Основные вопросы физики

Развитие представлений о природе света. Методы наблюдения интерференции света. Расчет формулы и применение дифракционной решетки. Электронная теория дисперсии света. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях.

Рубрика Физика и энергетика
Вид шпаргалка
Язык русский
Дата добавления 11.06.2012
Размер файла 3,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Из всех опытов Резерфорд пришел к следующим представлениям о строении атомов. Внутри атома имеется положительно заряженное ядро, заряд которого +ze, причем в ядре сосредоточен весь положительный заряд атома. С ядром связана и большая часть массы атома. Заряд ядра совпадает с порядковым номером элемента в таблице Менделеева. Т.к. атом нейтрален, то в атоме кроме положительно заряженного ядра есть электроны, причем суммарный заряд электронов равен положительному заряду ядра. Положительно заряженное ядро и электроны, входящие в состав атома, определяют внутриатомное эл. поле, которое в свою очередь характеризует межатомные взаимодействия. Т.к. атом является устойчивой системой, то конфигурация электронов в атоме является устойчивой. Однако никакое устойчивое распределение зарядов не может быть статическим. На основании этого Резерфорд пришел к выводу, что электроны должны вращаться вокруг ядра.

Однако модель Резерфорда явилась не универсальной.

Недостатки: 1) Т.к. атом Резерфорда излучает непрерывно, то спектр излучения атома должен быть сплошным. Опыт показывает, что спектры носят линейчатый хар-р.

2) Согласно законам электродинамики электрон, вращаясь вокруг ядра, обладая нормальным ускорением, должен непрерывно излучать электро-магнитные волны => его энергия и расстояние м/у электроном и ядром должны непрерывно убывать. Т.к. из эксперимента известно, что атом излучает в течении ф=10(с.-8)с, то атом Резерфорда может существовать в течении этого времени, а после электрон упадет на ядро и атом прекратит свое существование. Эти недостатки имели принципиальное значение. Они показали, что движение электронов в атомах подчиняется иным законам, не нашедшим отражения в классической физике.

37. Закономерности в спектре излучения атома водорода

В нормальных условиях атомы не излучают (как и в стационарном состоянии). Чтобы вызвать излучение атомов, надо увеличить их внутренню энергию. Спектры изолированных атомов носят ограниченный характер.

Причем линии в спектре атома, в том числе и атоме водорода, расположены не хаотично, а объединяются в группы, которые называются спектральными сериями. Фор-ла, опред знач-е длины волны в кажд из серии: н=1/л=R(1/n2 - 1/m2). n=n+1, n+2,.. л=1,2,3,… (сериальная ф-ла) R=1,092*10м-1 пост-я Ридберга. В общем случае записывают 1/л=Rz2(1/n2 - 1/m2).

Энергия фотона преш-го с уровня n на m: hv=Em-En=(hz2me4/(4ре0)22h2)(1/n2-1/m2).

Серия Лаймона - н=1/л=R(1/1 - 1/n2), n=2,3,4…,в УФ области.

Серия Бальмера - н=1/л=R(1/22 - 1/n2), n=3,4,5… видимая область и близкая УФ. Серия Пашена - н=1/л=R(1/32 - 1/n2), n=4,5,6…, инфракрасная область. Излучается в видимой и близкой УФ волнах. Все остльные серии лежат в ИК области света.

38. Постулаты Бора. Модель атома Бора

свет дисперсия молекула дифракционный решетка

Первую попытку сформулировать законы, которым подчиняется движение электронов в атоме предпринял Бор на основе представлений о том, что атом является устойчивой системой и что энергия, которую может излучать или поглощать атом, квантовая. 1) Для того, чтобы исключить 1-й недостаток модели Резенфорда, он предположил, что из всего многообразия орбит, которые вытекают из уравнения (1), в природе реализуются не все, а лишь некоторые устойчивые орбиты, которые он назвал стационарными, и, находясь на которых атом не излучает и не поглощает энергии. Стационарным орбитам отвечают устойчивые состояния атома, причем энергии, к-му обладает атом в этих состояниях, образуют дискретный ряд значений: E1, E2, E3…,En. Двигаясь по стационарной орбите электрон приобретает момент импульса, кратный приведенной постоянной кванта

h (в); m (индекс е) * v (инд. е) r = n h (в) (1), h (в) = n/2р, n=1,2,3… Т.е. при переходе с орбиты на орбиту меняется порциями, кратными h (в).

(1) - боровское правило контования или правило отбора стационарных орбит.

2) Для устранения 2-го противоречия модели Резенфорда, Бор предположил, что излучение или поглощение энергии атомом происходит при переходе атома из одного стационарного состояния в другое. При каждом таком переходе излучается квант энергии, равный разности энергий тел стационарных состояний, между которыми происходит квантовый скачок электрона, hн=En - Em (2) (n>m, излучение, n<m, поглощение).

2 постулата: 1) Атом обладает устойчивыми или стационарными состояниями, причем энергия атомов в этом состоянии образует дискретный ряд значений (постулат стационарных значений) E1, E2, E3…En. 2) Всякому излучению или поглощению энергии должен соответствовать переход атома из одного стационарного состояния в другое. При каждом таком переходе испускается монохроматическое излучение, частота которого определяется н=(En - Em)/h(в) (правило частот Бора).

Модель атома Бора.

1913 году. Бор принял новые постулаты квантовой механики, согласно которым на субатомном уровне энергия испускается исключительно порциями, которые получили название «кванты». Бор развил квантовую теорию еще на шаг и применил ее к состоянию электронов на атомных орбитах. Говоря научным языком, он предположил, что угловой момент электрона квантуется. Далее он показал, что в этом случае электрон не может находиться на произвольном удалении от атомного ядра, а может быть лишь на ряде фиксированных орбит, получивших название «разрешенные орбиты». Электроны, находящиеся на таких орбитах, не могут излучать электромагнитные волны произвольной интенсивности и частоты, иначе им, скорее всего, пришлось бы перейти на более низкую, неразрешенную орбиту. Поэтому они и удерживаются на своей более высокой орбите, подобно самолету в аэропорту отправления, когда аэропорт назначения закрыт по причине нелетной погоды. Однако электроны могут переходить на другую разрешенную орбиту. Как и большинство явлений в мире квантовой механики, этот процесс не так просто представить наглядно. Электрон просто исчезает с одной орбиты и материализуется на другой, не пересекая пространства между ними. Этот эффект назвали «квантовым прыжком», или «квантовым скачком». В картине атома по Бору, таким образом, электроны переходят вниз и вверх по орбитам дискретными скачками -- с одной разрешенной орбиты на другую, подобно тому, как мы поднимаемся и спускаемся по ступеням лестницы. Каждый скачок обязательно сопровождается испусканием или поглощением кванта энергии электромагнитного излучения, который мы называем фотоном.

39. Корпускулярно-волновой дуализм свойств вещества

Корпускулярно-волновой дуализм свойств ЭМ излучения. Это означает, что природу света можно рассматривать с двух сторон: с одной стороны это волна, свойства которой проявляются в закономерностях распространения света, интерференции, дифракции, поляризации. С другой стороны свет это поток частиц, обладающие энергией, импульсом. Корпускулярные свойства света проявляются в процессах взаимодействия света с веществом (фотоэффект, эффект Комптона).

Анализируя можно понять, что чем больше длина волны , тем меньше энергия (из Е= hс/), тем меньше импульс, тем труднее обнаруживаются квантовые свойства света.

Чем меньше => больше энергия Е фотона, тем труднее обнаруживаются волновые свойства света.

Взаимосвязь между двойственными корпускулярно-волновыми свойствами света можно объяснить, если использовать статистический подход к рассмотрению закономерностей распределения света.

Например, дифракция света на щели: при прохождении света через щель происходит перераспределение фотонов в пространстве. Так как вероятность попадания фотона в различные точки экрана неодинаковая, то возникает дифракционная картина. Освещенность экрана (количество фотонов на него падающих) пропорциональна вероятности попадания фотона в эту точку. С другой стороны освещенность экрана пропорциональна квадрату амплитуды волны I~E2 . Поэтому квадрат амплитуды световой волны в данной точке пространства является мерой вероятности попадания фотона в эту точку пространства.

40. Уравнение Шредингера для стационарных состояний

Уравнение (217.5) называется уравнением Шредингера для стационарных состояний. В это уравнение в качестве параметра входит полная энергия Е частицы. В теории дифференциальных уравнений доказывается, что подобные уравнения имеют бесчисленное множество решений, из которых посредством наложения граничных условий отбирают решения, имеющие физический смысл. Для уравнения Шредингера такими условиями являются условия регулярности волновых функций: волновые функции должны быть конечными, однозначными и непрерывными вместе со своими первыми производными. Таким образом, реальный физический смысл имеют только такие решения, которые выражаются регулярными функциями Но регулярные решения имеют место не при любых значениях параметра Е, а лишь при определенном их наборе, характерном для данной задачи. Эти значения энергии называются собственными. Решения же, которые соответствуют собственным значениям энергии, называются собственными функциями. Собственные значения Е могут образовывать как непрерывный, так и дискретный ряд. В первом случае говорят о непрерывном, или сплошном, спектре, во втором -- о дискретном спектре.

41. Волны де Бройля и их свойства

Де Бройль утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают также волновыми свойствами. Итак, согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики -- энергия Е и импульс р, а с другой -- волновые характеристики -- частота v и длина волны К. Количественные соотношения, связывающие корпускулярные и волновые свойства частиц, такие же, как для фотонов: E=hv, p=h/. (213.1) Смелость гипотезы де Бройля заключалась именно в том, что соотношение (213.1) постулировалось не только для фотонов, но и для других микрочастиц, в частности для таких, которые обладают массой покоя. Таким образом, любой частице, обладающей импульсом, сопоставляют волновой процесс с длиной волны, определяемой по формуле де Бройля: =h/p. (213.2) Это соотношение справедливо для любой частицы с импульсом р. Вскоре гипотеза де Бройля была подтверждена экспериментально. ( К. Дэвиссон, Л. Джермер) обнаружили, что пучок электронов, рассеивающийся от естественной дифракционной решетки -- кристалла никеля, -- дает отчетливую дифракционную картину. Дифракционные максимумы соответствовали формуле Вульфа -- Брэггов (182.1), а брэгговская длина волны оказалась в точности равной длине волны, вычисленной по формуле (213.2). В дальнейшем формула де Бройля была подтверждена опытами П. С. Тартаковского и Г. Томсона, наблюдавших дифракционную картину при прохождении пучка быстрых электронов (энергия 50 кэВ) через металлическую фольгу (толщиной 1 мкм). Так как дифракционная картина исследовалась для потока электронов, то необходимо было доказать, что волновые свойства присущи не только потоку большой совокупности электронов, но и каждому электрону в отдельности. Это удалось экспериментально подтвердить в 1948 г. советскому физику В. А. Фабриканту (р. 1907). Он показал, что даже в случае столь слабого электронного пучка, когда каждый электрон проходит через прибор независимо от других (промежуток времени между двумя электронами в 104 раз больше времени прохождения электроном прибора), возникающая при длительной экспозиции дифракционная картина не отличается от дифракционных картин, получаемых при короткой экспозиции для потоков электронов, в десятки миллионов раз более интенсивных. Следовательно, волновые свойства частиц не являются свойством их коллектива, а присущи каждой частице в отдельности. Впоследствии дифракционные явления обнаружили также для нейтронов, протонов, атомных и молекулярных пучков. Экспериментальное доказательство наличия волновых свойств микрочастиц привело к выводу о том, что перед нами универсальное явление, общее свойство материи. Но тогда волновые свойства должны быть присущи и макроскопическим телам. Почему же они не обнаружены экспериментально? Например, частице массой 1 г, движущейся со скоростью 1 м/с, соответствует волна де Бройля с =6,62*10-31 м. Такая длина волны лежит за пределами доступной наблюдению области (периодических структур с периодом d10-31 м не существует). Поэтому считается, что макроскопические тела проявляют только одну сторону своих свойств -- корпускулярную -- и не проявляют волновую. Представление о двойственной корпускулярно-волновой природе частиц вещества углубляется еще тем, что на частицы вещества переносится связь между полной энергией частицы г и частотой v волн де Бройля: e=hv. (213.3) Это свидетельствует о том, что соотношение между энергией и частотой в формуле (213.3) имеет характер универсального соотношения, справедливого как для фотонов, так и для любых других микрочастиц. Справедливость же соотношения (213.3) вытекает из согласия с опытом тех теоретических результатов, которые получены с его помощью в квантовой механике, атомной и ядерной физике. Подтвержденная экспериментально гипотеза де Бройля о корпускулярно-волновом дуализме свойств вещества коренным образом изменила представления о свойствах микрообъектов. Всем микрообъектам присущи и корпускулярные, и волновые свойства; в то же время любую из микрочастиц нельзя считать ни частицей, ни волной в классическом понимании. Современная трактовка корпускулярно-волнового дуализма может быть выражена словами советского физика-теоретика В. А. Фока (1898--1974): «Можно сказать, что для атомного объекта существует потенциальная возможность проявлять себя, в зависимости от внешних условий, либо как волна, либо как частица, либо промежуточным образом. Именно в этой потенциальной возможности различных проявлений свойств, присущих микрообъекту, и состоит дуализм волна -- частица. Всякое иное, более буквальное, понимание этого дуализма в виде какой-нибудь модели неправильно».

42. Соотношение неопределенности Гейзенберга

Микрочастица (микрообъект) не может иметь одновременно и определенную координату (х, у, z), и определенную соответствующую проекцию импульса (рх, ру, рz), причем неопределенности этих величин удовлетворяют условиям

т. е. произведение неопределенностей координаты и соответствующей ей проекции импульса не может быть меньше величины порядка h.

Из соотношения неопределенностей (215.1) следует, что, например, если микрочастица находится в состоянии с точным значением координаты (x=0), то в этом состоянии соответствующая проекция ее импульса оказывается совершенно неопределенной (рx), и наоборот. Таким образом, для микрочастицы не существует состояний, в которых ее координаты и импульс имели бы одновременно точные значения. Отсюда вытекает и фактическая невозможность одновременно с любой наперед заданной точностью измерить координату и импульс микрообъекта.

Поясним, что соотношение неопределенностей действительно вытекает из волновых свойств микрочастиц. Пусть поток электронов проходит через узкую щель шириной х, расположенную перпендикулярно направлению их движения (рис.295). Так как электроны обладают волновыми свойствами, то при их прохождении через щель, размер которой сравним с длиной волны де Бройля электрона, наблюдается дифракция. Дифракционная картина, наблюдаемая на экране (Э), характеризуется главным максимумом, расположенным симметрично оси Y, и побочными максимумами по обе стороны от главного (их не рассматриваем, так как основная доля интенсивности приходится на главный максимум).

До прохождения через щель электроны двигались вдоль оси К, поэтому составляющая импульса рx=0, так что рx=0, а координата х частицы является совершенно неопределенной. В момент прохождения электронов через щель их положение в направлении оси X определяется с точностью до ширины

щели, т. е. с точностью x. В этот же момент вследствие дифракции электроны отклоняются от первоначального направления и будут двигаться в пределах угла 2 ( -- угол, соответствующий первому дифракционному минимуму). Следовательно, появляется неопределенность в значении составляющей импульса вдоль оси X, которая, как следует из рис. 295 и формулы (213.1), равна рх=рsin=(h/)sin

43. Волновая функция и её статический смысл

Сравним дифракцию световых волн и микрочастиц. Дифракционная картина, наблюдаемая для световых волн, характеризуется тем, что в результате наложения дифрагирующих волн друг на друга в различных точках пространства происходит усиление или ослабление амплитуды колебаний. Согласно волновым представлениям о природе света, интенсивность дифракционной картины пропорциональна квадрату амплитуды световой волны. По представлениям фотонной теории, интенсивность определяется числом фотонов, попадающих в данную точку дифракционной картины. Следовательно, число фотонов в данной точке дифракционной картины задается квадратом амплитуды световой волны, в то время как для одного фотона квадрат амплитуды определяет вероятность попадания фотона в ту или иную точку.

Дифракционная картина, наблюдаемая для микрочастиц, также характеризуется неодинаковым распределением потоков микрочастиц, рассеянных или отраженных по различным направлениям,-- в одних направлениях наблюдается большее число частиц, чем в других. Наличие максимумов в дифракционной картине с точки зрения волновой теории означает, что эти направления соответствуют наибольшей интенсивности волн де Бройля. С другой стороны, интенсивность волн де Бройля оказывается больше там, где имеется большее число частиц, т. е. интенсивность волн де Бройля в данной точке пространства определяет число частиц, попавших в эту точку. Таким образом, дифракционная картина для микрочастиц является проявлением статистической (вероятностной) закономерности, согласно которой частицы попадают в те места, где интенсивность волн де Бройля наибольшая.

Необходимость вероятностного подхода к описанию микрочастиц является важнейшей отличительной особенностью квантовой теории.

Чтобы устранить эти трудности, немецкий физик М. Борн (1882--1970) в 1926 г. предположил, что по волновому закону меняется не сама вероятность, а величина, названная амплитудой вероятности и обозначаемая ш (х, у, z, t). Эту величину называют также волновой функцией (или ш-функцией).

Амплитуда вероятности может быть комплексной, и вероятность W пропорциональна квадрату ее модуля:

W~| ш (х, y, z, t)|2 (216.1)

(|ш |2= ш ш *) ш * --функция, комплексно сопряженная с ш). Таким образом, описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер: квадрат модуля волновой функции (квадрат модуля амплитуды волн де Бройля) определяет вероятность нахождения частицы в момент времени t в области с координатами х и х+dх, у и y+dy, z и z+dz.

44. Общее уравнение Шредингера нерелятивистской квантовой механики

Статистическое толкование волн де Бройля (см. §216) и соотношение неопределенностей Гейзенберга (см. §215) привели к выводу, что уравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции (х, у, z, t), так как именно она, или, точнее, величина ||2, определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами х и х+dх, у и y+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны. Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

где h=h/(2), m -- масса частицы --оператор Лапласа (=д2/дx2 +д2/дy2+д2/дz2), i -- мнимая единица, U(х, у, z, t)-- потенциальная функция частицы в силовом поле, в котором она движется, (х, у, z, t) -- искомая волновая функция частицы. Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. §225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<<с. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. §216); 2) производные д/дx, д/дy, д/дz, д/дt должны быть непрерывны; 3) функция ||2 должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3). Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154) (x,t)=Acos(t-kx), или в комплексной записи (х,t)=Aеi(t-kx). Следовательно, плоская волна де Бройля имеет вид =Ae-(i/h)(Et-px) (217.2) (учтено, что =E/h, k=p/h). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только||2, то это (см. (217.2)) несущественно. Тогда

45. Прохождение частицы через потенциальный барьер

Рассмотрим потенциальный барьер простейшей прямоугольной формы, а) для одномерного (по оси х) движения частицы. Для потенциального барьера прямоугольной формы высоты

U и ширины l можем записать

При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером (при E>U), либо отразится от него (при Е<U) и будет двигаться в обратную сторону, т. е. она не может проникнуть сквозь барьер. Для микрочастицы же даже при E>U имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E<U имеется также отличная от нуля вероятность, что частица окажется в области х>l, т.е. проникает сквозь барьер. Подобные, казалось бы, парадоксальные выводы следуют непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при условиях данной задачи. Уравнение Шредингера (217.5) для стационарных состояний для каждой из выделенных на рис. 298, а области имеет вид

(для области 2q2=2m (E-U}/h2). Общие решения этих дифференциальных уравнений: (x)=A1eikx+B1e-ikx (221.2) (для области 1); 2(х)=А2еiqx+В2е-iqx (для области 2); 3(x)=A3eikx+B3e-ikx (221.3) (для области 3). В частности, для области 1 полная волновая функция, согласно (217.4), будет иметь вид

В этом выражении первый член представляет собой плоскую волну типа (219.3), распространяющуюся в положительном направлении оси х (соответствует частице, движущейся в сторону барьера), а второй -- волну, распространяющуюся в противоположном направлении, т. е. отраженную от барьера (соответствует частице, движущейся от барьера налево).Решение (221.3) содержит также волны (после умножения на временной множитель), распространяющиеся в обе стороны. Однако в области 3 имеется только волна, прошедшая сквозь барьер и распространяющаяся слева направо. Поэтому коэффициент В3 в формуле (221.3) следует принять равным нулю. В области 2 решение зависит от соотношений E>U или E<U. Физический интерес представляет случай, когда полная энергия частицы меньше высоты потенциального барьера, поскольку при E<U законы классической физики однозначно не разрешают частице проникнуть сквозь барьер. В данном случае, согласно (221.1), q= i -- мнимое число, где =(2m(U-E)/h). Учитывая значение q и В3=0, получим решения уравнения Шредингера для трех областей в следующем виде: 1(x)=A1eikx + B1e-ikx (для области 1), 2(х)=А2е-x+В2ex (221.5) (для области 2), 3(х)=А3eikx (для области 3). В области 2 функция (221.5) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени экспонент не мнимые, а действительные. Можно показать, что для частного случая высокого и широкого барьера, когда l>>1, В20. Качественный вид функций 1(x), 2(х) и 3(x) показан на рис. 298, б. Из рисунка следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т. е. с той же частотой, но с меньшей амплитудой. Следовательно, получили, что частица имеет отличную от нуля вероятность прохождения сквозь потенциальный барьер конечной ширины.

46. Решение уравнения Шредингера для водородоподобных атомов

Решение уравнения Шредингера удобно искать в виде ш(r,и,ц)=R(r)и(и)Ф(ц), т.е. представим волновую функцию в виде произведения 3-х функций, каждая из кот-х зависит только от 1 переменной. R(r)-радиальная функция распределения; и(и) и Ф(ц) - функции углового распределения. В зависимости от значения орбитального квантового числа L=0,1,2,3,… состояние электрона в атоме обозначают s,p,d,f. Для электрона 1s-состоянии(n=1,L=0) функция радиального распределения R(r) имеет вид: Максимум этой функции приходится на r=0,529A, т.е. совпадает с 1-м боровским радиусом. Функция углового распределения для 1s состояния: Для электронов p-состояний функция углового распределения имеет вид в зависимости от значения магнитного квантового числа: Видно, что современным представлениям соответствуют не орбиты, по кот-м движется электрон в атоме, а некоторая совокупность положений электронов в атоме(электронное облако, форма кот-го определяется значением квантовых чисел m, n, L, поэтому вместо термина орбита используют термин орбиталь. Каждой орбитали соответствует своё состояние электрона в вакууме, описанное волновой функцией. Mz=mh p-состояние: L=1;m=0,±1 Видно, что положение вектора М в пространстве квантуется. Он может принимать только определённое положение в пространстве. Энергия электрона в атоме зависит от главного квантового числа n. Однако, при данном значении n, кроме n=1, значение L и m могут быть разными. Это значит, что одному и тому же уровню энергии En(собственное значение энергии) соответствует несколько различных состояний, каждое из которых описано своей волновой функцией. Состояния с одинаковыми энергиями наз-ся вырожденными. Число состояний, обладающих данным значением энергии En наз-ся кратностью вырождения. Кратность вырождения можно сосчитать по формуле: У[L=0, n-1] (2L+1)=2*n(c.2).

47. Квантовые числа, их физический смысл

Квантовые числа - целые или дробные числа, определяющие возможные значения физических величин, характеризующих квантовую систему (молекулу, атом, атомное ядро, элементарную частицу). Квантовые числа отражают дискретность (квантованность) физических величин, характеризующих микросистему. Набор квантовых чисел, исчерпывающе описывающих микросистему, называют полным. Так состояние электрона в атоме водорода определяется четырьмя квантовыми числами: главным квантовым числом n (может принимать значения 1, 2, 3, …), определяющим энергию Еn электрона (Еn = -13.6/n2 эВ); орбитальным квантовым числом l = 0, 1, 2, …, n - 1, определяющим величину L орбитального момента количества движения электрона (L = [l(l + 1)]1/2); магнитным квантовым числом m < ± l , определяющим направление вектора орбитального момента; и квантовым числом ms = ± 1/2, определяющим направление вектора спина электрона.

n - Главное квантовое число: n = 1, 2, … .

j - Квантовое число полного углового момента. j никогда не бывает

отрицательным и может быть целым (включая ноль) или полуцелым в зависимости от свойств рассматриваемой системы. Величина полного углового момента J связана с j соотношением

J2 = 2j(j + 1). = + ,

где и векторы орбитального и спинового угловых моментов.

lКвантовое число орбитального углового момента l может принимать только целые значения: l = 0, 1, 2, … . Величина орбитального углового L момента связана с l соотношением L2 = 2l(l + 1).

m - Магнитное квантовое число. Проекция полного, орбитального или спинового углового момента на выделенную ось (обычно ось z) равна m.

Для полного момента mj = j, j-1, j-2, …, - (j-1), - j. Для орбитального момента ml = l, l-1, l-2, …, -(l-1), -l.

Для спинового момента электрона, протона, нейтрона, кварка ms = ±1/2

s - Квантовое число спинового углового момента s может быть либо целым, либо полуцелым. s - неизменная характеристика частицы, определяемая ее свойствами. Величина спинового момента S связана с s соотношением S2 = 2s(s + 1).

P -Пространственная четность. Она равна либо +1, либо -1 и характеризует поведение системы при зеркальном отражении. P = (-1)l.

48. Спин электрон. Спиновое квантовое число

Спин электрона (и всех других микрочастиц) -- квантовая величина, у нее нет классического аналога; это внутреннее неотъемлемое свойство электрона, подобное его заряду и массе. Если электрону приписывается собственный механический момент импульса (спин) ls, то ему соответствует собственный магнитный момент pms. Согласно общим выводам квантовой механики, спин квантуется по закону Ls=h(s(s+1)), где s -- спиновое квантовое число. По аналогии с орбитальным моментом импульса, проекция Lsz спина квантуется так, что вектор Ls может принимать 2s+1 ориентации. Так как в опытах Штерна и Герлаха наблюдались только две ориентации, то 2s+1=2, откуда s=1/2. Проекция спина на направление внешнего магнитного поля, являясь квантованной величиной, определяется выражением, аналогичным (223.6): Lsz=hms, где ms -- магнитное спиновое квантовое число; оно может иметь только два значения: ms= ±1/2. Таким образом, опытные данные привели к необходимости характеризовать электроны (и микрочастицы вообще) добавочной внутренней степенью свободы. Поэтому для полного описания состояния электрона в атоме необходимо наряду с главным, орбитальным и магнитным квантовыми числами задавать еще магнитное спиновое квантовое число.

49. Пространственное распределение электрона в атоме водорода

Рассмотрим систему, состоящую из неподвижного ядра зарядом +z и 1-го электрона, находящегося около ядра (атом водорода или водородоподобная система). Потенциальная функция U(r)=-ze(c. 2)/4ре0r(c.2). Стационарное уравнение Шредингера для этого случая имеет вид ш+ (2m/h(c.2))*(E+(1/4ре0 )*(ze(c.2)/r(c.2))*ш=0. Для решения этого уравнения удобно перейти к сферическим координатам: ш(x,y,z)=ш(r,и,ц). Расчёты показывают, что это уравнение Шредингера имеет решение при любом E>0(электрон вне атома). И при E<0, удовлетворяющие условию: En=-(1/4ре0)*(mz(c.2)e(c.4)/2h(c.2))*(1/n(с.2)). Решение уравнения Шредингера удобно искать в виде ш(r,и,ц)=R(r)и(и)Ф(ц), т.е. представим волновую функцию в виде произведения 3-х функций, каждая из кот-х зависит только от 1 переменной. R(r)-радиальная функция распределения; и(и) и Ф(ц) - функции углового распределения. В зависимости от значения орбитального квантового числа L=0,1,2,3,… состояние электрона в атоме обозначают s,p,d,f. Для электрона 1s-состоянии(n=1,L=0) функция радиального распределения R(r) имеет вид: Максимум этой функции приходится на r=0,529A, т.е. совпадает с 1-м боровским радиусом. Функция углового распределения для 1s состояния: Для электронов p-состояний функция углового распределения имеет вид в зависимости от значения магнитного квантового числа: Видно, что современным представлениям соответствуют не орбиты, по кот-м движется электрон в атоме, а некоторая совокупность положений электронов в атоме(электронное облако, форма кот-го определяется значением квантовых чисел m, n, L, поэтому вместо термина орбита используют термин орбиталь. Каждой орбитали соответствует своё состояние электрона в вакууме, описанное волновой функцией. Mz=mh p-состояние: L=1;m=0,±1

Видно, что положение вектора М в пространстве квантуется. Он может принимать только определённое положение в пространстве. Энергия электрона в атоме зависит от главного квантового числа n. Однако, при данном значении n, кроме n=1, значение L и m могут быть разными. Это значит, что одному и тому же уровню энергии En(собственное значение энергии) соответствует несколько различных состояний, каждое из которых описано своей волновой функцией. Состояния с одинаковыми энергиями наз-ся вырожденными. Число состояний, обладающих данным значением энергии En наз-ся кратностью вырождения. Кратность вырождения можно сосчитать по формуле: У[L=0, n-1] (2L+1)=2*n(c.2).

50. Принцип Паули. Распределение электронов в атоме по состояниям

Если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Отсюда следует, что два одинаковых фермиона, входящих в одну систему, не могут находиться в одинаковых состояниях, так как для фермионов волновая функция должна быть антисимметричной. Обобщая опытные данные, В. Паули сформулировал принцип, согласно которому системы фермионов встречаются в природе только в состояниях, описываемых антисимметричными волновыми функциями (квантово-механическая формулировка принципа Паули). Из этого положения вытекает более простая формулировка принципа Паули, которая и была введена им в квантовую теорию (1925) еще до построения квантовой механики: в системе одинаковых фермионов любые два из них не могут одновременно находиться в одном и том же состоянии. Отметим, что число однотипных бозонов, находящихся в одном и том же состоянии, не лимитируется. Напомним, что состояние электрона в атоме однозначно определяется набором четырех квантовых чисел: главного n (n=1, 2, 3, ...), орбитального l (l=0, 1, 2, ..., n-1), магнитного ml (ml= -l, ..., -1, 0, + 1, ..., +l), магнитного спинового ms (ms=+1/2, -1/2). Распределение электронов в атоме подчиняется принципу Паули, который может быть использован в его простейшей формулировке: в одном и том же атоме не может быть более одного электрона с одинаковым набором четырех квантовых чисел n, l, ml и ms, т. е. Z (n, l, ml, ms)=0 или 1, где Z (n, l, ml, ms) -- число электронов, находящихся в квантовом состоянии, описываемом набором четырех квантовых чисел: n, l, ml, ms. Таким образом, принцип Паули утверждает, что два электрона, связанные в одном и том же атоме, различаются значениями по крайней мере одного квантового числа. Согласно формуле (223.8), данному n соответствует n2 различных состояний, отличающихся значениями l и ml. Квантовое число ms может принимать лишь два значения (±1/2). Поэтому максимальное число электронов, находящихся в состояниях, определяемых данным главным квантовым числом, равно

Совокупность электронов в многоэлектронном атоме, имеющих одно и то же главное квантовое число n, называют электронной оболочкой. В каждой из оболочек электроны распределяются по подоболочкам, соответствующим данному l. Поскольку орбитальное квантовое число принимает значения от 0 до n-1, число подоболочек равно порядковому номеру n оболочки. Количество электронов в подоболочке определяется магнитным и магнитным спиновым квантовыми числами: максимальное число электронов в подоболочке с данным l равно 2(2l+1).

51. Спонтанное и вынужденное излучение фотонов

Атом, находясь в возбужденном состоянии 2, может через некоторый промежуток времени спонтанно, без каких-либо внешних воздействий, перейти в состояние с низшей энергией (в нашем случае в основное), отдавая избыточную энергию в виде электромагнитного излучения (испуская фотон с энергией h=E2-E1). Процесс испускания фотона возбужденным атомом (возбужденной микросистемой) без каких-либо внешних воздействий называется спонтанным (или самопроизвольным) излучением (рис. 309, б). Чем больше вероятность спонтанных переходов, тем меньше среднее время жизни атома в возбужденном состоянии. Так как спонтанные переходы взаимно не связаны, то спонтанное излучение некогерентно. В 1916 г. А. Эйнштейн для объяснения наблюдавшегося на опыте термодинамического равновесия между веществом и испускаемым и поглощаемым им излучением постулировал, что помимо поглощения и спонтанного излучения должен существовать третий, качественно иной тип взаимодействия. Если на атом, находящийся в возбужденном состоянии 2, действует внешнее излучение с частотой, удовлетворяющей условию h=E2-E1, то возникает вынужденный (индуцированный) переход в основное состояние 1 с излучением фотона той же энергии h=E2-Е1 (рис. 309, в). При подобном переходе происходит излучение атомом фотона дополнительно к тому фотону, под действием которого произошел переход. Возникающее в результате таких переходов излучение называется вынужденным (индуцированным) излучением. Таким образом, в процесс вынужденного излучения вовлечены два фотона: первичный фотон, вызывающий испускание излучения возбужденным атомом, и вторичный фотон, испущенный атомом. Существенно, что вторичные фотоны неотличимы от первичных, являясь точной их копией.

52. Периодическая система Менделеева

Периодическую систему элементов Д. И. Менделеева (1869) -- фундаментального закона природы, являющегося основой современной химии, атомной и ядерной физики, можно объяснить по принципу Паули. Д. И. Менделеев ввел понятие порядкового номера Z химического элемента, равного числу протонов в ядре и соответственно общему числу электронов в электронной оболочке атома. Расположив химические элементы по мере возрастания порядковых номеров, он получил периодичность в изменении химических свойств элементов. Однако для известных в то время 64 химических элементов некоторые клетки таблицы оказались незаполненными, так как соответствующие им элементы (например, Ga, Se, Ge) тогда еще не были известны. Д. И. Менделеев, таким образом, не только правильно расположил известные элементы, но и предсказал существование новых, еще не открытых, элементов и их основные свойства. Кроме того, Д. И. Менделееву удалось уточнить атомные веса некоторых элементов. Например, атомные веса Be и U, вычисленные на основе таблицы Менделеева, оказались правильными, а полученные ранее экспериментально -- ошибочными. Так как химические и некоторые физические свойства элементов объясняются внешними (валентными) электронами в атомах, то периодичность свойств химических элементов должна быть связана с определенной периодичностью в расположении электронов в атомах. Поэтому для объяснения таблицы будем считать, что каждый последующий элемент образован из предыдущего прибавлением к ядру одного протона и соответственно прибавлением одного электрона в электронной оболочке атома. Взаимодействием электронов пренебрегаем, внося, где это необходимо, соответствующие поправки. Рассмотрим атомы химических элементов, находящиеся в основном состоянии. Единственный электрон атома водорода находится в состоянии 1s, характеризуемом квантовыми числами n=1, l=0, ml=0 и ms=±1/2 (ориентация его спина произвольна). Оба электрона атома Не находятся в состоянии 1s, но с антипараллельной ориентацией спина. Электронная конфигурация для атома Не записывается как 1s2 (два 1s-электрона). На атоме Не заканчивается заполнение K-оболочки, что соответствует завершению I периода. Третий электрон атома Li (Z=3), согласно принципу Паули, уже не может разместиться в целиком заполненной K-оболочке и занимает наинизшее энергетическое состояние с n=2 (L-оболочка), т. е. 2s-состояние. Электронная конфигурация для атома Li: 1s22s. Атомом Li начинается II период Периодической системы элементов. Четвертым электроном Be (Z=4) заканчивается заполнение подоболочки 2s. У следующих шести элементов от В (Z=5) до Ne (Z=10) идет заполнение подоболочки 2р (табл. 7). II период Периодической системы заканчивается неоном -- инертным газом, для которого под-оболочка 2р полностью заполнена. Таким образом, открытая Менделеевым периодичность в химических свойствах элементов объясняется повторяемостью в структуре внешних оболочек у атомов родственных элементов. Так, инертные газы имеют одинаковые внешние оболочки из 8 электронов (заполненные s- и р-состояния); во внешней оболочке щелочных металлов (Li, Na, К, Rb, Cs, Fr) имеется лишь один s-электрон; во внешней оболочке щелочноземельных металлов (Be, Mg, Ca, Sr, Ba, Ra) имеется два s-электрона; галоиды (F, Cl, Br, I, At) имеют внешние оболочки, в которых недостает одного электрона до оболочки инертного газа, и т. д.

53. Рентгеновские спектры. Природа сплошного и характеристического рентгеновских спектров

Большую роль в выяснении строения атома, а именно распределения электронов по оболочкам, сыграло излучение, открытое в 1895 г. немецким физиком В. Рентгеном (1845--1923) и названное рентгеновским. Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, в которой сильно ускоренные электрическим полем электроны бомбардируют анод (металлическая мишень из тяжелых металлов, например W или Pt), испытывая на нем резкое торможение. При этом возникает рентгеновское излучение, представляющее собой электромагнитные волны с длиной волны примерно 10-12--10-8 м. Волновая природа рентгеновского излучения доказана опытами по его дифракции, рассмотренными в § 182.

При достаточно большой энергии бомбардирующих анод электронов на фоне сплошного спектра появляются отдельные резкие линии -- линейчатый спектр, определяемый материалом анода и называемый потому характеристическим рентгеновским спектром (излучением). По сравнению с оптическими спектрами характеристические рентгеновские спектры элементов совершенно однотипны и состоят из нескольких серий, обозначаемых К, L, М, N и О. Каждая серия, в свою очередь, содержит небольшой набор отдельных линий, обозначаемых в порядке убывания длины волны индексами , , , ... (K, К, K,..., , , ,...). При переходе от легких элементов к тяжелым структура характеристического спектра не изменяется, лишь весь спектр смещается в сторону коротких волн. Особенность этих спектров заключается в том, что атомы каждого химического элемента, независимо от того, находятся ли они в свободном состоянии или входят в химическое соединение, обладают определенным, присущим только данному элементу линейчатым спектром характеристического излучения. Так, если анод состоит из нескольких элементов, то и характеристическое рентгеновское излучение представляет собой наложение спектров этих элементов. Рассмотрение структуры и особенностей характеристических рентгеновских спектров приводит к выводу, что их возникновение связано с процессами, происходящими во внутренних, застроенных электронных оболочках атомов, которые имеют сходное строение. Исследование спектрального состава рентгеновского излучения показывает, что его спектр имеет сложную структуру (рис. 306) и зависит как от энергии электронов, так и от материала анода. Спектр представляет собой наложение сплошного спектра, ограниченного со стороны коротких длин волн некоторой границей min, называемой границей сплошного спектра, и линейчатого спектра -- совокупности отдельных линий, появляющихся на фоне сплошного спектра.

54. Реакция деления ядер

К началу 40-х годов работами многих ученых было доказано, что при облучении урана нейтронами образуются элементы из середины периодической системы -- лантан и барий. Этот результат положил начало ядерным реакциям совершенно нового типа -- реакциям деления ядра, заключающимся в том, что тяжелое ядро под действием нейтронов, а как впоследствии оказалось, и других частиц делится на несколько более легких ядер (осколков), чаще всего на два ядра, близких по массе. Замечательной особенностью деления ядер является то, что оно сопровождается испусканием двух-трех вторичных нейтронов, называемых нейтронами деления. Так как для средних ядер число нейтронов примерно равно числу протонов (N/Z1) 1), а для тяжелых ядер число нейтронов значительно превышает число протонов (NIZ1,6), то образовавшиеся осколки деления перегружены нейтронами, в результате чего они и выделяют нейтроны деления. Однако испускание нейтронов деления не устраняет полностью перегрузку ядер-осколков нейтронами. Это приводит к тому, что осколки оказываются радиоактивными. Они могут претерпеть ряд --превращений, сопровождаемых испусканием -квантов. Так как --распад сопровождается превращением нейтрона в протон, то после цепочки --превращений соотношение между нейтронами и протонами в осколке достигнет величины, соответствующей стабильному изотопу.

55. Физическая природа химической связи в молекулах. Понятие об энергетических уровнях

Наиболее часто в молекулах встречается два типа связи: ионная и ковалентная.

Ионная связь (например, в молекулах NaCl, KBr) осуществляется электростатическим взаимодействием атомов при переходе электрона одного атома к другому, т. е. при образовании положительного и отрицательного ионов. Ковалентная связь (например, в молекулах Н2, С2, СО) осуществляется при обобществлении валентных электронов двумя соседними атомами (спины валентных электронов должны быть антипараллельны). Ковалентная связь объясняется на основе принципа неразличимости тождественных частиц (см. § 226), например электронов в молекуле водорода. Неразличимость частиц приводит к специфическому взаимодействию между ними, называемому обменным взаимодействием. Это чисто квантовый эффект, не имеющий классического объяснения, но его можно себе представить так, что электрон каждого из атомов молекулы водорода проводит некоторое время у ядра другого атома и, следовательно, осуществляется связь обоих атомов, образующих молекулу. При сближении двух водородных атомов до расстояний порядка боровского радиуса возникает их взаимное притяжение и образуется устойчивая молекула водорода. Молекула является квантовой системой; она описывается уравнением Шредингера, учитывающим движение электронов в молекуле Eэл, колебания атомов молекулы Eкол, вращение молекулы Eвращ. Решение этого уравнения -- очень сложная задача, которая обычно разбивается на две: для электронов и ядер. Энергия изолированной молекулы ЕEэл+Eкол + Eвращ Каждая из входящих в выражение (230.1) энергий квантуется (ей соответствует набор дискретных уровней энергии) и определяется квантовыми числами. При переходе из одного энергетического состояния в другое поглощается или испускается энергия E =h. При таких переходах одновременно изменяются энергии движения электронов, энергии колебаний и вращения. Из теории и эксперимента следует, что расстояние между вращательными уровнями энергии Eвращ гораздо меньше расстояния между колебательными уровнями Екол, которое, в свою очередь, меньше расстояния между электронными уровнями Eэл.

56. Колебательные и вращательные спектры молекул

Строение молекул и свойства их энергетических уровней проявляются в молекулярных спектрах -- спектрах излучения (поглощения), возникающих при квантовых переходах между уровнями энергии молекул. Спектр излучения молекулы определяется структурой ее энергетических уровней и соответствующими правилами отбора (так, например, изменение квантовых чисел, соответствующих как колебательному, так и вращательному движению, должно быть равно ±1). Итак, при разных типах переходов между уровнями возникают различные типы молекулярных спектров. Частоты спектральных линий, испускаемых молекулами, могут соответствовать переходам с одного электронного уровня на другой (электронные спектры) или с одного колебательного (вращательного) уровня на другой (колебательные (вращательные) спектры). Кроме того, возможны и переходы с одними значениями Eкол и Eвращ на уровни, имеющие другие значения всех трех компонентов, в результате чего возникают электронно-колебательные и колебательно-вращательные спектры. Поэтому спектр молекул довольно сложный. Колебательными и вращательными спектрами обладают только многоатомные молекулы, а двухатомные их не имеют. Это объясняется тем, что двухатомные молекулы не имеют дипольных моментов (при колебательных и вращательных переходах отсутствует изменение дипольного момента, что является необходимым условием отличия от нуля вероятности перехода).

57. Принцип работы квантового генератора

Лазер обязательно имеет три основных компонента: 1) активную среду, в которой создаются состояния с инверсией населенностей; 2) систему накачки (устройство для создания инверсии в активной среде); 3) оптический резонатор (устройство, выделяющее в пространство избирательное направление пучка фотонов и формирующее выходящий световой пучок).

58. Твердотельные и газоразрядные лазеры. Их применение

Одна из особенностей газов состоит в многообразии различных физических процессов, приводящих к образованию инверсии населенностей. Такими процессами являются неупругие соударения атомов разного "сорта", диссоциации молекул при соударении их в электрическом разряде, возбуждение атомов электронным ударом, светом и т.д.Чаще всего инверсия населенностей создается в процессе электрического разряда. Эти лазеры называются газоразрядными. В них инверсия населенностей уровней создается за счет возбуждения атомов или молекул газа при их соударении со свободными быстрыми электронами, образующимися в электрическом разряде.Давление в газоразрядных лазерах выбирается в пределах от сотых долей до нескольких мм рт.ст. При меньших давлениях электроны, ускоренные электрическим полем, очень редко сталкиваются с атомами. При этом ионизация и возбуждение атомов происходят недостаточно интенсивно.При больших давлениях эти столкновения становятся, наоборот, слишком частыми. Из-за этого электроны не успевают достаточно ускориться в электрическом поле и приобрести энергию, необходимую для ионизации и возбуждения атомов, т.е. столкновения становятся мало эффективными. Различают три типа газоразрядных лазеров: лазеры на нейтральных атомах, ионные лазеры и молекулярные лазеры. Они отличаются друг от друга как механизмом образования инверсии населенностей, так и диапазонами генерируемых волн л. Различие в диапазонах обусловлено различиями в энергетическом спектре нейтральных атомов, ионов и молекул. Наряду с достоинствами газ как рабочая среда для лазера обладает и недостатком: плотность газа значительно ниже плотности твердых тел, и поэтому в единице объема газа нельзя получить такое большое количество возбужденных атомов, излучающих свет, как в твердом теле. В результате этого даже большие размеры газовых лазеров пока не дают возможности получить те высокие импульсные мощности, которые дают лазеры на твердом теле. Твердотельный лазер -- лазер, в котором в качестве активной среды используется вещество, находящееся в твёрдом сотоянии (в отличие от газов в газовых лазерах и жидкостей в лазерах на красителях). Существует большое количество твердотельных лазеров, как импульсных, так и непрерывных. Наибольшее распространение среди импульсных получили лазер на рубине и неодимовом стекле (стекле с примесью Nd). Неодимовый лазер работает на длине волны l = 1,06 мкм. Лазер на рубине, наряду с лазером на неодимовом стекле, являются наиболее мощными импульсными лазерами. Полная энергия импульса генерации достигает сотен дж при длительности импульса 10-3 сек. Оказалось также возможным реализовать режим генерации импульсов с большой частотой повторения (до нескольких кгц). Примером твердотельных лазеров непрерывного действия являются лазеры на флюорите кальция CaF2 с примесью диспрозия Dy и Л. на иттриево-алюминиевом гранате Y3Al5O12 с примесями различных редкоземельных атомов. Большинство таких лазеров работает в области длин волн l от 1 до 3 мкм. Если не принимать специальных мер, то спектр генерации твердотельных Л. сравнительно широк, т.к. обычно реализуется многомодовой режим генерации. Твердотельные лазеры на люминесцирующих твёрдых средах (диэлектрические кристаллы и стёкла). В качестве активаторов обычно используются ионы редкоземельных элементов или ионы группы железа Fe. Накачка оптическая и от полупроводниковых лазеров, осуществляется по трёх- или четырехуровневой схеме. Современные твердотельные лазеры способны работать в импульсном, непрерывным и квазинепрерывном режимах. Применение лазеров для обработки, резания и микросварки твердых материалов оказывается экономически более выгодным (например, пробивание калиброванных отверстий в алмазе лазерным лучом сократило время с 24 ч до 6--8 мин). Лазеры применяются для скоростного и точного обнаружения дефектов в изделиях, для тончайших операций (например, луч CO2-лазера в качестве бескровного хирургического ножа), для исследования механизма химических реакций и влияния на их ход, для получения сверхчистых веществ. Широко применяется лазерное разделение изотопов, например такого важного в энергетическом отношении элемента, как уран. Получение и исследование высокотемпературной плазмы. Эта область их применения связана с развитием нового направления -- лазерного управляемого термоядерного синтеза. Лазеры широко применяются в измерительной технике. Лазерные интерферометры (в них источником света служит лазер) используются для сверхточных дистанционных измерений линейных перемещений, коэффициентов преломления среды, давления, температуры.. Сила лазера «прощупала» поверхность Луны и помогла советским ученым скорректировать ее карту. Интересное применение лазеры нашли в голографии (см. § 184). Для создания систем голографической памяти с высокой степенью считывания и большой емкостью необходимы газовые лазеры видимого диапазона еще более высокой монохроматичности и направленности излучения. Применения лазеров в настоящее время столь обширны, что даже их перечисление в объеме настоящего курса просто невозможно.


Подобные документы

  • Волновые и квантовые аспекты теории света. Теоретические вопросы интерференции и дифракции. Оценка технических возможностей спектральных приборов, дифракционной решетки. Методика определения длины волны света по спектру от дифракционной решетки.

    методичка [211,1 K], добавлен 30.04.2014

  • Понятие дисперсии света. Нормальная и аномальная дисперсии. Классическая теория дисперсии. Зависимость фазовой скорости световых волн от их частоты. Разложение белого света дифракционной решеткой. Различия в дифракционном и призматическом спектрах.

    презентация [4,4 M], добавлен 02.03.2016

  • Взаимодействие света с веществом. Основные различия в дифракционном и призматическом спектрах. Квантовые свойства излучения. Поглощение и рассеяние света. Законы внешнего фотоэффекта и особенности его применения. Электронная теория дисперсии света.

    курсовая работа [537,4 K], добавлен 25.01.2012

  • Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.

    презентация [9,4 M], добавлен 25.07.2015

  • Значение света для жизни на Земле. Теории о развитии света. Характеристика волновых свойств света. Применение интерференции и дифракции света, представления о его природе. Фотонная молекула как новая форма материи, устройство среды ее существования.

    презентация [327,1 K], добавлен 07.05.2015

  • Объяснение явления интерференции. Развитие волновой теории света. Исследования Френеля по интерференции и дифракции света. Перераспределение световой энергии в пространстве. Интерференционный опыт Юнга с двумя щелями. Длина световой волны.

    реферат [31,1 K], добавлен 09.10.2006

  • Основные достижения в области физики Томаса Юнга: разработка принципа суперпозиции и поперечности световых волн, объяснение явления дифракции, введение модуля упругости. Физическое сущность, причины появления и условия наблюдения интерференции света.

    презентация [1,1 M], добавлен 13.11.2010

  • Теоретические основы оптико-электронных приборов. Химическое действие света. Фотоэлектрический, магнитооптический, электрооптический эффекты света и их применение. Эффект Комптона. Эффект Рамана. Давление света. Химические действия света и его природа.

    реферат [1,0 M], добавлен 02.11.2008

  • Исследование корпускулярной и волновой теорий света. Изучение условий максимумов и минимумов интерференционной картины. Сложение двух монохроматических волн. Длина световой волны и цвет воспринимаемого глазом света. Локализация интерференционных полос.

    реферат [928,6 K], добавлен 20.05.2015

  • Свойства света, его физическая природа и взаимодействие с веществом. Получение изображений точечных источников света и протяженных предметов. Закон отражения, нахождение изображений при отражении света от различных типов зеркал. Закон преломление света.

    реферат [59,4 K], добавлен 26.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.