Оптика, квантовая механика

Механические гармонические колебания. Изображение предметов с помощью линз. Дифракция сферических и плоских волн. Универсальная функция Кирхгофа. Применение уравнения Шредингера для свободной частицы. Прохождение частицы сквозь потенциальный барьер.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 14.10.2012
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

(14)

где тi-- масса i-го заряда.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Из выражений (13) и (14) вытекает, что показатель преломления n зависит от частоты внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света. Из выражений (13) и (14) следует, что в области от = 0 до = 0 n2 больше единицы и возрастает с увеличением (нормальная дисперсия); при = 0 n2 = ±; в области от = 0 до = n2 меньше единицы и возрастает от - до 1 (нормальная дисперсия). Перейдя от n2 к n, получим, что график зависимости n от имеет вид, изображенный на рис.3. Такое поведение n вблизи 0 -- результат допущения об отсутствии сил сопротивления при колебаниях электронов. Если принять в расчет и это обстоятельство, то график функции n() вблизи 0 (вблизи линий и полос поглощения) -задастся штриховой линией АВ. Область АВ - область аномальной дисперсии (n убывает при возрастании ), остальные участки зависимости n от описывают нормальную дисперсию (n возрастает с возрастанием ).

Российскому физику Д. С. Рождественскому (1876--1940) принадлежит классическая работа по изучению аномальной дисперсии в парах натрия. Он разработал интерференционный метод для очень точного измерения показателя преломления паров и экспериментально показал, что формула (14) правильно характеризует зависимость n от , а также ввел в нее поправку, учитывающую квантовые свойства света и атомов.

На явлении нормальной дисперсии основано действие призменных спектрографов. Несмотря на их некоторые недостатки, при определении спектрального состава света, призменные спектрографы находят широкое применение в спектральном анализе. Это объясняется тем, что изготовление хороших призм значительно проще, чем изготовление хороших дифракционных решеток. В призменных спектрографах также легче получить большую светосилу.

Поглощение (абсорбция) света

Поглощением (абсорбцией) света называется явление уменьшения энергии световой волны при ее распространении в веществе вследствие преобразования энергии волны в другие виды энергии. В результате поглощения интенсивность света при прохождении через вещество уменьшается.

Поглощение света в веществе описывается законом Бугера(П. Бугер (1698--1758) -- французский ученый.):

(15)

где I0 и I -- интенсивности плоской монохроматической световой волны на входе и выходе слоя поглощающего вещества толщиной х, -- коэффициент поглощения, зависящий от длины волны света, химической природы и состояния вещества и не зависящий от интенсивности света. При х=1/ интенсивность света I по сравнению с I0 уменьшается в е раз.

Коэффициент поглощения зависит от длины волны (или частоты ) и для различных веществ различен. Например, одноатомные газы и пары металлов (т.е. вещества, в которых атомы расположены на значительных расстояниях друг от друга и их можно считать изолированными) обладают близким к нулю коэффициентом поглощения и лишь для очень узких спектральных областей (примерно 10-12--10-11 м) наблюдаются резкие максимумы (так называемый линейчатый спектр поглощения). Эти линии соответствуют частотам собственных колебаний электронов в атомах. Спектр поглощения молекул, определяемый колебаниями атомов в молекулах, характеризуется полосами поглощения (примерно 10-10--10-7 м).

Коэффициент поглощения для диэлектриков невелик (примерно 10-3--10-5 см-1), однако у них наблюдается селективное поглощение света в определенных интервалах длин волн, когда резко возрастает, и наблюдаются сравнительно широкие полосы поглощения, т.е. диэлектрики имеют сплошной спектр поглощения. Это связано с тем, что в диэлектриках нет свободных электронов и поглощение света обусловлено явлением резонанса при вынужденных колебаниях электронов в атомах и атомов в молекулах диэлектрика.

Коэффициент поглощения для металлов имеет большие значения (примерно 103--105 см-1) и поэтому металлы являются непрозрачными для света. В металлах из-за наличия свободных электронов, движущихся под действием электрического поля световой волны, возникают быстропеременные токи, сопровождающиеся выделением джоулевой теплоты. Поэтому энергия световой волны быстро уменьшается, превращаясь во внутреннюю энергию металла. Чем выше проводимость металла, тем сильнее в нем поглощение света.

На рис.4 представлены типичная зависимость коэффициента поглощения от длины волны света и зависимость показателя преломления n от в области полосы поглощения. Из рисунка следует, что внутри полосы поглощения наблюдается аномальная дисперсия (n убывает с уменьшением ). Однако поглощение вещества должно быть значительным, чтобы повлиять на ход показателя преломления.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Зависимостью коэффициента поглощения От длины волны объясняется окрашенность Поглощающих тел. Например, стекло, слабо поглощающее красные и оранжевые лучи и сильно поглощающее зеленые и синие, при освещении белым светом будет казаться красным. Если на такое стекло направить зеленый и синий свет, то из-за сильного поглощения света этих длин волн стекло будет казаться черным. Это явление используется для изготовления светофильтров, которые в зависимости от химического состава (стекла с присадками различных солей, пленки из пластмасс, содержащие красители, растворы красителей и т. д.) пропускают свет только определенных длин волн, поглощая остальные. Разнообразие пределов селективного (избирательного) поглощения у различных веществ объясняет разнообразие и богатство цветов и красок, наблюдающееся в окружающем мире.

Явление поглощения широко используется в абсорбционном спектральном анализе смеси газов, основанном на измерениях спектров частот и интенсивностей линий (полос) поглощения. Структура спектров поглощения определяется составом и строением молекул, поэтому изучение спектров поглощения является одним из основных методов количественного и качественного исследования веществ.

Лек.11. Поляризация света. Закон Малюса и Брюстера.Двойное лучепреломление

Следствием теории Максвелла является поперечность световых волн: векторы напряженностей электрического и магнитного полей волны взаимно перпендикулярны и колеблются перпендикулярно вектору скорости распространения волны. Поэтому для описания закономерностей поляризации света достаточно знать поведение лишь одного из векторов. Обычно все рассуждения ведутся относительно светового вектора -- вектора напряженности электрического поля (это обусловлено тем, что при действии света на вещество основное значение имеет электрическая составляющая поля волны, действующая на электроны в атомах вещества).

Свет представляет собой суммарное электромагнитное излучение множества атомов. Атомы же излучают световые волны независимо друг от друга, поэтому световая волна, излучаемая телом в целом, характеризуется всевозможными равновероятными колебаниями светового вектора (рис.1,а; луч перпендикулярен плоскости рисунка). В данном случае равномерное распределение векторов объясняется большим числом атомарных излучателей, а равенство амплитудных значений векторов одинаковой (в среднем) интенсивностью излучения каждого из атомов. Свет со всевозможными равновероятными ориентациями вектора (и, следовательно, ) называется естественным.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Свет, в котором направления колебаний светового вектора каким-то образом упорядочены, называется поляризованным.

Так, если в результате каких-либо внешних воздействий появляется преимущественное направление колебаний вектора (рис.1, в), то имеем дело с частично поляризованным

светом. Свет, в котором вектор (и, следовательно, ) колеблется только в одном направлении, перпендикулярном лучу (рис.1,с), называется плоскополяризованным (линейно поляризованным).

Плоскость, проходящая через направление колебаний светового вектора плоскополяризованной волны и направление распространения этой волны, называется плоскостью поляризации.

Степенью поляризации называется величина

, (1)

где Jmax, и Jmin -- соответственно максимальная и минимальная интенсивности частично поляризованного света, пропускаемого анализатором. Для естественного света Jmax=Jmin и Р=0, для плоскополяризованного Jmin =0 и Р=1.

Естественный свет можно преобразовать в плоскополяризованный, используя так называемые поляризаторы, пропускающие колебания только определенного направления (например, пропускающие колебания, параллельные главной плоскости поляризатора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов могут быть использованы среды, анизотропные в отношении колебаний вектора Е, например кристаллы. Из природных кристаллов, давно используемых в качестве поляризатора, следует отметить турмалин.

Рассмотрим классические опыты с турмалином (рис.2). Направим естественный свет перпендикулярно пластинке турмалина T1, вырезанной параллельно так называемой оптической оси ОО'. Вращая кристалл T1 вокруг направления луча, никаких изменений интенсивности прошедшего через турмалин света не наблюдаем. Если на пути луча поставить вторую пластинку турмалина T2 (анализатор - поляризатор, используемый для определения характера и степени поляризации света ) и вращать ее вокруг направления луча, то интенсивность света, прошедшего через пластинки, меняется в зависимости от угла к между оптическими осями кристаллов по закону Малюса (французский физик (1775--1812) ):

(2)

где J0 и J-- соответственно интенсивности света, падающего на второй кристалл и вышедшего из него.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Следовательно, интенсивность прошедшего через пластинки света изменится от минимума (полное гашение света) при =/2 (оптические оси пластинок перпендикулярны) да максимума при =0 (оптические оси пластинок параллельны). Однако, как это следует из рис.3, амплитуда Е световых колебаний, прошедших через пластинку Т2, будет меньше амплитуды световых колебаний Е0, падающих на пластинку T2.

Так как интенсивность света пропорциональна квадрату амплитуды, то и получается выражение (2).

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Если пропустить естественный свет через два поляризатора, главные плоскости которых образуют угол , то из первого выйдет плоскополяризованный свет, интенсивность которого J0=1/2Jест, из второго, согласно (2), выйдет свет интенсивностью J=J0cos2 .

Следовательно, интенсивность света, прошедшего через два поляризатора,

откуда J0=1/2Jест (поляризаторы параллельны) и Jmin=0 (поляризаторы скрещены).

Поляризация света при отражении и преломлении на границе двух диэлектриков

Если естественный свет падает на границу раздела двух диэлектриков (например, воздуха и стекла), то часть его отражается, а часть преломляется в распространяется во второй среде. Устанавливая на пути отраженного и преломленного лучей анализатор (например, турмалин), убеждаемся в том, что отраженный и преломленный лучи частично поляризованы: при поворачивании анализатора вокруг лучей интенсивность света периодически усаливается и ослабевает (полного гашения не наблюдается!). Дальнейшие исследования показали, что в отраженном луче преобладают колебания, перпендикулярные плоскости падения (на рис.4 они обозначены точками), в преломленном -- колебания, параллельные плоскости падения (изображены стрелками).

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Степень поляризации зависит от угла падения лучей и показателя преломления. Шотландский физик Д. Брюстер (1781--1868) установил закон, согласно которому при угле падения iB (угол Брюстера), определяемого соотношением

(n21 -- показатель преломления второй среды относительно первой), отраженный луч является плоскополяризованным (содержит только колебания, перпендикулярные плоскости падения) (рис.5). Преломленный же луч при угле падения iB поляризуется максимально, но не полностью.

Если свет падает на границу раздела под углом Брюстера, то отраженный и преломленный лучи взаимно перпендикулярны (tgiB=siniB/cosiB, n21=siniB/sini2 (i2 -- угол преломления), откуда cosiB=sini2). Следовательно, iB + i2 = /2, но i'B = iB (закон отражения), поэтому i'B + i2 = /2.

Двойное лучепреломление

Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способностью двойного лучепреломления, т. е. раздваивания каждого падающего на них светового пучка. Это явление, в 1669 г. впервые обнаруженное датским ученым Э. Бартолином (1625--1698) для исландского шпата (разновидность кальцита СаСОз), объясняется особенностями распространения света в анизотропных средах и непосредственно вытекает из уравнений Максвелла.

Если на толстый кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу (рис.6). Даже в том случае, когда первичный пучок падает на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется (рис.7). Второй из этих лучей получил название необыкновенного (e), а первый -- обыкновенного (о).

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

В кристалле исландского шпата имеется единственное направление, вдоль которого двойное лучепреломление не наблюдается. Направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления, называется оптической осью кристалла. Любая прямая, проходящая параллельно данному направлению, является оптической осью кристалла. Кристаллы в зависимости от типа их симметрии бывают одноосные и двуосные, т.е. имеют одну или две оптические оси (к первым и относится исландский шпат).

Исследования показывают, что вышедшие из кристалла лучи плоскополяризованы во взаимно перпендикулярных плоскостях. Плоскость, проходящая через направление луча света и оптическую ось кристалла, называется главной плоскостью (или главным сечением кристалла). Колебания светового вектора (вектора напряженности Е электрического поля) в обыкновенном луче происходят перпендикулярно главной плоскости, в необыкновенном -- в главной плоскости (рис.7).

Неодинаковое преломление обыкновенного и необыкновенного лучей указывает на различие для них показателей преломления. Очевидно, что при любом направлении обыкновенного луча колебания светового вектора перпендикулярны оптической оси кристалла, поэтому обыкновенный луч распространяется по всем направлениям с одинаковой скоростью и, следовательно, показатель преломления no для него есть величина постоянная. Для необыкновенного же луча угол между направлением колебаний светового вектора и оптической осью отличен от прямого и зависит от направления луча, поэтому необыкновенные лучи распространяются по различным направлениям с разными скоростями. Следовательно, показатель преломления пe необыкновенного луча является переменной величиной, зависящей от направления луча. Таким образом, обыкновенный луч подчиняется закону преломления (отсюда и название «обыкновенный»), а для необыкновенного луча этот закон не выполняется. После выхода из кристалла, если не принимать во внимание поляризацию во взаимно перпендикулярных плоскостях, эти два луча ничем друг от друга не отличаются.

Лек.12. Тепловое излучение и его характеристики. Законы излучения абсолютно чёрного тела. Формула Планка

Тела, нагретые до достаточно высоких температур, светятся. Свечение тел, обусловленное нагреванием, называется тепловым (температурным) излучением. Тепловое излучение, являясь самым распространенным в природе, совершается за счет энергии теплового движения атомов и молекул вещества (т. е. за счет его внутренней энергии) и свойственно всем телам при температуре выше 0 К. Тепловое излучение характеризуется сплошным спектром, положение максимума которого зависит от температуры. При высоких температурах излучаются короткие (видимые и ультрафиолетовые) электромагнитные волны, при низких -- преимущественно длинные (инфракрасные).

Тепловое излучение -- практически единственный вид излучения, который может быть равновесным.

Излучение находящееся в термодинамическом равновесии с телами, имеющими определенную температуру, называется равновесным или чёрным излучением. В состоянии равновесия процессы испускания и поглощения энергии каждым телом в целом компенсируют друг друга.

Основное свойство теплового излучения: плотность энергии равновесного излучения и его спектральный состав зависит только от температуры.

Количественной характеристикой теплового излучения служит излучательность тела (спектральная плотность энергетической светимости тела)- мощность излучения с единицы площади поверхности тела в интервале частот единичной ширины:

где d -- энергия электромагнитного излучения, испускаемого за единицу времени (мощность излучения) с единицы площади поверхности тела в интервале частот от до +d.

Единица спектральной плотности энергетической светимости [(R,T)]= (Дж/м2·с).

Записанную формулу можно представить в виде функции длины волны:

Так как c=, то

где знак минус указывает на то, что с возрастанием одной из величин ( или ) другая величина убывает. Поэтому в дальнейшем знак минус будем опускать. Таким образом,

(1)

С помощью формулы (1) можно перейти от R,T к R,T и наоборот.

Зная излучательность тела, можно вычислить интегральную излучательность (интегральную энергетическую светимость) (ее называют энергетической светимостью тела), просуммировав по всем частотам:

(2)

Способность тел поглощать падающее на них излучение характеризуется спектральной поглощательной способностью

.

показывающей, какая доля энергии, приносимой за единицу времени на единицу площади поверхности тела падающими на нее электромагнитными волнами с частотами от до +d, поглощается телом. Спектральная поглощательная способность -- величина безразмерная. Величины R,T и А,T зависят от природы тела, его термодинамической температуры и при этом различаются для излучений с различными частотами. Поэтому эти величины относят к определенным Т и (вернее, к достаточно узкому интервалу частот от до +d).

Тело, способное поглощать полностью при любой температуре все падающее на него излучение любой частоты, называется черным. Следовательно, спектральная поглощательная способность черного тела для всех частот и температур тождественно равна единице (). Абсолютно черных тел (АЧТ) в природе нет, однако такие тела, как сажа, платиновая чернь, черный бархат и некоторые другие, в определенном интервале частот по своим свойствам близки к ним.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Идеальной моделью черного тела является замкнутая полость с небольшим отверстием О, внутренняя поверхность которой зачернена (рис.1). Луч света, попавший внутрь такой полости, испытывает многократные отражения от стенок, в результате чего интенсивность вышедшего излучения оказывается практически равной нулю. Опыт показывает, что при размере отверстия, меньшего 0,1 диаметра полости, падающее излучение всех частот полностью поглощается. Вследствие этого открытые окна домов со стороны улицы кажутся черными, хотя внутри комнат достаточно светло из-за отражения света от стен.

Наряду с понятием черного тела используют понятие серого тела -- тела, поглощательная способность которого меньше единицы, но одинакова для всех частот и зависит только от температуры, материала и состояния поверхности тела. Таким образом, для серого тела =AT = const<l.

Исследование теплового излучения сыграло важную роль в создании квантовой теории света, поэтому необходимо рассмотреть законы, которым оно подчиняется.

Закон Кирхгофа.

Кирхгоф, опираясь на второй закон термодинамики и анализируя условия равновесного излучения в изолированной системе тел, установил количественную связь между спектральной плотностью энергетической светимости и спектральной поглощательной способностью тел. Отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела; оно является для всех тел универсальной функцией частоты (длины волны) и температуры (закон Кирхгофа):

(3)

Для черного тела , поэтому из закона Кирхгофа вытекает, что R,T для черного тела равна r,T. Таким образом, универсальная функция Кирхгофа r,T есть не что иное, как спектральная плотность энергетической светимости черного тела. Следовательно, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральной поглощательной способности равно спектральной плотности энергетической светимости черного тела при той же температуре и частоте.

Из закона Кирхгофа следует, что спектральная плотность энергетической светимости любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости черного тела (при тех же значениях Т и ), так как А,T< 1 и поэтому R,T <r,T. Кроме того, из (3) вытекает, что если тело при данной температуре Т не поглощает электромагнитные волны в интервале частот от до +d, то оно их в этом интервале частот при температуре T и не излучает, так как при А,T =0 - R,T =0.

Используя закон Кирхгофа, выражение для энергетической светимости тела (2) можно записать в виде

Для серого тела

где

-- энергетически светимость черного тела (зависит только от температуры).

Из закона Кирхгофа следует, что спектральная плотность энергетическое светимости черного тела является универсальное функцией, поэтому нахождение ее явной зависимости от частоты и температуры является важной задачей теории теплового излучения.

Закон Стефана -- Больцман и смещение Вина

Австрийский физик И. Стефан (1835--1893), анализируя экспериментальные данные (1879), и Л. Больцман, применяя термодинамический метод (1884), решили эту задачу лишь частично, установив зависимость энергетической светимости Re от температуры. Согласно закону Стефана -- Больцмана,

(5)

т.е. энергетическая светимость черного тела пропорциональна четвертой степени его термодинамической температуры; -- постоянная Стефана - Больцмана: ее экспериментальное значение равно 5,6710-8 Вт/(м2 К4).

Закон Стефана -- Больцмана, определяя зависимость Rе от температуры, не дает ответа относительно спектрального состава излучения черного тела. Из экспериментальных кривых зависимости функции r,T от длины волны () при различных температурах (рис.2) следует, что распределение энергии в спектре черного тела является неравномерным. Все кривые имеют явно выраженный максимум, который по мере повышения температуры смещается в сторону более коротких волн. Площадь, ограниченная кривой зависимости r,T от и осью абсцисс, пропорциональна энергетической светимости Re черного тела и, следовательно, по закону Стефана -- Больцмана, четвертой степени температуры.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Немецкий физик В. Вин (1864--1928), опираясь на законы термо- и электродинамики, установил зависимость длины волны max, соответствующей максимуму функции r,T, от температуры Т.

Согласно закону смещения Вина,

, (6)

т. е. длина волны max, соответствующая максимальному значению спектральной плотности энергетической светимости r,T черного тела, обратно пропорциональна его термодинамической температуре, b -- постоянная Вина; ее экспериментальное значение равно 2,910-3 мК. Выражение (6) потому называют законом смещения Вина, что оно показывает смещение положения максимума функции r,T по мере возрастания температуры в область коротких длин волн. Закон Вина объясняет, почему при понижении температуры нагретых тел в их спектре все сильнее преобладает длинноволновое излучение.

Из рассмотрения законов Стефана -- Больцмана и Вина следует, что термодинамический подход к решению задача о нахождении универсальной функции Кирхгофа r,T не дал желаемых результатов. Следующая строгая попытка теоретического вывода зависимости r,T принадлежит английским ученым Д. Рэлею и Д. Джинсу (1877--1946), которые применили к тепловому излучению методы статистической физики, воспользовавшись классическим законом равномерного распределения энергии по степеням свободы.

Формула Рэлея-Джинса для спектральной плотности энергетической светимости черного тела имеет вид

(7)

Как показал опыт, выражение (7) согласуется с экспериментальными данными только в области достаточно малых частот и больших температур. В области больших частот формула Рэлея -- Джинса резко расходится с экспериментом, а также с законом смещения Вина (рис.3). Кроме того, оказалось, что попытка получить закон Стефана -- Больцмана из формулы Рэлея -- Джинса приводит к абсурду. Действительно, вычисленная с использованием (7) энергетическая светимость черного тела

в то время как по закону Стефана -- Больцмана Rе пропорциональна четвертой степени температуры. Этот результат получил название «ультрафиолетовой катастрофы». Таким образом, в рамках классической физики не удалось объяснить законы распределения энергии в спектре черного тела.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

В области больших частот хорошее согласие с опытом дает формула Вина.

Формула Планка.

Правильное, согласующееся с опытными данными выражение для спектральной плотности энергетической светимости черного тела было найдено в 1900 г. немецким физиком М. Планком. Для этого ему пришлось отказаться от установившегося положения классической физики, согласно которому энергия любой системы может изменяться непрерывно, т. е. может принимать любые сколь угодно близкие значения. Согласно выдвинутой Планком квантовой гипотезе, атомы излучают энергию не непрерывно, а определенными порциями -- квантами, причем энергия кванта пропорциональна частоте колебания

(8)

где h= 6,62510-34 Джс -- постоянная Планка.

Для универсальной функции Кирхгофа Планк вывел формулу

, (9)

которая блестяще согласуется с экспериментальными данными по распределению энергии в спектрах излучения черного тела во всем интервале частот и температур. Теоретический вывод этой формулы М. Планк изложил 14 декабря 1900 г. на заседании Немецкого физического общества. Этот день стал датой рождения квантовой физики.

В области малых частот, т. е. при h<<kT (энергия кванта очень мала по сравнению с энергией теплового движения kT), формула Планка совпадает с формулой Рэлея -- Джинса.

Таким образом, формула Планка не только хорошо согласуется с экспериментальными данными, но и содержит в себе частные законы теплового излучения, а также позволяет вычислить постоянные в законах теплового излучения. Следовательно, формула Планка является полным решением основной задачи теплового излучения, поставленной Кирхгофом. Законы теплового излучения используются для измерения температуры раскаленных и самосветящихся тел (например, звезд).

Методы измерения высоких температур, использующие зависимость спектральной плотности энергетической светимости или интегральной энергетической светимости тел от температуры, называются оптической пирометрией. Приборы для измерения температуры нагретых тел по интенсивности их теплового излучения в оптическом диапазоне спектра называются пирометрами. Свечение раскаленных тел используется для создания источников света -- лампы накаливания и дуговые лампы.

Лек.13. Фотоэффект и его применение

Различают фотоэффект внешний, внутренний и вентильный.

Внутренний фотоэффект -- это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению э.д.с.

Вентильный фотоэффект, являющийся разновидностью внутреннего фотоэффекта, -- возникновение э.д.с. (фото-э.д.с.) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преобразования солнечной энергии в электрическую.

Внешним фотоэлектрическим эффектом (фотоэффектом) называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация). Фотоэффект обнаружен (1887 г.) Г. Герцем, наблюдавшим усиление процесса разряда при облучении искрового промежутка ультрафиолетовым излучением.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А. Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис.1. Два электрода (катод К из исследуемого металла и анод А -- в схеме Столетова применялась металлическая сетка) в вакуумной трубке подключены к батарее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие закономерности, не утратившие своего значения до нашего времени: 1) наиболее эффективное действие оказывает ультрафиолетовое излучение; 2) под действием света вещество теряет только отрицательные заряды; 3) сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Дж. Дж. Томсон в 1898 г. Измерил удельный заряд испускаемых под действием света частиц (по отклонению в электрическом и магнитном полях). Эти измерения показали, что под действием света вырываются электроны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

На рис.1 приведена экспериментальная установка для исследования вольт-амперной характеристики фотоэффекта (ВАХ) -- зависимости фототока J, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами. Такая зависимость, соответствующая двум различным освещенностям Е, катода (частота света в обоих случаях одинакова), приведена на рис.2. По мере увеличения U фототок постепенно возрастает, т. Е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока Jнас -- фототок насыщения -- определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода:

(1)

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

где n -- число электронов, испускаемых катодом в 1 с.

Из вольт-амперной характеристики следует, что при U=0 фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью , а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным нулю, необходимо приложить задерживающее напряжение U0. При U=U0 ни один из электронов, даже обладающий при вылете из катода максимальной скоростью хmax, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,

(2)

т.e., измерив задерживающее напряжение U0, можно определить максимальные значения скорости и кинетической энергии фотоэлектронов.

При изучении вольт-амперных характеристик разнообразных материалов (важна чистота поверхности, поэтому измерения проводятся в вакууме и на свежих поверхностях) при различных частотах падающего на катод излучения и различных энергетических освещенностях катода и обобщения полученных данных были установлены следующие три закона внешнего фотоэффекта.

I.Закон Столетова: при фиксированной частоте падающего света число фотоэлектронов, вырываемых из катода в единицу времени, пропорционально интенсивности света (сила фототока насыщения пропорциональна энергетической освещенности Ее катода).

II. Максимальная начальная скорость (максимальная начальная кинетическая энергия) фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой .

III. Для каждого вещества существует красная граница фотоэффекта, т. Е. минимальная частота 0 света (зависящая от химической природы вещества и состояния его поверхности), ниже которой фотоэффект невозможен.

Качественное объяснение фотоэффекта с волновой точки зрения на первый взгляд не должно было бы представлять трудностей. Действительно, под действием поля световой волны в металле возникают вынужденные колебания электронов, амплитуда которых (например, при резонансе) может быть достаточной для того, чтобы электроны покинули металл; тогда и наблюдается фотоэффект. Кинетическая энергия вырываемого из металла электрона должна была бы зависеть от интенсивности падающего света, так как с увеличением последней электрону передавалась бы большая энергия. Однако этот вывод противоречит II закону фотоэффекта. Так как, по волновой теории, энергия, передаваемая электронам, пропорциональна интенсивности света, то свет любой частоты, но достаточно большой интенсивности должен был бы вырывать электроны из металла; иными словами, красной границы фотоэффекта не должно быть, что противоречит III закону фотоэффекта. Таким образом, фотоэффект необъясним с точки зрения волновой теории света.

А. Эйнштейн в 1905 г. Показал, что явление фотоэффекта и его закономерности могут быть объяснены на основе предложенной им квантовой теории фотоэффекта. Согласно Эйнштейну, свет частотой не только испускается, как это предполагал Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых 0=h. Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью с распространения света в вакууме. Кванты электромагнитного излучения получили название фотонов.

По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности света (I закон фотоэффекта). Передача энергии при столкновении фотона с электроном происходит почти мгновенно.

Энергия падающего фотона расходуется на совершение электроном работы выхода А из и на сообщение вылетевшему фотоэлектрону кинетической энергии m2max/2. По закону сохранения энергии,

(3)

Уравнение (3) называется уравнением Эйнштейна для внешнего фотоэффекта.

Уравнение Эйнштейна позволяет объяснить II и III законы фотоэффекта. Из (3) непосредственно следует, что максимальная кинетическая энергия фотоэлектрона линейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности (числа фотонов), так как ни А, ни от интенсивности света не зависят (II закон фотоэффекта). Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (для данного металла А=const), то при некоторой достаточно малой частоте =0 кинетическая энергия фотоэлектронов станет равной нулю и фотоэффект прекратится (III закон фотоэффекта). Согласно изложенному, из (3) получим, что

(4)

и есть красная граница фотоэффекта для данного металла. Она зависит лишь от работы выхода электрона, т. Е. от химической природы вещества и состояния его поверхности.

Выражение (2) можно записать, используя (3) и (4), в виде

(5)

Уравнение Эйнштейна было подтверждено опытами Милликена. В его приборе (1916 г.) поверхность исследуемого металла подвергалась очистке в вакууме. Исследовалась зависимость максимальной кинетической энергии фотоэлектронов (изменялось задерживающее напряжение U0 от частоты и определялась постоянная Планка.

Если интенсивность света очень большая, то возможен многофотонный (нелинейный) фотоэффект, при котором электрон, испускаемый металлом, может одновременно получить энергию ни одного, а N фотонов (N=2, 3, 4, 5). Многофотонный фотоэффект описывается уравнением:

.

Соответственно, красная граница многофотонного фотоэффекта:

На явлении фотоэффекта основано действие фотоэлектронных приборов, получивших разнообразное применение в различных областях науки и техники. В настоящее время практически невозможно указать отрасли производства, где бы не использовались фотоэлементы -- приемники излучения, работающие на основе фотоэффекта и преобразующие энергию излучения в электрическую.

Лек.14. Масса и импульс фотон. Давление света. Эффект Комптона

Фотон. Давление света.

Согласно гипотезе световых квантов Эйнштейна, свет испускается, поглощается и распространяется дискретными порциями (квантами), названными фотонами. Энергия фотона

е0=h (1)

Его масса находится из закона взаимосвязи массы и энергии (): (2) Фотон -- элементарная частица, которая всегда (в любой среде!) движется со скоростью света с и имеет массу покоя, равную нулю. Следовательно, масса фотона отличается от массы таких элементарных частиц, как электрон, протон и нейтрон, которые обладают отличной от нуля массой покоя и могут находиться в состоянии покоя.

Импульс фотона рф получим, если в общей формуле теории относительности положим массу покоя фотона = 0:

(3)

Из приведенных рассуждений следует, что фотон, как и любая другая частица, характеризуется энергией, массой и импульсом. Выражения (1), (2) и (3) связывают корпускулярные характеристики фотона -- массу, импульс и энергию -- с волновой характеристикой света -- его частотой .

Если фотоны обладают импульсом, то свет, падающий на тело, должен оказывать на него давление. Согласно квантовой теории, давление света на поверхность обусловлено тем, что каждый фотон при соударении с поверхностью передает ей свой импульс.

Рассчитаем с точки зрения квантовой теории световое давление, оказываемое на поверхность тела потоком монохроматического излучения (частота ), падающего перпендикулярно поверхности. Если в единицу времени на единицу площади поверхности тела падает N фотонов, то при коэффициенте отражения света от поверхности тела фотонов отразится, а -- поглотится. Каждый поглощенный фотон передаст поверхности импульс ,а каждый отраженный -- (при отражении импульс фотона изменяется на - рф). Давление света на поверхность равно импульсу, который передают поверхности в 1 с N фотонов:

Nh=Ee есть энергия всех фотонов, падающих на единицу поверхности в единицу времени, т. Е. энергетическая освещенность поверхности , a Ee/c=w -- объемная плотность энергии излучения. Поэтому давление, производимое светом при нормальном падении на поверхность,

(4)

Формула (4), выведенная на основе квантовых представлений, совпадает с выражением, получаемым из электромагнитной (волновой) теории Максвелла. Таким образом, давление света одинаково успешно объясняется и волновой, и квантовой теорией. Экспериментальное доказательство существования светового давления на твердые тела и газы дано в опытах П. И. Лебедева.

Эффект Комптона

Наиболее полно корпускулярные свойства света проявляются в эффекте Комптона. Эффектом Комптона называется упругое рассеяние коротковолнового электромагнитного излучения (рентгеновского и -излучений) на свободных (или слабосвязанных) электронах вещества, сопровождающееся увеличением длины волны. Этот эффект не укладывается в рамки волновой теории, согласно которой длина волны при рассеянии изменяться не должна: под действием периодического поля световой волны электрон колеблется с частотой поля и поэтому излучает рассеянные волны той же частоты.

Объяснение эффекта Комптона (1923 год) дано на основе квантовых представлений о природе света, т.е. электромагнитное излучение представляет собой поток фотонов.

В процессе столкновения фотон передает электрону часть своих энергии и импульса в соответствии с законами их сохранения и изменяет направление движения (рассеивается). Уменьшение энергии фотона означает увеличение длины волны рассеянного излучения.

Эффект Комптона наблюдается не только на электронах, но и на других заряженных частицах, например протонах, однако из-за большой массы протона его отдача «просматривается» лишь при рассеянии фотонов очень высоких энергий.

При столкновении фотона со свободным электроном не может произойти поглощения фотона, так как это находится в противоречии с законами сохранения импульса и энергии. Поэтому при взаимодействии фотонов со свободными электронами может наблюдаться только их рассеяние, т. Е. эффект Комптона.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рассмотрим упругое столкновение двух частиц - налетающего фотона, обладающего энергией и импульсом , с покоящимся электроном, энергия покоя которого равна (рис.1).

Фотон, столкнувшись с электроном, изменяет направление движения (рассеивается). Импульс фотона после рассеяния становится равным p= hн / c, а его энергия = hн < . Уменьшение энергии фотона означает увеличение длины волны. Энергия электрона после столкновения становится равной .Закон сохранения энергии записывается в виде

(10)

Закон сохранения импульса:

. (11)

Подставляя в выражение (10) значения величин и представив (11) в соответствии с рис.1, получим:

(12)

(13)

Масса электрона отдачи связана с его скоростью х соотношением . Возведя уравнение (12) в квадрат, а затем вычитая из него (13) получим:

.

Поскольку, , получим

,

Где -комптоновская длина волны электрона.

Рассмотренные явления -- излучение черного тела, фотоэффект, эффект Комптона -- служат доказательством квантовых (корпускулярных) представлений о свете как о потоке фотонов. С другой стороны, такие явления, как интерференция, дифракция и поляризация света, убедительно подтверждают волновую (электромагнитную) природу света. Наконец, давление и преломление света объясняются как волновой, так и квантовой теориями. Таким образом, электромагнитное излучение обнаруживает удивительное единство, казалось бы, взаимоисключающих свойств -- непрерывных (волны) и дискретных (фотоны), которые взаимно дополняют друг друга.

Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать, как это делает квантовая оптика, статистический подход к рассмотрению закономерностей распространения света. Например, дифракция света на щели состоит в том, что при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотонов в различные точки экрана неодинакова, то и возникает дифракционная картина. Освещенность экрана пропорциональна вероятности попадания фотонов на единицу площади экрана. С другой стороны, по волновой теории, освещенность пропорциональна квадрату амплитуды световой волны в той же точке экрана. Следовательно, квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотонов в данную точку.

колебание волна линза шредингер

Лек.15-а. Различные модели атомов. Постулаты Бора. Теория атома водорода по Бору

Теория атома водорода по Бору

Модели атома Томсона и Резерфорда

Представление об атомах как неделимых мельчайших частицах вещества («атомос» -- неразложимый) возникло еще в античные времена (Демокрит, Эпикур, Лукреций).

Большую роль в развитии атомистической теории сыграл Д. И. Менделеев, разработавший в 1869 г. Периодическую систему элементов, в которой впервые на научной основе был поставлен вопрос о единой природе атомов. Во второй половине XIX в. экспериментально было доказано, что электрон является одной из основных составных частей любого вещества.

Первая попытка создания на основе накопленных экспериментальных данных модели атома принадлежит Дж. Дж. Томсону (1903). Согласно этой модели, атом представляет собой непрерывно заряженный положительным зарядом шар радиусом порядка 10-10 м, внутри которого около своих положений равновесия колеблются электроны; суммарный отрицательный заряд электронов равен положительному заряду шара, поэтому атом в целом нейтрален. Через несколько лет было доказано, что представление о непрерывно распределенном внутри атома положительном заряде ошибочно.

В развитии представлений о строении атома велико значение опытов английского физика Э. Резерфорда (1871--1937) по рассеянию -частиц в веществе. Альфа-частицы возникают при радиоактивных превращениях; они являются положительно заряженными частицами с зарядом 2е и массой, примерно в 7300 раз большей массы электрона. Пучки -частиц обладают высокой монохроматичностью (для данного превращения имеют практически одну и ту же скорость (порядка 107 м/с)).

Резерфорд, исследуя прохождение -частиц в веществе (через золотую фольгу толщиной примерно 1 мкм), показал, что основная их часть испытывает незначительные отклонения, но некоторые -частицы (примерно одна из 20 000) резко отклоняются от первоначального направления (углы отклонения достигали даже 180°). Так как электроны не могут существенно изменить движение столь тяжелых и быстрых частиц, как -частицы, то Резерфордом был сделан вывод, что значительное отклонение -частиц обусловлено их взаимодействием с положительным зарядом большой массы. Однако значительное отклонение испытывают лишь немногие -частицы; следовательно, лишь некоторые из них проходят вблизи данного положительного заряда. Это, в свою очередь, означает, что положительный заряд атома сосредоточен в объеме, очень малом по сравнению с объемом атома.

На основании своих исследований Резерфорд в 1911 г. предложил ядерную (планетарную) модель атома. Согласно этой модели, вокруг положительного ядра, имеющего заряд Zе (Z -- порядковый номер элемента в системе Менделеева, е -- элементарный заряд), размер 10-15--10-14 м и массу, практически равную массе атома, в области с линейными размерами порядка 10-10 м по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то заряд ядра равен суммарному заряду электронов, т. е. вокруг ядра должно вращаться Z электронов.

Для простоты предположим, что электрон движется вокруг ядра по круговой орбите радиуса r. При этом кулоновская сила взаимодействия между ядром и электроном сообщает электрону центростремительное ускорение. Второй закон Ньютона для электрона, движущегося по окружности под действием кулоновской силы, имеет вид

(1)

где тe, и -- масса и скорость электрона на орбите радиуса r, 0 -- электрическая постоянная.

Согласно классической электродинамике, ускоренно движущиеся электроны должны излучать электромагнитные волны и вследствие этого непрерывно терять энергию. В результате электроны будут приближаться к ядру и в конце концов упадут на него. Таким образом, атом Резерфорда оказывается неустойчивой системой, что опять-таки противоречит действительности.

Попытки построить модель атома в рамках классической физики не привели к успеху: модель Томсона была опровергнута опытами Резерфорда, ядерная же модель оказалась неустойчивой электродинамически и противоречила опытным данным. Преодоление возникших трудностей потребовало создания качественно новой -- квантовой -- теории атома.

Исследования спектров излучения разреженных газов (т. е. спектров излучения отдельных атомов) показали, что каждому газу присущ определенный линейчатый спектр, состоящий из отдельных спектральных линий или групп близко расположенных линий. Самым изученным является спектр наиболее простого атома -- атома водорода.

Швейцарский ученый И. Бальмер (1825--1898) подобрал эмпирическую формулу, описывающую все известные в то время спектральные линии атома водорода в видимой области спектра:

(2)

где R=R'c=3,291015 с-1 --постоянная Ридбергаm (Ридберг (1854--1919) -- шведский ученый, специалист в области спектроскопии).

Из выражений (2) вытекает, что спектральные линии, отличающиеся различными значениями п, образуют группу или серию линий, называемую серией Бальмера. С увеличением n линии серии сближаются; значение n = определяет границу серии, к которой со стороны больших частот примыкает сплошной спектр.

В дальнейшем (в начале XX в.) в спектре атома водорода было обнаружено еще несколько серий. В ультрафиолетовой области спектра находится серия Лаймана:

В инфракрасной области спектра были также обнаружены:

Все приведенные выше серии в спектре атома водорода могут быть описаны одной формулой, называемой обобщенном формулой Бальмера:

(3)

где т имеет в каждой данной серии постоянное значение, m = 1, 2, 3, 4, 5, 6 (определяет серию), п принимает целочисленные значения начиная с т+1 (определяет отдельные линии этой серии).

Приведенные выше сериальные формулы подобраны эмпирически и долгое время не имели теоретического обоснования, хотя и были подтверждены экспериментально с очень большой точностью.

Постулаты Бора

Первая попытка построить качественно новую -- квантовую -- теорию атома была предпринята в 1913 г. датским физиком Нильсом Бором (1885--1962). Он поставил перед собой цель связать в единое целое эмпирические закономерности линейчатых спектров, ядерную модель атома Резерфорда и квантовый характер излучения и поглощения света. В основу своей теории Бор положил два постулата.

Первый постулeат Бора (постулат стационарных состояний): в атоме существуют стационарные (не изменяющиеся со временем) состояния, в которых он не излучает энергии. Стационарным состояниям атома соответствуют стационарные орбиты, по которым движутся электроны. Движение электронов по стационарным орбитам не сопровождается излучением электромагнитных волн.

В стационарном состоянии атома электрон, двигаясь по круговой орбите, должен иметь дискретные квантованные значения момента импульса, удовлетворяющие условию

, (4)

где те -- масса электрона, -- его скорость по n-й орбите радиуса rn,

ћ = h/(2)== = .

Второй постулат Бора (правило частот): при переходе электрона с одной стационарной орбиты на другую излучается (поглощается) один фотон с энергией

(5)

равной разности энергий соответствующих стационарных состояний (Еn и Em -- соответственно энергии стационарных состояний атома до и после излучения (поглощения)). При Еm<Еn происходит излучение фотона (переход атома из состояния с большей энергией в состояние с меньшей энергией, т. е. переход электрона с более удаленной от ядра орбиты на более близлежащую), при Еm>Еn -- его поглощение (переход атома в состояние с большей энергией, т. е. переход электрона на более удаленную от ядра орбиту). Набор возможных дискретных частот = (En--Em)/h квантовых переходов и определяет линейчатый спектр атома.

Спектр атома водорода по Бору

Постулаты, выдвинутые Бором, позволили рассчитать спектр атома водорода и водородоподобных систем -- систем, состоящих из ядра с зарядом Ze и одного электрона (например, ионы Не+, Li2+), а также теоретически вычислить постоянную Ридберга.


Подобные документы

  • Изучение движения свободной частицы. Частица в одномерной прямоугольной яме с бесконечными внешними стенками. Гармонический осциллятор. Прохождение частиц сквозь потенциальный барьер. Туннельный эффект. Качественный анализ решений уравнения Шредингера.

    презентация [376,0 K], добавлен 07.03.2016

  • Соотношения неопределенностей Гейзенберга. Формулировка уравнения Шредингера. Частица в потенциальной яме. Ее прохождение через потенциальный барьер. Основные свойства, излучение и поглощение атома водорода. Движение электронов по заданным орбитам.

    реферат [1,8 M], добавлен 21.03.2014

  • Интегральная теорема Кирхгофа–Гельмгольца. Угловой спектр плоских волн. Сущность квазиоптического приближения. Интеграл Кирхгофа, метод стационарной фазы. Решение дифракционной задачи с помощью интеграла Кирхгофа и соответствующей функции Грина.

    контрольная работа [56,2 K], добавлен 20.08.2015

  • Явление дифракции частиц. Структурные и магнитные характеристики вещества. Разложение волн по их частотному спектру. Свободное движение частицы. Волновой вектор монохроматической волны. Применение дифракции частиц для изучения физических объектов.

    реферат [109,6 K], добавлен 21.12.2016

  • Теория атомно-молекулярного строения мира. Объекты микромира: электрон, фундаментальные частицы, фермионы, лептоны, адроны, атомом, ядром атома и молекула. Разработка квантовой механики и явлений микромира. Концепции микромира и квантовая механика.

    реферат [35,9 K], добавлен 26.07.2010

  • Основы теории дифракции света. Эксперименты по дифракции света, условия ее возникновения. Особенности дифракции плоских волн. Описание распространения электромагнитных волн с помощью принципа Гюйгенса-Френеля. Дифракция Фраунгофера на отверстии.

    презентация [1,5 M], добавлен 23.08.2013

  • Одномерные и гармонические колебания. Сложение двух гармонических колебаний с одинаковыми амплитудами, частотами. Распространение колебаний в материальной среде. Электромагнитные волны и рентгеновские лучи. Дифракция и интерференция волн. Атомный фактор.

    реферат [2,8 M], добавлен 07.03.2009

  • Обзор особенностей преломления и отражения света на сферических поверхностях. Определение положения главного фокуса преломляющей поверхности. Описания тонких сферических линз. Формула тонкой линзы. Построение изображений предметов с помощью тонкой линзы.

    реферат [514,5 K], добавлен 10.04.2013

  • Анализ теорий РВУ. Построение релятивистского волнового уравнения отличающегося от даффин-кеммеровского для частицы со спином 1, содержащее кратные представления. Расчет сечений рассеяния на кулоновском центре и Комптон-эффекта для векторной частицы.

    дипломная работа [172,2 K], добавлен 17.02.2012

  • Определение начальной энергии частицы фосфора, длины стороны квадратной пластины, заряда пластины и энергии электрического поля конденсатора. Построение зависимости координаты частицы от ее положения, энергии частицы от времени полета в конденсаторе.

    задача [224,6 K], добавлен 10.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.