверхности. Напорное движение происходит вследствие разности давлений и под действием силы тяжести. Примером напорного движения является движение жидкости в замкнутых трубопроводах (например, в водопроводных трубах).

Безнапорным называется движение жидкости, при котором поток имеет свободную поверхность. Примером безнапорного движения может быть: движение жидкости в реках, каналах, канализационных и дренажных трубах. Безнапорное движение происходит под действием силы тяжести и за счет начальной скорости. Обычно на поверхности безнапорного потока давление атмосферное.

Следует отметить еще один вид движения: свободную струю. Свободной струей называется поток, не ограниченный твердыми стенками. Примером может служить движение жидкости из пожарного брандспойта, гидромонитора, водопроводного крана, из отверстия резервуара и т. п. В этом случае движение жидкости происходит по инерции (т. е. за счет начальной скорости) и под действием силы тяжести.

Для упрощения выводов, связанных с изучением потока жидкости, вводится понятие о плавно изменяющемся движении жидкости.

Плавно изменяющимся называется такое движение жидкости, при котором кривизна струек незначительна (равна нулю или близка к нулю) и угол расхождения между струйками весьма мал (равен нулю или близок к нулю), т. е. практически поток жидкости мало отличается от параллельноструйного. Это предположение вполне оправдывается при изучении многих случаев движения жидкости в каналах, трубах и других сооружениях.

Отметим следующие свойства потока при плавно изменяющемся движении:

1. поперечные сечения потока плоские, нормальные к оси потока;

2. распределение гидродинамических давлений по сечению потока подчиняется закону гидростатики, т.е. гидродинамические давления по высоте сечения распределяются по закону прямой. Это свойство легко можно доказать, если внутри потока выделить частицу жидкости и спроектировать все действующие на нее силы на плоскость живого сечения. Вследствие того, что скорости и ускорения в этом случае будут перпендикулярны сечению, силы инерции в уравнение не войдут; поэтому уравнение равновесия и закон распределения давления в плоскости живого сечения не будет отличаться от такового для жидкости, находящейся в покое;

3. удельная потенциальная энергия (т. е. потенциальная энергия единицы веса жидкости) по отношению к некоторой плоскости сравнения для всех точек данного сечения потока жидкости есть величина постоянная.

1.4 Уравнение неразрывности установившегося движения жидкости

При рассмотрении движения жидкости считают, что в потоке жидкость сплошь заполняет занимаемое ею пространство без образования пустот, т.е. движение жидкости происходит неразрывно. В этом случае справедливо уравнение неразрывности движения, выводимое на основе закона сохранения массы. Получим вначале уравнение неразрывности при установившемся движении жидкости для элементарной струйки.

Пусть имеем элементарную струйку (рис. 17). Возьмем сечение 1-1 с площадью и скоростью движения частиц жидкости и1. Элементарный расход через сечение 1-1 [по формуле (67а), § 2.2] равен

.

Затем возьмем сечение 2-2 в этой же струйке с площадью сечения и скоростью u1. Элементарный расход через сечение 2-2 равен

.

Но по свойству элементарной струйки приток и отток жидкости через ее боковую поверхность невозможен (см. § 2.1); кроме того, в отсеке 12, который сохраняет неизменные размеры, не образуется пустот и не происходит переуплотнений; значит количества жидкости, протекающей н единицу времени через сечения 1-1 и 2-2, должны быть одинаковы, т.е. . Принимая во внимание, что сечения 1-1 и 2-2 приняты произвольно, можно в общем случае для элементарной струйки написать

,

или

.(69)

Это и есть уравнение неразрывности (сплошности) для элементарной струйки, которое читается так: элементарный расход жидкости при установившемся движении есть величина постоянная для всей элементарной струйки.

Пусть теперь имеем поток жидкости (рис. 18). Взяв в потоке два произвольных сечения 1-1 и 2-2 и представив живые сечения их состоящими из суммы элементарных струек, можно написать - расход жидкости в сечении 1-1; - расход жидкости в сечении 2-2.

Но поскольку скорости касательны к боковой поверхности потока, то в отсек между сечениями 1-1 и 2-2 через боковую поверхность движения жидкости не происходит; не изменяется и объем отсека. Следовательно, в отсек через сечение 1-1 поступает столько же жидкости, сколько за то же время выходит . Но так как сечения 1-1 и 2-2 взяты произвольно, то можно написать, что или, выражая расход жидкости в сечениях через среднюю скорость v, получим

.(69')

Это и есть уравнение неразрывности для потока жидкости, которое читается так: расход жидкости через любое сечение потока при установившемся движении есть величина постоянная. Из уравнения (69) для двух сечений можно написать

,(70)

т.е. средние скорости потока обратно пропорциональны площадям соответствующих живых сечений.

1.5 Уравнение Д. Бернулли

Уравнение Даниила Бернулли является основным уравнением гидродинамики. Ниже разбирается это уравнение для установившегося плавно изменяющегося движения жидкости, с помощью которого решаются основные задачи гидродинамики. Введем понятия удельной энергии элементарной струйки и потока жидкости.

Напомним, что удельная энергия есть энергия, отнесенная к единице силы тяжести жидкости. Пусть имеем в элементарной струйке частицу массой m, которая обладает некоторой скоростью и, находится под гидродинамическим давлением р, занимает некоторый объем V и находится от произвольной плоскости сравнения о-о на некоторой высоте z (рис. 20). Масса частицы обладает запасом удельной потенциальной энергии еп, которая складывается из удельных потенциальных энергий положения епол, и давления едав. В самом деле, масса жидкости, поднятая на высоту z, имеет запас потенциальной энергии, равный mgz, где g - ускорение свободного падения. Удельная потенциальная энергия положения равна потенциальной энергии, деленной на силу тяжести жидкости ()

.(а)

Масса жидкости занимает некоторый объем V, находящийся под давлением р. Потенциальная энергия давления равна рV. Удельная же потенциальная энергия давления равна потенциальной энергии pV, деленной на силу тяжести данного объема V, т.е.

.(б)

Полный запас удельной потенциальной энергии массы жидкости равен их сумме, т. е. и, учитывая выражения (а) и (б), напишем

.(в)

Кроме того, масса жидкости т движется со скоростью и и обладает кинетической энергией ; но сила тяжести этой массы равна mg, и удельная кинетическая энергия струйки равна

.(г)

Складывая выражения (в) и (г), получим выражение полной удельной энергии элементарной струйки

.(71)

Здесь - удельная кинетическая энергия;

- удельная потенциальная энергия давления и положения.

Полная удельная энергия потока Е складывается из удельной потенциальной энергии и удельной кинетической энергии Ек потока.

Для случая установившегося плавно изменяющегося движения жидкости удельная потенциальная энергия во всех точках живого сечения одинакова и равна

.(д)

Поток жидкости рассматривается как совокупность п элементарных струек, каждая из которых обладает своей удельной кинетической энергией . Эта величина различна для разных струек, образующих поток.

Определим среднее значение этой величины в сечении потока. Для этого действительные скорости элементарных струек u1, u2, ..., ип заменим средней скоростью потока v; тогда среднее значение удельной кинетической энергии потока в данном сечении равно

.(е)

Здесь - коэффициент Кориолиса, учитывающий неравномерность распределения скоростей по сечению потока (или корректив кинетической энергии).

Безразмерный коэффициент представляет собой отношение действительной кинетической энергии потока к кинетической энергии, вычисленной по средней скорости. Если эпюра скоростей в сечении потока близка к прямоугольной, т.е. скорости в разных точках близки к средней, то коэффициент Кориолиса близок к единице. Если же скорости в сечении значительно различаются между собой, то и коэффициент оказывается значительно больше единицы.

Рассмотрим, например, поток глубиной Н = 6 м, в сечении которого скорости распределены по треугольнику, т.е. у дна скорость равна нулю и к поверхности нарастает по закону прямой до наибольшего значения ипов = 3 м/сек. Средняя скорость v = 1,5 м/сек, а соответствующая ей кинетическая энергия

м.

Оценим кинетическую энергию потока точнее. Для этого возьмем три точки на высоте h1 = 1м; h2 = 3 м и h3 = 5 м, которые лежат посредине слоев равной высоты по 2 м каждый. Скорость в этих точках соответственно и1 = 0,5; и2 = 1,5 и и3 = 2,5 м/сек. Вычислим кинетическую энергию по этим трем скоростям

м,

что больше, чем по средней скорости.

Коэффициент Кориолиса получается

.

На основе обработки многочисленных данных, полученных на реках и каналах, установлено, что для больших открытых потоков . При равномерном движении в трубах и каналах практически .

В дальнейшем, за исключением особо оговоренных случаев, для упрощения расчетов будем принимать . Однако следует помнить, что в некоторых случаях при неравномерном распределении скоростей значения могут быть значительно больше 1 (2 и более).

Складывая удельную кинетическую и удельную потенциальную энергии потока, получим формулу полной удельной энергии потока

,

а учитывая выражения (е) и (д), имеем

,(72)

т.е. полная удельная энергия потока равна сумме удельной кинетической и удельной потенциальной (давления и положения) энергий потока. Напомним, что все выводы сделаны для установившегося, плавно изменяющегося движения жидкости.

Выделим в установившемся потоке реальной жидкости элементарную струйку (рис. 21) и определим удельную энергию жидкости в двух произвольных сечениях 1-1 и 2-2. Высоты положения центров первого и второго сечений будут соответственно z1 и z2; гидродинамическое давление и этих же точках р1 и р2 скорости течения - и1 и и2. Тогда полная удельная энергия элементарной струйки в сечении 1-1 на основании формулы (71) равна

,(ж)

а в сечении 2-2

.(з)

Практически всегда , так как часть полной энергии затрачивается на преодоление сил сопротивления (трения) при движении жидкости от сечения 1-1 к сечению 2-2. Обозначим эти потери . Тогда в соответствии с законом сохранения энергии можно написать, что , и, учитывая выражения (ж) и (з), получим

.(73)

Уравнение (73) и есть уравнение Д. Бернулли для элементарной струйки реальной жидкости при установившемся движении, которое устанавливает связь между скоростью движения, давлением в жидкости и положением точки в пространстве. Оно справедливо для любых двух сечений, так как сечения 1-1 и 2-2 были взяты произвольно. Уравнение (73) можно изобразить и графически (рис. 21). Если соединить уровни жидкости в пьезометрах, присоединенных к нескольким сечениям, получим некоторую линию р-р, которая называется пьезометрической линией и показывает изменение удельной потенциальной энергией по длине элементарной струйки. Если соединить точки, которые в каждом сечении вертикали изображают полную удельную энергию (а такие точки действительно можно получить, о чем см. ниже), получим некоторую линию N-N, которая называется напорной линией или линией энергии; она показывает изменение полной удельной энергии по длине струйки. Тогда расстояние по вертикали в любом сечении между горизонтальной плоскостью I-I, соответствующей начальному запасу удельной энергии в первом сечении, и напорной линией N-N дает величину потерь энергии hw на преодоление сил сопротивления на участке от первого сечения до данного сечения, а расстояние между напорной и пьезометрической линиями - удельную кинетическую энергию в данном сечении u2/2g.

Для идеальной жидкости, где отсутствуют силы трения, в уравнении (IV.7) hw= 0 и уравнение Бернулли принимает вид

.(73 / )

Но так как сечения 1-1 и 2-2 взяты произвольно, то в общем виде уравнение Бернулли для элементарной струйки идеальной жидкости записывается так:

.(73")

Рассмотрим поток при установившемся, плавно изменяющемся движении (рис. 22). Выберем произвольно два сечения 1-1 и 2-2, по осям которых соответственно имеем z1 и z2 - вертикальные координаты оси потока над произвольной плоскостью сравнения о-о, р1 и p2 гидродинамические давления, в тех же точках v1 и v2 - средние скорости в сечениях 1-1 и 2-2.

Полную удельную энергию потока определяем по формуле (72): сечение 1-1

,

сечение 2-2

.

Очевидно , так как часть энергии потратится на преодоление сил сопротивления (трения). Обозначим потерю энергии на этом участке - . Тогда можно написать, что и, подставляя значения и , получим

.(74)

Уравнение (74) называется уравнением Д. Бернулли для потока жидкости и является основным уравнением гидродинамики; с его помощью получены многие расчетные формулы и решается ряд практических задач. Уравнение Бернулли устанавливает математическую связь между основными элементами движения жидкости, т. е. средней скоростью и гидродинамическим давлением.

1.6 Истолкование уравнения Д. Бернулли

Рассмотрим смысл уравнения Бернулли с точек зрения гидравлической, геометрической и энергетической.

С точки зрения гидравлики каждый член уравнения Бернулли (74) имеет свое название, а именно:

1. Первый член правой и левой частей уравнения Бернулли и называется скоростным напором в сечениях 1-1 и 2-2.

Скоростной напор можно наблюдать в действительности. Если например в точке А (рис. 23) рядом с пьезометром поставить изогнутую трубку, обращенную отверстием навстречу потоку, то уровень жидкости в этой трубке будет выше уровня в пьезометре на высоту, равную скоростному напору в той точке, где находится отверстие трубки . Эта трубка называется гидрометрической, или трубкой Пито. Зная разницу уровней в трубке Пито и пьезометре, можно определить скорость движения жидкости в этой точке.

2. Второй член правой и левой частей уравнения и называется пьезометрической высотой (если учитываем манометрическое давление), или приведенной высотой давления (если учитываем абсолютное давление). Как правило, в расчет принимается манометрическое давление, поэтому в дальнейшем будем называть пьезометрической высотой.

3. Третий член правой и левой частей уравнения и называется высотой положения точки живого сечения над плоскостью сравнения.

4. Четвертый член правой части уравнения hw называется потерей напора при движении жидкости между сечениями 1-1 и 2-2.

Напомним, что сумма пьезометрической высоты и высоты положения z во всех точках живого сечения установившегося, плавно изменяющегося потока одна и та же, т.е. и называется пьезометрическим напором.

Сумма скоростного напора и пьезометрического напора называется гидродинамическим напором

.(75)

Учитывая выражение (75), уравнение Д. Бернулли можно написать в следующем виде:

.(76)

Таким образом, с гидравлической точки зрения уравнение Д. Бернулли может быть прочитано так: гидродинамический напор в данном сечении потока жидкости равен гидродинамическому напору в другом сечении (лежащем ниже по течению) плюс потеря напора между этими сечениями.

В связи с тем, что все члены уравнения Бернулли имеют линейную размерность, его можно представить графически (см. рис. 22), отложив в каждом сечении от плоскости сравнения о-о по вертикали отрезки, выражающие в определенном масштабе , и . Проведя между сечениями 1-1 и 2-2 линию рр по верхним точкам пьезометрического напора, получим так называемую пьезометрическую линию, которая показывает изменение пьезометрического напора по длине потока. Если расстояние между сечениями но длине потока равно l, то можно получить изменение пьезометрического напора на единицу длины потока. Обозначив эту длину Jp, называемую средним пьезометрическим уклоном на данном участке, получим

,(77)

т.е. пьезометрическим уклоном Jp называется безразмерная величина. показывающая изменение пьезометрического напора, приходящееся на единицу длины потока. Пьезометрический уклон Jp может быть величиной положительной - линия рр понижается по направлению движения, когда скорости вдоль потока растут; или отрицательной - линия рр повышается по направлению движения, когда скорости вдоль потока уменьшаются.

Проведя между сечениями 1-1 и 2-2 линию NN по верхним точкам гидродинамического напора, получим так называемую напорную линию, которая показывает изменение гидродинамического напора по длине потока. Поделив разность гидродинамических напоров в двух сечениях на расстояния между ними, получим средний гидравлический уклон

,(78)

но - потеря напора между сечениями 1-1 и 2-2; поэтому можно написать

,(78')

т. е гидравлическим уклоном потока называется безразмерная величина, показывающая изменение гидродинамического напора на единицу длины потока. Заметим, что I может быть только положительной величиной, так как напорная линия NN всегда понижается ввиду того, что потери напора по длине потока неизбежны.

Таким образом, с геометрической точки зрения уравнение Д. Бернулли можно прочитать так: напорная линия по длине потока всегда понижается, так как часть напора тратится на преодоление трения по длине поток.

При равномерном движении, когда скорость по длине потока не изменяется, напорная NN и пьезометрическая рр линии параллельны, так как во всех сечениях величина одна и та же.

Принимая во внимание изложенное в § 2.5 и формулу (72), сумму членов уравнения Бернулли с энергетической точки зрения можно представить как сумму удельной кинетической и удельной потенциальной энергий в любом сечении потока при установившемся движении жидкости, а четвертый член уравнения hw как потерю механической энергии на преодоление сил трения при перемещении единицы массы жидкости от сечения 1-1 к сечению 2-2. В связи с этим линию NN можно назвать линией полной удельной энергии потока, а линию рр - линией удельной потенциальной энергии.

Гидравлический уклон с энергетической точки зрения необходимо рассматривать как уменьшение полной удельной энергии на единицу длины потока. гидродинамика жидкость бернулли

1.7 Практическое применение уравнения Д. Бернулли

При применении уравнения Д. Бернулли для решения практических задач гидравлики следует помнить два основных условия:

1. уравнение Бернулли может быть применено только для тех живых сечений потока, в которых соблюдаются условия плавно изменяющегося движения. На участках между выбранными сечениями условия плавно изменяющегося движения могут и не соблюдаться;

2. гидродинамическое давление и, следовательно, высоту положения z можно относить к любой точке живого сечения, так как для любой точки живого сечения потока при плавно изменяющемся движении есть величина постоянная. Обычно двучлен удобно отнести для упрощения решения задач к точкам или на свободной поверхности, или на оси потока.

Разберем применение уравнения Бернулли на примере простейшего водомерного устройства в трубах водомера Вентури (рис. 24.); он представляет собой вставку в основную трубу диаметром D трубы меньшего диаметра d, которая соединена с основной трубой коническими переходами.

В основной трубе сечение 1-1 и в суженном сечении сечении 2-2 присоединены пьезометры, по показаниям которых можно определить расход жидкости в трубе Q.

Выведем общую формулу водомера для определения расхода в трубе. Составим уравнение Бернулли для точек, расположенных в центре тяжести сечений 1-1 перед сужением и 2-2 в горловине, приняв плоскость сравнения по оси трубы о-о. Для наших условий , .

Потери напора в сужении ввиду малости расстояния между сечениями считаем равными нулю, т.е. .

Тогда уравнение Бернулли (74) запишется так:

, или .

Но из рис. 24 , поэтому

.(а)

В уравнении (а) две неизвестные величины и . Составим второе уравнение, используя уравнение неразрывности (70)

,

откуда

.

Подставляя в уравнение (а), получим

.

Отсюда скорость течения в основной трубе (сечение 1-1) равна

,

расход жидкости в трубе по формуле IV.2:

или

.

Обозначим постоянную величину для данного водомера через К

,(79)

тогда

.

Однако при выводе этой формулы не учитывались потери напора в водомере, которые в действительности будут. С учетом потерь напора формула расхода водомера Вентури запишется так:

,(80)

где - коэффициент расхода водомера, учитывающий потери напора в водомере. Для новых водомеров ; для водомеров, бывших в употреблении, .

Таким образом, для определения расхода в трубе достаточно замерить разность уровней воды в пьезометрах и подставить ее значение в формулу (80).

1.8 Виды гидравлических сопротивлений и потери напора

Выше были получены два основных уравнения гидродинамики: уравнение сохранения энергии (уравнение Д. Бернулли), связывающее средние скорости и давления, и уравнение неразрывности потока (сохранения массы) для несжимаемой жидкости, которые были записаны в следующем виде:

;

.

При решении некоторых задач вполне достаточно этих уравнений, если пренебречь потерями энергии (напора) hw, так как расход Q и полный напор H обычно заданы или могут быть определены.

Но большинство задач нельзя решить, если пренебречь потерями напора hw. В таких случаях имеются два уравнения и три неизвестных v, р и hw.

Для решения таких задач необходимо составить третье уравнение, связывающее между собой неизвестные величины. Наиболее подходящим, очевидно, будет уравнение, дающее зависимость hw от скорости v.

При движении потока между жидкостью и стенками, ограничивающими поток, возникают силы сопротивления. Кроме того, вследствие вязкости жидкости между ее отдельными слоями возникают силы сцепления, которые также затормаживают движение потока. Скорость движения частиц жидкости уменьшается по мере по мере удаления от оси потока к стенкам трубы, лотка и т. д. Равнодействующая сил сопротивления параллельна оси потока и направлена в сторону, противоположную направлению движения (рис. 25).

Для преодоления сил гидравлического трения и сохранения поступательного движения жидкости необходимо приложить силу, направленную в сторону движения и равную силам сопротивления. Работу этой силы называют потерями напора по длине потока (путевые потери напора) и обозначают через .

Сети трубопроводов, распределяющие или отводящие жидкость от потребителей, меняют свой диаметр (сечение); на сетях устраиваются повороты, ответвления, устанавливаются запорные устройства и т. п. В этих местах поток меняет спою форму, резко деформируется. Вследствие изменения формы возникают дополнительные силы сопротивления, так называемые местные сопротивления. На их преодоление расходуется напор. Напор, затрачиваемый на преодоление местных сопротивлений, называют местными потерями напора и обозначают через .

Общие потери напора равны сумме потерь напора по длине и местных

.(81)

Размерность потерь напора такая же, как и напора, т. е. метры столба жидкости.

1.9 Режимы движения жидкости. Число Рейнольдса

В зависимости от рода жидкости, скорости ее движения и характера стенок, ограничивающих поток, различают два основных режима движения: ламинарный и турбулентный. Ламинарным называют упорядоченное движение, когда отдельные слои скользят друг по другу, не перемешиваясь (рис. 26, а).

Ламинарный режим движения можно наблюдать чаще у вязких жидкостей, таких как нефть, масла и т. п.

Турбулентным называют режим, при котором наблюдается беспорядочное движение, когда частицы жидкости движутся по сложным траекториям и слои жидкости постоянно перемешиваются друг с другом (рис. 26, б).

Существование двух режимов движения жидкости было замечено в 1839 г. Хагеном и в 1880 г. Д. И. Менделеевым.

Достаточно полные лабораторные исследования режимов движения и вопрос их влияния на характер зависимости потерь напора от скорости впервые исследовал английский физик Рейнольдс.

Установка Рейнольдса для исследования режимов движения жидкости пред ста влена на рис. 27. Сосуд А заполняется испытуемой жидкостью. К сосуду А в нижней его части присоединена стеклянная трубка 1 с краном 2, которым регулируется скорость течения в трубке. Над сосудом А расположен сосуд Б с раствором краски. От сосуда Б отходит трубка 3 с краном 4. Конец трубки 3 заведен в стеклянную трубку 1. Для пополнения сосуда А служив трубка 5 с запорным устройством 6.

При ламинарном режиме движения жидкости по трубке 1 струйка раствора краски, истекающей из трубки 3, имеет вид четко вытянутой нити вдоль трубки 1.

По мере открытия крана 2 увеличивается скорость движения и режим движения переходит в турбулентный, при этом струйка приобретает волнообразный характер, а при еще большей скорости совсем размывается и смешивается с жидкостью в трубке. При постепенном закрытии крана эти явления протекают в обратном порядке, т. е. турбулентный режим сменяется ламинарным.

Опыты показали, что переход от турбулентного режима к ламинарному происходит при определенной скорости (эта скорость называется критической), которая различна для разных жидкостей и диаметров труб; при этом критическая скорость растет с увеличением вязкости жидкости и с уменьшением диаметра труб.

Рейнольдсом и рядом других ученых опытным путем было установлено, что признаком режима движения является некоторое безразмерное число, учитывающее основные характеристики потока

, (82)

где - скорость, м/сек; R - гидравлический радиус, м; v - кинематический коэффициент вязкости, м2/сек.

Это отношение называется числом Рейнолъдса. Значение числа Re, при котором турбулентный режим переходит в ламинарный, называют критическим числом Рейнолъдса ReKp.

Если фактическое значение числа Re, вычисленного по формуле (82), будет больше критического Re > ReKp - режим движения турбулентный, когда Re < ReKp - режим ламинарный.

Для напорного движения в цилиндрических трубах удобнее число Рейнольдса определять по отношению к диаметру d, т. е.

, (82')

где d - диаметр трубы.

В этом случае ReKp получается равным ~2300. Если в формуле (82') для трубопроводов круглого сечения d выразить через гидравлический радиус , то получим ReKp=575. Для других трубопроводов и каналов некруглых сечений можно принимать значение критического числа Рейнольдса ReKp=300 (при вычислении Re через гидравлический радиус).

1.10 Потери напора по длине потока

Рассмотрим характер распределения скоростей в сечении потока при ламинарном и турбулентном режимах движения жидкости. Как показали теоретический анализ и опыты при ламинарном режиме движения жидкости в круглой трубе, скорости в поперечном сечении распределены по параболе (рис. 28), скорости у стенок трубы равны нулю и, плавно увеличиваясь, достигают максимума на оси потока.

При ламинарном режиме движения существуют лишь продольные составляющие скоростей. В этом случае силы сопротивления движению возникают вследствие трения между слоями жидкости, т. е. зависят от вязкости жидкости и не зависят (почти) от состояния стенок.

При турбулентном режиме закон распределения скоростей по живому сечению более сложен; в большей части сечения скорости близки к средней и резко падают в тонком слое у стенок, доходя до нуля. График распределения скоростей по сечению близок к трапеции (рис. 29). Такое распределение скоростей вызывается турбулентным перемешиванием в результате поперечных перемещений частиц. Быстро движущиеся частицы жидкости из средней части потока сталкиваются с медленно движущимися частицами вблизи стенок, благодаря чему и происходит выравнивание скоростей. И только в пограничном слое, где стенки препятствуют перемешиванию, скорость резко убывает.

Экспериментально подтверждается, что при турбулентном режиме движении потери напора по длине зависят от состояния стенок, ограничивающих поток. Если пропускать по трубе жидкость с различными скоростями, начиная с ламинарного режима и постепенно переходя к турбулентному, и одновременно измерять потери напора, то можно получить график зависимости потерь напора от скорости (рис. 30). График показывает, что при скорости меньше некоторого предела потери напора прямо пропорциональны первой степени скорости (на графике участок 0-1).

Как и следовало ожидать, этот предел соответствует критической скорости

(83)

После перехода от ламинарного режима к турбулентному потери напора растут пропорционально скорости в степени, большей единицы (на графике участок кривой 2-3). Переход от ламинарного режима к турбулентному может происходит и при числах Рейнольдса, больших критического.

Обратный же переход от турбулентного режима к ламинарному осуществляется при почти одинаковом значении , которое и считается критическим.

Потери напора на трение по длине потока, возникающие при равномерном напорном движении жидкости в трубах, определяют по уравнению

, (84)

где l - длина участка трубы, м; d - внутренний диаметр трубопровода, м; v - средняя скорость потока, м/сек; g - ускорение свободного падения, м/сек2; - безразмерный коэффициент гидравлического трения.

Впервые формула (84) была получена эмпирическим путем в XIX в. и названа формулой Дарси-Вейсбаха. В дальнейшем указанная формула проверена теоретически на основе метода анализа размерностей.

В уравнении (84) остается не выясненным смысл безразмерного коэффициента . Для выяснения физического смысла коэффициента при равномерном напорном движении жидкости в трубах как при ламинарном, так и при турбулентном режимах движения используем уравнение Д. Бернулли. Помня, что при равномерном напорном движении средняя скорость и распределение истинных скоростей по сечениям должны быть неизменными по длине трубопровода и составляя уравнение Д. Бернулли для двух сечений, можем записать

. (85)

При горизонтальном расположении трубы и тогда

. (86)

Для уточнения вопроса о потерях напора выделим в трубопроводе между сечениями 1-1 и 2-2 соосный цилиндр с радиусом а и длиной l (рис. 31).

Как оговорено выше, распределение скоростей в сечениях 1-1 и 2-2 одинаково, частицы жидкости двигаются без ускорений.

Напишем уравнение динамического равновесия рассматриваемого цилиндра

,

где - касательное напряжение (трения) на поверхности цилиндра.

Поделив обе части уравнения на , получим

.

Подставляя из уравнения (86) значение , имеем

, (87)

или

. (88)

Выразим из уравнения (88)

(89)

(так как ).

У стенки трубы, где , значение равно

(90)

и тогда

.(91)

Уравнение (91) есть общее выражение потерь напора при равномерном движении жидкости в трубах. Подставляя в уравнение (91) значения , и , получим

. (92)

Замечаем, что имеет размерность квадрата скорости.

Обозначим

,(93)

где - называется скоростью касательного напряжения на стенке, или динамической скоростью. Тогда уравнение (92) примет вид

.(94)

Из уравнения (94) находим, что

.(95)

Таким образом, коэффициент гидравлического трения прямо пропорционален отношению квадратов динамической и средней скоростей.

На основе изложенного выше для потерь напора по длине при ламинарном режиме движения жидкости в трубе получено следующее уравнение:

,(96)

где -абсолютный коэффициент вязкости жидкости, ; - длина трубопровода, м; v - средняя скорость, м/сек; - удельный вес жидкости, кгс/м3; - диаметр трубопровода, м.

Так как , а , то вместо формулы (96) получим

.(97)

Выражение (97) называют формулой Пуазейля-Гагена (по имени ученых, получивших это уравнение).

Формула (97) показывает, что при ламинарном режиме потери напора пропорциональны средней скорости и не зависят от состояния стенок трубопровода.

Приравняв правые части уравнения Дарси-Вейсбаха (84) и выражения (97), получим

.(98)

Таким образом, коэффициент гидравлического трения при ламинарном режиме обратно пропорционален числу Рейнольдса.

В инженерной практике чаще встречается турбулентный режим движения жидкости в трубах, которые труднее исследовать теоретически. Этот вопрос подвергся наиболее широким опытным исследованиям как со стороны советских, так и зарубежных ученых. Из-за сложности процессов, протекающих при турбулентном режиме, до сих пор не создано окончательной теории, которая бы вытекала из основных уравнений гидродинамики и согласовывалась с опытом. Напомним, что при турбулентном режиме наблюдается интенсивное вихреобразование, частицы жидкости описывают сложные траектории, местные скорости меняются во времени даже при постоянном расходе. Это явление называется пульсацией скорости. Часть кинетической энергии жидкости переходит в тепловую. Установившегося движения в строгом смысле нет. Поэтому введено понятие об осредненной скорости.

Мгновенные скорости пульсируют около своего осредненного значения, которое за достаточно длительный промежуток времени остается постоянным; это значение и называется осредненной скоростью. В дальнейшем, говоря о скоростях, рассматривая турбулентное движение, будем подразумевать осредненные скорости.

Опытами установлено, что закон распределения осредненных скоростей по сечению и потери напора зависят от диаметра труб, средней скорости, вязкости жидкости и шероховатости стенок труб. В свою очередь характер шероховатости зависит от материала стенок труб, степени обработки, а последние определяют высоту выступов, их густоту и форму. Для приближенной оценки введено понятие средней высоты бугорков (выступов) шероховатости, называемой абсолютной шероховатостью и обозначаемой k. Очевидно, что чем меньше диаметр, тем быстрее частицы жидкости совершат пробег от центра трубопровода к стенкам и встретятся с бугорками шероховатости, и, отражаясь от них, вызовут возмущения в потоке жидкости. Следовательно, частота вихреобразования при малых диаметрах труб больше, и шероховатость той же высоты проявляется сильнее. Поэтому введено понятие относительной шероховатости, т. е. отношение абсолютной шероховатости к диаметру трубы .

Экспериментами установлено, что коэффициент гидравлического трения в формуле Дарси-Вейсбаха, а соответственно и потери напора по длине зависят от числа Рейнольдса и от относительной шероховатости. Это вытекает и из теоретических исследований. Поэтому усилия как советских, так и зарубежных ученых были направлены на выявление характера этой зависимости. Было установлено, что при больших числах Рейнольдса и высокой шероховатости коэффициент гидравлического трения в трубах совсем не зависит от вязкости жидкости (числа Рейнольдса), а зависит только от относительной шероховатости (в этих условиях трубы и русла называют вполне шероховатыми). Трубы же, в которых коэффициент зависит только от числа Рейнольдса и не зависит от относительной шероховатости, что бывает при сравнительно малых Re и k/d, называют гидравлически гладкими. При этом один и тот же трубопровод в одних условиях может быть гидравлически гладким, а в других - вполне шероховатым. Условия, в которых зависит и от числа Рейнольдса и от относительной шероховатости, называются переходной областью. Это объясняется тем, что при малых числах Рейнольдса вблизи стенок сохраняется сравнительно толстый ламинарный слой, и выступы шероховатости обтекаются жидкостью без образования и отрыва вихрей. Свойства поверхности стенок трубопровода в этом случае не влияют на сопротивление, и зависимость выражается в логарифмических координатах прямой (см. рис. 30).

С увеличением числа Рейнольдса ламинарный слой становится тоньше и не покрывает выступов шероховатости; при этом от выступов шероховатости начинают отрываться вихри, и свойства поверхности оказывают влияние на сопротивление движению; график зависимости отклоняется от прямой и переходит в кривую второго порядка.


Подобные документы

  • Теория движения жидкости. Закон сохранения вещества и постоянства. Уравнение Бернулли для потока идеальной и реальной жидкости. Применение уравнения Д. Бернулли для решения практических задач гидравлики. Измерение скорости потока и расхода жидкости.

    контрольная работа [169,0 K], добавлен 01.06.2015

  • Элементарная струйка и поток жидкости. Уравнение неразрывности движения жидкости. Примеры применения уравнения Бернулли, двигатель Флетнера (турбопарус). Критическое число Рейнольдса и формула Дарси-Вейсбаха. Зависимость потерь по длине от расхода.

    презентация [392,0 K], добавлен 29.01.2014

  • Основные понятия гидродинамики. Условие неразрывности струи, уравнение Бернулли. Внутреннее трение (вязкость) жидкости. Течение вязкой жидкости. Факторы, влияющие на вязкость крови в организме. Особенности течения крови в крупных и мелких сосудах.

    реферат [215,7 K], добавлен 06.03.2011

  • Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

    презентация [220,4 K], добавлен 28.09.2013

  • Создание модели движения жидкости по сложному трубопроводу с параллельным соединением труб и элементов. Уравнения механики жидкости и газа для подсчета потерь на трение. Определение числа Рейнольдса. Система уравнений Бернулли в дифференциальной форме.

    контрольная работа [383,5 K], добавлен 28.10.2014

  • Выведение уравнения движения вязкой несжимаемой жидкости - уравнения Стокса. Рассмотрение основных режимов движения жидкости в горизонтальных трубах постоянного поперечного сечения - ламинарного и турбулентного. Определение понятия профиля скорости.

    презентация [1,4 M], добавлен 14.10.2013

  • Расчет простого трубопровода, методика применения уравнения Бернулли. Определение диаметра трубопровода. Кавитационный расчет всасывающей линии. Определение максимальной высоты подъема и максимального расхода жидкости. Схема центробежного насоса.

    презентация [507,6 K], добавлен 29.01.2014

  • Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.

    реферат [310,4 K], добавлен 18.05.2010

  • Механика жидкостей, физическое обоснование их главных свойств и характеристик в различных условиях, принцип движения. Уравнение Бернулли. Механизм истечения жидкости из отверстий и насадков и методика определения коэффициентов скорости истечения.

    реферат [175,5 K], добавлен 19.05.2014

  • Реологические свойства жидкостей в микро- и макрообъемах. Законы гидродинамики. Стационарное движение жидкости между двумя бесконечными неподвижными пластинами и движение жидкости между двумя бесконечными пластинами, двигающимися относительно друг друга.

    контрольная работа [131,6 K], добавлен 31.03.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.