Предмет гидродинамики
Изучение основных задач гидродинамики: определения элементов движения жидкости р и u, установления взаимосвязи между ними и законов изменения их при различных случаях ее движения. Рассмотрение уравнения Даниила Бернулли для элементарной струйки.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 18.03.2014 |
Размер файла | 907,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Так как на характер сопротивлений оказывает влияние не только относительная шероховатость, но и форма и распределение выступов по поверхности, то в практику расчетов было введено понятие об эквивалентной равнозернистой шероховатости kэ. Под ней понимают такую высоту выступов шероховатости, сложенной из песчинок одинакового размера, которая дает при подсчетах одинаковое с заданной шероховатостью значение коэффициента гидравлического трения .
1.11 Потери напора в местных сопротивлениях
Местные потери напора вызываются сопротивлениями в арматуре, фасонных частях и оборудовании, вследствие сужения и расширения потока, изменения направления движения жидкости, слияния и разделения потока и т. п.
Потери на преодоление местных сопротивлений в наружных сетях водопровода обычно не превышают 10-15%, во внутренних сетях - 30% от потерь напора по длине.
Однако местные потери напора в некоторых видах инженерных сетей могут достигать значительной величины: так, например, в системах отопления зданий - до 40%, в воздуховодах вентиляционных систем и пневмотранспорта - до 60-70% от потерь напора по длине.
Местные потери напора определяют как произведение скоростного напора непосредственно вблизи местного сопротивления , по формуле
.(99)
Общей теории для определения коэффициентов местных сопротивлений, за исключением отдельных случаев, нет. Поэтому коэффициенты местных сопротивлений, как правило, находят опытным путем. Значения их для различных элементов трубопроводов приводятся в технических справочниках. Иногда местные сопротивления выражают через эквивалентную длину прямого участка трубопровода . Эквивалентной длиной называют такую длину прямого участка трубопровода данного диаметра, потери напора в котором при пропуске данного расхода равны рассматриваемым местным потерям. Приравнивая формулы Дарси-Вейсбаха и (99), имеем
,(100)
получаем
,(101)
или
.(102)
Этот случай поддается теоретическому обоснованию. Из опытов установлено, что поток жидкости, вытекающий из узкой трубы, не сразу заполняет все сечение широкой трубы; он отрывается от стенок и дальше двигается в виде расширяющейся струи. В кольцевом пространстве между струей и стенками трубы жидкость образует завихрения. На некотором расстоянии l от расширения трубопровода струя вновь заполняет все сечение. В результате вихревых движений жидкости между сечениями 1-1 и 2-2 идет постоянный обмен между струей и жидкостью в кольцевом пространстве. В результате этих явлений происходит переход механической энергии в тепловую, что и является причиной потерь напора.
Рассмотрим внезапное расширение трубы с горизонтальной осью. Потеря напора на внезапное расширение равна
.(103)
Разность давлений найдем, применив уравнение количества движения к отсеку жидкости между сечениями 1-1 и 2-2. За время t через сечения 1-1 и 2-2 протечет масса жидкости , количество движения которой в сечении 1-1, где скорость равно , а в сечении 2-2 - , т. к. , то изменение количества движения протекшей массы составит
.(а)
Это изменение количества движения равно импульсу сил давления. Эти силы следующие: в сечении 1-1, где давление , сила давления направлена в сторону течения и равна (считается, что давление действует и на поперечной стенке). Сила давления в сечении 2-2 направлена против течения и равна . Суммарный импульс этих сил за время t составляет
.(б)
В соответствии с теоремой о количестве движения приравниваем выражения (а) и (б)
Отсюда после деления на и на и перемены знаков получаем
,(104)
так как .
Подставляя правую часть равенства (б) в выражение (а), имеем
,(105)
или окончательно
,(106)
т. е. потери напора при внезапном расширении равны скоростному напору от потерянной скорости. Уравнение (106) называется формулой Борда.
Для выявления значения коэффициента местного сопротивления из уравнения (106) вынесем за скобки
,
или
.(107)
Заменяя скорости через площади живых сечений из уравнения неразрывности , получим
.(108)
Полученные уравнения (107) и (108) для значения хорошо согласуются с опытами.
Уравнение (108) представлено в виде графика на рис. 33.
Постепенное расширение трубопровода. Плавно расширяющийся трубопровод - диффузор (рис. 34) широко применяется в технике. При течении жидкости по диффузору значительно меньше, чем при внезапном расширении. У стенок диффузора также образуются завихрения. Чем больше угол конусности трубопровода, тем больше вихреобразование и соответственно больше потери напора. Потерями по длине в данном случае пренебрегать нельзя.
Таким образом, потери напора в диффузоре равны сумме потерь на расширение и на трение по длине
. (109)
Потеря напора на расширение может быть найдена по формуле (106) с введением поправочного коэффициента Ксм, называемого коэффициентом смягчения, который зависит от угла конусности
.(110)
Коэффициент местного сопротивления в этом случае определится по формуле
;(111)
Ксм при <20° можно принять равным , a при значение коэффициента Ксм следующие:
Угол конусности, |
4 |
8 |
15 |
30 |
60 |
|
0,08 |
0,16 |
0,35 |
0,80 |
0,90 |
Потери напора на трение по длине определяют по формуле
,(112)
Таким образом, суммарный коэффициент местного сопротивления для диффузора равен
.(113)
Наименьшие потери напора в диффузоре получаются при угле расширения его в пределах от 5 до 10°.
Постепенное сужение трубопровода. Постепенно сужающиеся участки трубопроводов (конфузоры) также нашли широкое применение в практике (рис. 35).
При постепенном сужении сечения скорость вдоль трубопровода возрастает, а давление падает. Отрыв потока от стенок в этом случае возможен только на выходе из конфузора в цилиндрическую часть трубопровода. Поэтому при одинаковых гидравлических характеристиках и размерах местные сопротивления в конфузоре меньше, чем в диффузоре.
Потери в конфузоре также равны сумме потерь на постепенное сужение и на трение по длине
.(114)
Потери напора по длине можно определять по формуле (112).
Потери напора на сужение существенными будут при , и их можно определить по формуле
,(115)
где
.(116)
Здесь - коэффициент местного сопротивления при внезапном сужении; Ксуж - коэффициент смягчения, учитывающий плавное сужение, который зависит от угла конусности .
График распределения скоростей при структурном режиме изображен на рис. 37.
Для определения скоростей по сечению потока теоретическим путем получена следующая формула
,(117)
где - разность давлений в начале и конце трубопровода; - абсолютная вязкость жидкости; - длина трубопровода; - радиус трубопровода; - расстояние от оси трубопровода до слоя жидкости, у которого определяется скорость; - первоначальное напряжение сдвига.
Для определения скорости в ядре сечения необходимо принять , тогда
.(118)
Расход жидкости определяется по формуле Букингама, полученной теоретически
.(119)
где - приложенная разность давлений; - разность давлении, соответствующая началу движения, определяемая по уравнению
Потери напора при движении аномальных (неньютоновских) жидкостей можно определять по уравнению Дарси-Вейсбаха (84), что подтверждено исследованиями Б. С. Филатова. Обычно режим движения турбулентный, и значение принимают в пределах от 0,017 до 0,025, при этом принимают тем больше, чем меньше концентрация раствора.
При производстве земляных работ получил широкое применение метод гидромеханизации. Грунт размывается струей воды, засасывается землесосом и транспортируется по трубам в отвал или к месту намыва грунта. Смесь воды с размельченным грунтом называется пульпой, или гидросмесью, а трубы по которым перекачивается пульпа, - пульповодами.
При некоторой достаточно малой скорости частицы грунта начинают осаждаться и заилять трубопровод. Эта скорость называется критической. Обычные формулы гидравлики, приведенные выше для трубопроводов с водой к пульпопроводам не применимы.
Гидравлический расчет пульповодов заключается в определении критических скоростей и потерь напора. Проф. А. П. Юфин предложил следующие эмпирические формулы.
Для критической скорости:
а) в трубопроводах диаметром до 200 мм
;(120)
б) в трубопроводах диаметром больше 200 мм
,(121)
где d - диаметр трубопровода, м; - средний диаметр твердых частиц, мм; - основание натуральных логарифмов; - удельный вес пульпы; - удельный вес воды; ; - так называемая «гидравлическая крупность», т. е. скорость падения частиц в спокойной воде.
Для потерь напора:
а) при критической скорости
;(122)
б) при скорости выше критической
,(123)
где - длина трубопровода; - ускорение свободного падения; - потери напора в трубопроводе при движении чистой воды при том же расходе; - потери напора при движении пульпы с критической скоростью; .
Размещено на Allbest.ru
Подобные документы
Теория движения жидкости. Закон сохранения вещества и постоянства. Уравнение Бернулли для потока идеальной и реальной жидкости. Применение уравнения Д. Бернулли для решения практических задач гидравлики. Измерение скорости потока и расхода жидкости.
контрольная работа [169,0 K], добавлен 01.06.2015Элементарная струйка и поток жидкости. Уравнение неразрывности движения жидкости. Примеры применения уравнения Бернулли, двигатель Флетнера (турбопарус). Критическое число Рейнольдса и формула Дарси-Вейсбаха. Зависимость потерь по длине от расхода.
презентация [392,0 K], добавлен 29.01.2014Основные понятия гидродинамики. Условие неразрывности струи, уравнение Бернулли. Внутреннее трение (вязкость) жидкости. Течение вязкой жидкости. Факторы, влияющие на вязкость крови в организме. Особенности течения крови в крупных и мелких сосудах.
реферат [215,7 K], добавлен 06.03.2011Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.
презентация [220,4 K], добавлен 28.09.2013Создание модели движения жидкости по сложному трубопроводу с параллельным соединением труб и элементов. Уравнения механики жидкости и газа для подсчета потерь на трение. Определение числа Рейнольдса. Система уравнений Бернулли в дифференциальной форме.
контрольная работа [383,5 K], добавлен 28.10.2014Выведение уравнения движения вязкой несжимаемой жидкости - уравнения Стокса. Рассмотрение основных режимов движения жидкости в горизонтальных трубах постоянного поперечного сечения - ламинарного и турбулентного. Определение понятия профиля скорости.
презентация [1,4 M], добавлен 14.10.2013Расчет простого трубопровода, методика применения уравнения Бернулли. Определение диаметра трубопровода. Кавитационный расчет всасывающей линии. Определение максимальной высоты подъема и максимального расхода жидкости. Схема центробежного насоса.
презентация [507,6 K], добавлен 29.01.2014Анализ и особенности распределения поверхностных сил по поверхности жидкости. Общая характеристика уравнения Бернулли, его графическое изображение для потока реальной жидкости. Относительные уравнение гидростатики как частный случай уравнения Бернулли.
реферат [310,4 K], добавлен 18.05.2010Механика жидкостей, физическое обоснование их главных свойств и характеристик в различных условиях, принцип движения. Уравнение Бернулли. Механизм истечения жидкости из отверстий и насадков и методика определения коэффициентов скорости истечения.
реферат [175,5 K], добавлен 19.05.2014Реологические свойства жидкостей в микро- и макрообъемах. Законы гидродинамики. Стационарное движение жидкости между двумя бесконечными неподвижными пластинами и движение жидкости между двумя бесконечными пластинами, двигающимися относительно друг друга.
контрольная работа [131,6 K], добавлен 31.03.2008