Логический анализ рассуждений естественного языка

Высказывание и предложение. Логическая структура высказываний, способы образования сложных форм, операции над ними. Логическое следование. Анализ рассуждений естественного языка. Непосредственные умозаключения традиционной логики. Модальность суждений.

Рубрика Философия
Вид курсовая работа
Язык русский
Дата добавления 08.02.2011
Размер файла 517,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

50

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

КУРСОВАЯ РАБОТА

на тему «Логический анализ рассуждений естественного языка»

Введение

Под высказыванием (суждением) понимают форму мысли, которая выражает соответствие или несоответствие ее действительности. Так, еще великий античный философ Платон утверждал, что «тот, кто говорит о вещах в соответствии с тем, каковы они есть, говорит истину, тот же, кто говорит о них иначе - лжет».

В традиционной логике, которая ограничивалась изучением связи между вещами и их свойствами, общепринятым считался термин «суждение», в современной же логике предпочитают говорить скорее о высказываниях. Однако эти термины рассматриваются как синонимы, и поэтому в дальнейшем мы будем употреблять их как равнозначные.

Высказывания входят в качестве составной части в любое умозаключение либо как посылка, либо как результат рассуждения. Между посылками и заключением любого рассуждения существует определенная логическая связь. В дедуктивных умозаключениях, которые мы будем рассматривать в этой и последующих главах, эта связь имеет характер логического следования или вывода, в правдоподобных - характер вероятностного отношения, когда посылка лишь с той или иной степенью правдоподобия подтверждает заключение.

Современная дедуктивная логика начинает изучение высказываний, отвлекаясь от их внутренней структуры, и рассматривает их либо как истинные, либо как ложные. Как мы убедимся далее, именно такой подход служит основой для построения исчисления высказываний и позволяет обращаться с рассуждениями, как с вычислениями. В дальнейшем этот подход, ограниченный и слишком абстрактный, может быть преодолен путем снятия подобных ограничений. Именно в этих целях строится логика предикатов, в которой рассматривается логическая связь между предметами и характеризующими их предикатами. Однако в отличие от традиционной логики под предикатами сейчас подразумеваются не только свойства, но и различные отношения между предметами.

Хотя в высказываниях в качестве терминов включаются и понятия, но они в познании играют совсем иную роль. Как мы убедились ранее, понятия отделяют одни классы предметов от других по их отличительным признакам. В языке они выражаются одним именем, представляющим собой либо отдельное слово, либо сочетание слов. Высказывания же формулируются с помощью предложений.

1. Высказывание и предложение

Любая мысль становится доступной для понимания других людей только тогда, когда она выражается в языке, в устной или письменной речи. Формой выражения высказываний являются предложения, но не всякое предложение выражает высказывание. Если я спрашиваю: «Какая сегодня погода?», то этим не утверждаю и не отрицаю какой-либо мысли о действительности. Точно так же, когда прошу закрыть дверь, я тоже не высказываю какого-либо суждения. Отсюда становится ясным, что формой выражения суждений в языке являются повествовательные предложения.

Очевидно, что утверждения о свойствах и отношениях по своей логической структуре различны, но грамматически они выражаются повествовательными предложениями. Например, предложение «Эта осень - сухая», выражает мысль о свойстве настоящей осени, а предложение «3 больше 2.» - устанавливает отношение между указанными натуральными числами.

Сама по себе мысль, пока она не выражена в языке, остается для нас неизвестной. Именно поэтому вместо суждения нередко пользуются более нейтральным термином «высказывание», который подчеркивает, что речь идет именно о мысли, сформулированной, высказанной, которая переводится предложением в сферу языка. В связи с этим возникает вопрос, следует ли понимать под высказыванием мысль вместе с предложением, как средством языкового выражения мысли.

Такое различие непосредственно вытекает из того, что суждение мы определяем как мысль, относящуюся к действительности, которая утверждает или отрицает наличие свойств у предметов или отношения между самими предметами. Если предметам в действительности присуще такое свойство или отношение, то суждение будет истинным, в противном случае - ложным. Поскольку суждение выражается предложением, постольку иногда говорят об истинности и ложности предложений, хотя это и неверно.

2. Логическая структура высказываний

высказывание логический операция предложение

Различие между высказываниями и предложениями проявляется в их структуре. Грамматическая структура повествовательных предложений состоит из подлежащего, сказуемого и второстепенных членов предложения. В логике суждения также расчленяют на субъект, играющий роль логического подлежащего, и предикат - логическое сказуемое. Если субъект обозначает предмет мысли, то предикат характеризует свойства, присущие предмету, или же отношения между предметами. Введение отношений на первый план выдвигает предикат, ибо в этом случае нельзя выделить индивидуальный субъект, к которому бы относилось данное отношение. Например, когда мы говорим, что «Эльбрус выше Монблана.» или «5 больше 3.», то отношение «выше» относится к обеим горным вершинам, а отношение «больше» - к двум числам. Напротив, в суждениях «Эльбрус - горная вершина.» или «5 - нечетное число.» их предикаты относятся к одному определенному субъекту. Часто поэтому при сравнении суждений и предложений под первыми подразумевают атрибутивные суждения традиционной логики. Атрибутивными (лат. atributum - предназначенное, наделенное, присовокупленное) они называются потому, что выражают принадлежность или непринадлежность свойства предмету. Так, в суждении «железо - металл» свойства металла признаются неотъемлемыми признаками железа, а в суждении «2 - четное число» - свойство четности для числа 2. Такие свойства называются атрибутивными именно потому, что они признаются атрибутами рассматриваемых предметов, т.е. необходимо присущими или неприсущими им.

Большинство суждений, с которыми мы встречаемся в науке и особенно в повседневной жизни, являются атрибутивными. В аристотелевской логике именно такие суждения только и анализировались. Их логическая структура может быть выражена схемой:

S есть Р,

где S обозначает субъект, т.е. предмет мысли, а Р - предикат, который обозначает свойство, которое присуще предмету мысли; термин «есть (или «суть») - логическую связь между субъектом и предикатом, т.е. принадлежность свойства предмету.

Если такая связь отсутствует, то суждение будет отрицательным и выражается схемой:

S не есть Р или S есть не-Р.

В реляционных (лат. relatio - отнесение) суждениях, суждениях об отношениях, которые стали изучаться в середине прошлого века, речь идет об отношениях между различными предметами. Так, в суждении «Тверь находится между Санкт-Петербургом и Москвой» характеризуется отношение в пространстве, которое существует между указанными городами; в суждении «Эльбрус выше Монблана» - отношение по высоте между горными вершинами; в суждении «Михаил - брат Георгия» - отношение родства между братьями. Чаще всего суждения об отношениях встречаются в математике; с их исследования и началась разработка логики отношений.

В современной логике свойства и отношения обозначаются общим термином «предикат» (лат. praedicatum - сказуемое), в котором различают число мест. Так, свойство называют одноместным предикатом, а отношение «больше, чем» или «выше, чем», «старше, чем» и т.д. - двухместным (бинарным) отношением. Более подробно речь об отношениях пойдет в следующей главе, здесь же мы продолжим рассмотрение суждений традиционной логики по качеству и количеству.

Термин «качество» употребляется в логике исключительно для характеристики принадлежности или непринадлежности свойств предмету.

По качеству суждения могут быть утвердительными или отрицательными. Как показывает само их название, утвердительными называются суждения, в которых говорится («утверждается») о принадлежности свойства предмету или присущности предиката субъекту, т.е. S есть Р. Например, «все металлы - проводники электричества», «логика - наука», «некоторые грибы ядовиты».

Отрицательными называются суждения, в которых отрицается наличие свойства у предмета (неприсущность предиката субъекту), т.е. S не-есть Р или S есть не-Р. Например, «ничто человеческое мне не чуждо», «кит - не рыба», «астрология - не наука». Формально отрицательные суждения могут быть преобразованы в утвердительные, в которых перед предикатом стоит отрицание:

S есть не-Р.

По количеству суждения делятся на общие, частные и единичные. Поскольку в суждении выражается наличие или отсутствие свойства (отношения) у предметов, мы можем выделить среди них такие, в которых интересующее нас свойство (отношение) принадлежат всем, нескольким и даже единичному предмету. Очевидно, что отношение требует наличия по меньшей мере двух предметов, тогда как принадлежность свойства предполагает существование всего одного предмета. Характеристика суждений по количеству описывает область их применения, т.е. их значение (денотат). Эта область может состоять из всех предметов класса, или некоторых, или даже одного предмета. Так, суждение «все металлы электропроводны» будет называться общим, суждение «некоторые рыбы - летающие» - частным, суждение «Москва - столица России» - единичным. Поскольку общие и частные суждения могут быть утвердительными и отрицательными, их можно классифицировать на четыре группы:

1) общеутвердительные, представляемые схемой: «все S есть Р». В них свойство или предикат относится к каждому предмету, входящему в класс;

2) общеотрицательные представляются схемой: «ни одно S не есть Р»;

3) частноутвердительные: «некоторые S есть Р»;

4) частноотрицательные: «некоторые S не есть Р».

Такая классификация пригодится нам при изучении силлогизмов в следующей главе.

Изучение логической структуры суждений позволяет выделить их логическую форму. В этих целях мы абстрагируемся, отвлекаемся от конкретного содержания и смысла предложений, с помощью которых они выражены в языке, и сосредоточиваем внимание только на том, как логически связаны элементы суждения друг с другом. Именно так подошел к анализу суждений основатель классической логики Аристотель, который использовал для обозначения логических терминов некоторые символы. Однако его формализация естественного языка была неполной и ограниченной. Для того чтобы выявить логическую форму высказывания или рассуждения, выраженного на естественном языке, необходимо отвлечься от дескриптивных (описательных) терминов языка и представить их как переменные - наподобие переменных величин математики. В результате мы получим скелет высказывания или рассуждения, в котором сохраняются лишь логические термины и отношения между ними.

Таким образом, для выявления логической формы необходимо располагать формализованным языком, т.е. построить символический, искусственный язык, который нередко отождествляют с исчислением.

Формализованный логический язык строится не столько для сокращения записей и удобства общения, сколько для обоснования правильности рассуждений, которые осуществляются на естественном языке. Еще в прошлом веке известный немецкий логик и математик Готлоб Фреге обращал внимание на то, что искусственные языки, в частности в математике и логике, строятся в ущерб легкости и краткости общения, в чем вы убедитесь после знакомства с символическими языками логики.

Знакомство с такими языками мы начнем с логики высказываний. Это простейший язык, в котором совершенно отвлекаются от внутренней логической структуры высказывания и рассматривают его как нечто целое: каждое высказывание характеризуется только с точки зрения его истинностного значения, т.е. как истинное или ложное. Сами высказывания мы будем обозначать переменными х, у, z,, х1, у1, z1. Каждая переменная может принимать только два значения: «истину» и «ложь», которые можно обозначить как 1 и 0. Элементарные (атомарные) высказывания могут объединяться в сложные (молекулярные) высказывания с помощью логических операторов, которые называют также связками, коннекторами или константами. Как мы увидим в дальнейшем, они приблизительно соответствуют некоторым грамматическим союзам. Зная истинностное значение элементарных высказываний и правил оперирования логическими связками, можно легко определить истинностное значение сложных высказываний, которые будут выступать как определенные логические функции. Подобно тому как в математике путем задания аргументов вычисляют значение математической функции, в логике высказываний определяют значение логической функции, образованной из элементарных (атомарных) высказываний. Аналогия с терминологией, заимствованной из химии, наглядно показывает, как сам процесс образования молекулярных высказываний из атомарных, так и в особенности тот факт, что высказывание, являющееся элементарным, считается далее неразложимым на части.

Нетрудно понять, что такое представление о высказывании крайне упрощает дело и является абстракцией, но оно дает возможность лучше понять структуру рассуждений на простейшем уровне. В дальнейшем можно вносить уточнения, дополнения в эту структуру, чтобы выразить реальную внутреннюю связь между элементами высказываний. Как мы покажем в гл. 5, именно для этого строится логика предикатов, где в рассуждениях учитывается внутренняя структура высказываний. Указанный способ анализа дает возможность понять, как происходит переход от простых логических систем к сложным, посредством увеличения истинностных значений и введения дополнительных логических операций. Это относится прежде всего к числу истинностных значений высказываний. Наряду с привычными двумя значениями истинности (истина и ложь) классической логики в современной неклассической логике рассматривают несколько значений истинности, например «истинно», «ложно» и «неопределенно». В вероятностной (индуктивной) логике оперируют даже бесконечным количеством значений истинности, поскольку вероятность имеет непрерывную шкалу значений в интервале 0 <X<1.

Кроме того, высказывания можно анализировать не по их истинностному значению, а оценивать с точки зрения обоснованности содержащегося в нем знания или отношения к нему познающего субъекта посредством модальных категорий. О них мы подробнее скажем в конце этой главы. Классическая двузначная логика является простейшей логической системой, в которой легче всего понять, как образуются сложные высказывания из простых и как определяются сами логические операции над ними.

3. Способы образования сложных высказываний

Сложные суждения образуются из простых двумя основными способами:

1) путем квантификации высказываний;

2) объединением простых или элементарных высказываний с помощью логических связок или операторов.

Чтобы определить понятие пропозициональной функции, рассмотрим следующие примеры:

х - простое число;

у - металл;

z - студент.

По форме эти выражения напоминают высказывания, но они не определяют никакого конкретного высказывания, ибо содержат переменные, значение которых остается неизвестным. Здесь напрашивается аналогия с алгебраическими функциями или формулами, которые могут выражать конкретные арифметические зависимости. Так, например, линейная функция у = ax + в получает вполне определенное значение, если вместо постоянных и переменных подставляются конкретные числа.

Точно так же пропозициональные функции логики превращаются в конкретные высказывания, если вместо логических переменных подставляются определенные имена. Так, в первом примере, если вместо х подставить число 3, то получится истинное высказывание «3 - простое число». Если же вместо х подставляется число 4, то получится ложное высказывание «4 - простое число». Соответственно этому во втором примере, если вместо у подставить «железо», то получится истинное высказывание «железо-металл». Если вместо у подставляется «фосфор», то получится ложное высказывание «фосфор - металл».

Наконец, в третьем примере, если вместо переменной подставить фамилию студента Иванова, то получится истинное высказывание «Иванов - студент». Итак, одни значения переменных удовлетворяют пропозициональным функциям, другие нет, т.е. в первом случае они превращают их в истинные, во втором - в ложные, но в обоих случаях делают их определенными, конкретными высказываниями.

Здесь просматривается явная аналогия между логическими, пропозициональными и математическими функциями. Но аналогия не означает тождества, так как в пропозициональной функции вместо переменных можно подставлять имена не только чисел, но и любых нематематичесих объектов, как показывают второй и третий примеры. С этой точки зрения пропозициональная функция является более глубокой абстракцией, чем математическая функция, хотя и аналогична ей.

Чтобы превратить пропозициональные функции в подлинные высказывания, можно, во-первых, придать переменным конкретные значения, как это было показано выше; во-вторых, можно пойти по линии квантификации высказываний. Для пояснения обратимся к примеру. Выражение x + y = y + x можно превратить в конкретное высказывание, если вместо переменных х и у взять определенные числа. Но можно получить высказывание общего характера, если мы свяжем переменные кванторами, которые показывают, что рассматриваемое тождество выполняется для всех чисел. Поэтому мы можем записать его в следующей форме:

(х) (у) (х + у = у + х),

где (х) и (у) обозначают кванторы общности, которые часто называют также универсальными кванторами. Эта формула выражает истинное общее высказывание, известное как коммутативный (переместительный) закон для сложения, который обычно словесно передают так: сумма не меняется от перестановки слагаемых.

С помощью высказываний с универсальным квантором формулируются общие законы науки, в частности математические законы, теоремы и их следствия. Обратите внимание, что термин «универсальный» относится только к общим высказываниям определенной предметной области, например, математики, физики, экономики и других наук. Очевидно, что даже в математике не все высказывания имеют универсальный характер. Например, формула х + у = 5 удовлетворяется только при определенных числовых значениях переменных, а именно только тогда, когда х = 1 и у = 4, или х = 2 и у = 3, или х = 3 и у = 2, или

х = 4 и у = 1. Поэтому нельзя утверждать, что данное равенство выполняется для всех чисел. Можно лишь сказать, что существуют числа, которые удовлетворяют равенству х + у = 5. Вместо слов «существуют числа х и у» можно ввести квантор существования. Тогда указанное равенство можно представить в такой символической форме:

(Ех) (Еу) (х + у = 5),

где (Ех) и (Еу) - кванторы существования.

В традиционной логике эти высказывания называют частными суждениями. Такие суждения оцениваются как истинные или ложные.

Таким образом, один из способов образования высказываний состоит в том, что сначала мы составляем пропозициональную функцию, где фигурируют соответствующие переменные, а затем связываем их кванторами общности и существования. Благодаря этому получаются общие и частные высказывания.

Принципиально другой путь образования сложных (составных) высказываний состоит в объединении двух или нескольких простых высказываний с помощью логических операторов или связок, которые выражаются терминами «и», «или», «если, то» и др. Этот способ напоминает грамматический прием образования сложных предложений путем использования сочинительных и подчинительных союзов. Так, в предложении «Заря сияла на востоке, и золотые ряды облаков, казалось, ожидали солнце», тоже употребляется союз «и», связывающий два простых предложения.

Однако логические связки отличаются от грамматических союзов тем, что они объединяют суждения не по их смыслу, а только по значению их истинности. В отличие от этого грамматические союзы соединяют предложения по их смыслу, придавая сложному предложению определенный целостный, единый смысл.

4. Основные логические операции над высказываниями

Прежде чем перейти к определению логических операций и связок, посредством которых образуются сложные высказывания из простых, необходимо руководствоваться следующими допущениями.

1. Любое высказывание в классической логике имеет одно и только одно из двух значений истинности - «истину» или «ложь». С этой точки зрения истинностное значение будущих событий остается неопределенным.

2. Значение истинности сложного высказывания зависит исключительно от истинностных значений входящих в него простых высказываний. Поэтому истинностное значение сложного высказывания представляет собой функцию истинности от образующих его простых высказываний.

3. При образовании сложных высказываний учитывается лишь истинностное значение входящих в него простых высказываний, а не их смысл.

Определение логических операций

Простейшей из логических операций является отрицание, с помощью которого из данного высказывания образуется противоречащее ему высказывание. В обычном языке операция выражается словами «неверно, что» или просто «не», в символическом - знаком отрицания, поставленным перед высказыванием. Если дано высказывание х, то его отрицание будет - x. В обычной речи отрицание чаще всего стоит перед глаголом и именной частью сказуемого. Например, отрицанием высказывания «2 есть четное число» будет высказывание «Неверно, что 2 есть четное число», которое ложно. Отрицая его, получим высказывание «Неверно, что 2 не есть четное число», которое равнозначно высказыванию «2 есть четное число». Это означает, что двойное отрицание приводит к первоначальному высказыванию. Обратите внимание, что высказывание, полученное путем отрицания первоначального, является противоречащим ему, т.е. оно отрицает нечто, но не утверждает что-то. Так, когда мы говорим, что «этот лист бумаги не белый», то не утверждаем, что он зеленый, синий или фиолетовый.

Для определения отрицания используется матрица (таблица) истинности, в которой в левой колонке даются два значения истинности («истина» и «ложь») первоначального высказывания, а в правой колонке - его отрицания (табл. 1). Истинность высказывания будет обозначаться буквой «и» или числом 1, ложь - буквой «л» и числом 0.

Если высказывание истинно, то противоречащее ему высказывание будет ложно, и, наоборот, если высказывание ложно, то противоречащее высказывание будет истинно.

Конъюнкция (логическое произведение) двух или нескольких простых высказываний образуется путем их объединения логической связкой «и». Например, если обозначить одно из простых высказываний буквой х, а другое - у, тогда их конъюнкцией будет сложное высказывание «х и у» или «х у», где знаком обозначен конъюнктивный оператор (логическая связка). Простые высказывания, входящие в сложное, называются конъюнктивными членами.

Конъюнкция будет считаться истинной, если и только если все ее конъюнктивные члены будут истинными. Наличие хотя бы одного ложного члена превращает всю конъюнкцию в ложное высказывание. Исходя из этого нетрудно построить таблицу истинности для конъюнкции (табл. 2).

Дизъюнкция (логическая сумма) двух или нескольких простых высказываний образуется путем объединения их логической связкой «или». Союз «или» в языке чаще всего употребляется в исключающем смысле, когда происходит выбор между двумя альтернативами: либо одно, либо другое. Реже используется этот союз в неисключающем смысле, т.е. выражается словом «а также». В логике и математике связка «или» употребляется преимущественно в неисключающем смысле. Так, например, дизъюнкция «2 меньше 3 или 3 меньше 5» понимается в неисключающем смысле, так как не только 2, но и 3 меньше 5.

Неисключающая дизъюнкция считается ложной в том и только в том случае, когда все ее дизъюнктивные члены будут ложными. Поэтому достаточно одного истинного члена, чтобы дизъюнкция была истинной. Исключающая дизъюнкция истинна тогда, когда только один из ее членов является истинным, а другой - ложным. Она будет ложной, если оба ее члена одновременно истинны либо ложны. Оператор дизъюнкции обозначается символом - для неисключающей дизъюнкции и символом - для исключающей дизъюнкции.

Учитывая принятые соглашения, мы можем построить таблицы истинности (табл. 3) для неисключающей (слева) и исключающей (справа) дизъюнкции.

Операция импликации состоит в образовании сложного высказывания из двух простых высказываний посредством логической связки, обозначаемой словами «если…, то…» и приблизительно соответствующей условному предложению в естественном языке. В логике эту связку называют импликацией, и мы будем обозначать ее стрелкой.

Условное высказывание состоит из двух простых высказываний. То из них, которое вводится словом «если», называется антецедентом (предыдущим высказыванием), а также основанием, а начинающееся словом «то» - консеквентом (последующим высказыванием) или следствием условного высказывания.

В науке и повседневном мышлении условные высказывания употребляются для установления связи между высказываниями, которые могут иметь различную форму. С помощью понятий антецедента и консеквента определяются необходимые и достаточные условия. Так, антецедент есть достаточное условие (основание) для консеквента (следствия). Например, в высказывании «Если треугольник имеет равные стороны, то и все его углы будут равны» условие равенства сторон служит достаточным условием (основанием) для следствия - равенства его углов. Одновременно с этим можно сказать, что следствие является необходимым условием для основания, так как «Равенство углов треугольника есть необходимое условие для равенства его сторон».

В обычной речи часто не проводят различия между основанием и следствием, как логическим отношением, и причиной и следствием, как отношением реального мира. Убедиться в наличии причинной связи можно лишь путем конкретного исследования явлений окружающего нас мира. Если одно явление вызывает или порождает другое явление, то первое из них мы называем причиной, а второе - следствием. Так, нагревание стержня - причина - вызывает его удлинение - следствие. Эту зависимость мы устанавливаем эмпирически - путем наблюдения и измерения. Логическое отношение между основанием и следствием не нуждается в эмпирическом исследовании, так как устанавливается с помощью чисто логических рассуждений. В нашем примере равенство углов равностороннего треугольника выводится как геометрическая теорема.

Условные высказывания употребляются для выражения самых разнообразных отношений между высказываниями, но не во всех случаях при этом учитывается их содержание и смысл. В современной логике обращается внимание исключительно на связь между высказываниями по значению их истинности, потому что задача логики состоит в том, чтобы гарантировать истинность заключения из истинных посылок, а для этого необходимо перенести истинность с посылок на заключение. В связи с этим в логической импликации абстрагируются (отвлекаются) от содержания и смысла и обращают внимание только на связь высказываний по значению их истинности. В результате можно рассматривать импликации, которые выглядят бессмысленными и парадоксальными с точки зрения обычного, здравого смысла. Например, «Если 2 х 2 = 5, то Москва - большой город» считается не только допустимой, но и истинной импликацией.

Например, импликация «Если 2 х 2 = 4, то Москва - небольшой город» является ложной, так как ее антецедент - истинное высказывание, а консеквент - ложное.

Распределение значений истинности высказываний для импликации представлено табл. 4, где стрелка обозначает импликацию.

Резкое расхождение между употреблением условных высказываний в естественной речи и современной логике породило немало споров и дискуссий, в которых логиков обвиняли в том, что они не учитывают смысловой связи между высказываниями, и поэтому приходят к бессмыслице. Но как уже подчеркивалось выше, логики рассматривают условное высказывание только как импликации, т.е. с точки зрения значений истинности антецедента и консеквента. Импликация является операцией формализованного языка, а не конкретным условным высказыванием, которое может пониматься по-разному в различных контекстах (причинная связь, отношение между достаточными и необходимыми условиями, связь основания и следствия и т.п.). Когда не учитывается различие между формализованным и естественным языком, между импликативным и условным высказываниями, тогда неизбежно возникают п а р а д о к с ы импликации, наиболее известные из которых связаны с отождествлением импликации с логическим следованием. Или другими словами, что ложный антецедент имплицирует любой - истинный или ложный - консеквент, начали интерпретировать как утверждение, что из ложного высказывания следует любое высказывание. Но эти утверждения не согласуются с нашими интуитивными представлениями, и поэтому выступают как парадоксы так называемой материальной импликации. В последние десятилетия были предприняты усилия по преодолению этих парадоксов и поиску таких логических понятий, которые более адекватно отразили бы смысловую связь в условных высказываниях. Весь вопрос, однако, состоит в том, как выявить такую связь в общем виде, независимо от конкретного содержания антецедента и консеквента. Во всяком случае импликации, претендующие на отображение смысла, будут заведомо более узкими, чем понятие материальной импликации.

Операция эквивалентности объединяет два высказывания, имеющие одинаковые значения истинности. Следовательно, будут эквивалентными, с одной стороны, истинные высказывания, а с другой - высказывания ложные. В противном случае высказывания считаются не эквивалентными. Исходя из этого легко построить таблицу истинности для эквивалентности, символом которой служит стрелка с противоположными концами (табл. 5).

Эквивалентность можно выразить на естественном языке словами «если и только если», и в таком виде она часто встречается в формулировке научных определений.

Кроме табличного определения логические операции (за исключением отрицания) можно определить через другие, с обязательным использованием отрицания. Действительно, применив табличный метод (табл. 6), можно убедиться, что выражения (х>у) и y > ¬x) будут эквивалентными, т.е. (х>у) - (¬у>¬x).

Каждая строка первой импликации и второй конверсной (обратной), полученной перестановкой отрицаний консеквента и антецедента первой, совпадают друг с другом. Следовательно указанные импликации будут эквивалентны.

С помощью таблиц истинности можно проверить, что и остальные логические операции можно определить через Другие две, причем второй операцией всегда будет отрицание. Например, дизъюнкцию можно выразить через конъюнкцию: у) - x ¬y).

Способ установления истинности сложных высказываний, образованных из простых с помощью таблицы, был предложен американским логиком Ч.С. Пирсом и оказался весьма удобным. Как мы видели, этот способ основывается на комбинации значений истинности простых высказываний и последующего определения истинности сложных высказываний, образованных с помощью операций отрицания, конъюнкции, дизъюнкции и импликации. Например, когда имеется два высказывания, то число различных комбинаций из их значений истинности будет равно 4, при трех - 8, при четырех - 16, а следовательно, при заданном числе п оно равно 2?. Отсюда нетрудно заметить, что определение истинности сложного высказывания сводится в сущности к вычислению ее на основе значений истинности простых высказываний. Это впечатление усилится, если мы обозначим истину как 1, а ложь как 0 и будем их комбинировать, чтобы образовать отрицание, конъюнкцию, дизъюнкцию и т.д. В качестве иллюстрации вычислим значение истинности следующего выражения: (х y) >(x z).

При некотором навыке процесс вычисления можно ускорить, обратив главное внимание на основную операцию, которая связывает две части формулы. В приведенном примере (табл. 7) достаточно заметить, что ложная импликация возникает при истинном антецеденте и ложном консеквенте. Отсюда легко определить возможные значения х и у в дизъюнкции у), а также значения х и z в конъюнкции z). Такой сокращенный способ вычисления истинности сложного высказывания основывается на установлении главной логической операции в рассматриваемой формуле.

Законы логики высказываний

Такие законы представляют собой тождественно истинные высказывания, т.е. высказывания, остающиеся истинными при любых значениях входящих в них простых высказываний. В справедливости этого утверждения можно убедиться опять-таки с помощью таблиц истинности. В принципе все тождественно истинные высказывания являются законами логики (или исчисления высказываний). Мы перечислим только основные из них.

* Закон тождества: если х, то х, т.е. х > х.

* Закон упрощения: если х и у, то х, т.е. х у >х. То же самое относится к другому конъюнктивному члену:

x y > y

* Закон эквивалентности: если из х следует у, а из у следует х, тогда высказывания эквивалентны, т.е.

x - y.

* Закон гипотетического силлогизма: если из х следует у, а из у следует z, то из х следует z, т.е.

((x > y) (y > z)) > (x > z)

* Закон двойного отрицания: если из х следует не-х, то отрицание последнего приводит к первоначальному высказыванию:

¬ (¬x) - x

* Законы О. де Моргана дают возможность переходить от конъюнкции к дизъюнкции и, наоборот, от дизъюнкции к конъюнкции. Они служат удобным средством для преобразования высказываний:

а) отрицание конъюнкции высказываний эквивалентно дизъюнкции из отрицаний конъюнктивных членов:

(x y) - (¬x ¬y)

б) отрицание дизъюнкции эквивалентно конъюнкции отрицаемых членов дизъюнкции:

¬ (x y) - (¬x ¬y)

* Закон «поглощения»: конъюнкция или дизъюнкция одинаковых высказываний эквивалентна самому высказыванию, т.е. повторяющийся член «поглощается»:

(x x) > x и (x x) > x.

* Коммутативные законы для конъюнкции и дизъюнкции разрешают перестановку их членов:

(x y) - (x y) и (x y) - (y x).

* Ассоциативные законы для конъюнкции и дизъюнкции позволяют по-разному сочетать члены, т.е. по-иному расставлять скобки:

x (y z) - (x y) z или x (y z) - (x y) z.

* Закон контрапозиции разрешает прямую импликацию заменять обратной, в результате чего антецедент первой заменяется отрицанием консеквента второй, а ее консеквент - отрицанием антецедента. Проще говоря, при контрапозиции происходит перестановка членов импликации или их контрапозиция, но они берутся с отрицаниями:

(x > y) - (¬y > ¬x)

* Закон противоречия: два противоречащих друг другу высказывания, т.е. высказывание х и его отрицание не-х, не могут быть вместе истинными:

(x ¬x)

Поскольку этот закон запрещает противоречия в рассуждении, то его часто называют также законом непротиворечия, и последнее более правильно.

* Закон наслюненного третьего: из двух противоречащих друг другу высказываний только одно является истинным. Тогда второе будет ложным и никакой третьей возможности не существует

x ¬x

Все эти законы можно непосредственно проверить с помощью таблиц истинности, но их желательно запомнить, чтобы каждый раз не обращаться к построению таблиц. Можно было бы привести и другие законы, которые иногда применяются в рассуждениях, но они играют значительно меньшую роль. В принципе таких законов может быть бесчисленное множество. Все они должны содержать только переменные и логические постоянные и быть истинными в любой области (универсуме) рассуждения. При этом предполагается, что данная область непустая. В логике высказываний к постоянным относят логические коннекторы (связки), с помощью которых образуются сложные высказывания, а переменными являются простые высказывания.

Все перечисленные выше законы служат основой для правильных рассуждений, ибо опираясь на них, никогда нельзя получить ложного заключения из истинных посылок. Поэтому любое последовательное, непротиворечивое и правильное мышление всегда осуществляется в соответствии с законами логики, сознаем мы это или нет. В то же время среди перечисленных законов необходимо выделить самые основные, которые обычно называются законами логики. Все законы исчисления высказываний, как в этом можно убедиться с помощью таблиц истинности, являются тождественно истинными (общезначимыми формулами). Какие бы истинностные значения не придавались входящим в них высказываниям, в конечном счете формула оказывается всегда истинной. Вот почему эти законы явно или неявно применяются в любом рассуждении, ибо именно с их помощью становится возможным преобразовать и упрощать имеющуюся информацию и приходить к определенным заключениям. Поясним это на примере закона контрапозиции. Если нам известно, что «треугольник х равнобедренный», то отсюда следует высказывание у, утверждающее, что «углы при его основании равны». Но если эти углы не равны, то по закону контрапозиции можно заключить, что «треугольник не является равнобедренным», т.е. (х > у) > (¬y > ¬x). Таким образом, этот вывод мы получаем чисто логически, не прибегая, например, к доказательству методом от противного.

Отсюда непосредственно видно, что законы логики высказываний, во-первых, облегчают наши рассуждения, во-вторых, значительно упрощают их, в-третьих, делают их более точными и удобозримыми, ибо с символами и формулами обращаться легче, чем с менее определенными и неточными словесными формулировками.

Поскольку законы исчисления высказываний являются такими же общезначимыми по своему характеру, как и основные законы логики, то в принципе они ничем не отличаются от них. Если мы продолжаем отличать их от основных законов логики, то это скорее дань традиции, хотя для характеристики разных систем такое различие продолжает сохранять свое значение. Так, конструктивную логику мы отличаем от классической по отсутствию в ней закона исключенного третьего.

5. Логическое следование

Основная задача логики состоит в том, чтобы исследовать, какие следствия вытекают из данных утверждений, например, какие теоремы в математике следуют из принятой системы аксиом. Интуитивно мы можем выводить заключения, не обращаясь к логической символике и технике и даже ясно не сознавая те логические правила, которыми неявно пользуемся. Однако в более трудных случаях интуитивных возможностей оказывается недостаточно, в особенности когда приходится проверять рассуждения и анализировать ошибки. Даже в простейших случаях можно допустить ошибку, как показывает следующий пример.

«Если не будет дождя (¬Д), то он придет на встречу (В)». Пошел дождь, значит он не придет на встречу (¬В). Переведем эту словесную формулировку на логический язык исчисления высказываний и тогда получим формулу:

((¬Д > В) Д)) > ¬В (1)

Чтобы проверить правильность заключения, построим для него таблицу истинности (табл. 8).

Хотя заключение словесного рассуждения кажется на первый взгляд верным, но оно логически не следует из посылок, в чем можно убедиться, если сравнить значение истинности посылок формулы (1) со значением истинности заключения. Если бы заключение логически следовало из посылок, тогда при одновременной истинности посылок (¬Д > В) в первой строке табл. 8 и Д заключение ¬В в последнем столбце этой же строки должно быть истинным, а оно ложно. Но фундаментальный принцип логики постулирует, что из истинных посылок нельзя вывести ложного заключения. Это и показывает, что рассматриваемое заключение не следует из посылок. Ведь не исключается возможность, что несмотря на дождь, человек может прийти на встречу.

Отсюда становится ясным, что установить логическое следование одного высказывания или формулы из другого можно с помощью построения таблицы истинности всех входящих в формулы простых (элементарных) высказываний, которые называют атомарными (или просто атомами). В противоположность этому сложные (составные) высказывания, построенные с помощью логических связок, рассматривают как молекулярные. Если будет установлено, что при одновременной истинности посылок заключение окажется также истинным, то это дает основание сказать, что данная формула или высказывание логически следует из другой или других, т.е. заключение следует из посылок. В противном случае, как мы видели в предыдущем примере, заключение логически не следует из посылок.

Теперь дадим общее определение логическому следованию в исчислении высказываний. Обозначим через заглавные буквы латинского алфавита молекулярные высказывания А и В, состоящие из атомарных (элементарных) высказываний х1, х2, x3,, xn. Тогда говорят, что «В следует из А или является следствием А», когда в таблицах истинности для А и В формула В имеет значение «истина» во всех тех строках, где А имеет значение «истина». Символически следование обозначается знаком» | =», например А | = В.

Если из А логически следует В, а из В следует А, т.е. А | = В и В | =А, то в этом случае высказывания А и В будут логически эквивалентными.

Обратимся теперь к другому случаю и определим, например, следует ли формула х у из формулы (х > у) (x ¬y). Для этого снова построим таблицу их истинности (табл. 9).

Однако в этой таблице ни в одной строке высказывания х > у и х ¬у не являются одновременно истинными, а потому их конъюнкция будет ложной. Но импликация из ложного высказывания считается истинной. Можно сказать поэтому, что из рассматриваемой формулы следует не только дизъюнкция х у, но и любая другая формула. Такой парадоксальный результат объяснить нетрудно. Дело в том, что формула (х > у) (х ¬у) представляет собой логическое противоречие, в чем можно убедиться, если выразить ее вторую часть через импликацию, т.е. (х ¬у) - ¬(x > y). Отсюда непосредственно видно, что второй член конъюнкции является отрицанием первого члена: (х > у) ¬(х > ¬у).

Такого рода высказывания, в котором одно из них что-то утверждает, а другое одновременно отрицает это, называются контрадикторными (противоречащими). Согласно известному нам закону непротиворечия подобные высказывания недопустимы в рассуждении, ибо из логически противоречивого утверждения следует любое высказывание: истинное или ложное.

Часто противоречивые высказывания называют также несовместными, потому что из несовместных высказываний логически следует противоречие.

Несовместность (противоречивость) высказываний, которая иногда встречается в рассуждениях, приводит к тому, что в нем оказываются допустимыми как истинные, так и ложные заключения. Именно этим обстоятельством широко пользовались античные софисты, стремившиеся обеспечить себе победу в споре любой ценой, в том числе и путем нарушения законов логики. Очевидно, что для этого они маскировали свои утверждения, ибо в противном случае оппоненты и слушатели всегда могли изобличить их в явных противоречиях. Однако никто не застрахован от противоречий и ошибок, но следует различать ошибки преднамеренные (сознательные) и ошибки не преднамеренные (неосознаваемые). Если первые, которые часто называют софизмами, следует разоблачать, то вторые, именуемые паралогизмами, необходимо исправлять. Но в обоих случаях логика служит надежным инструментом для анализа и раскрытия ошибок, и в особенности определения правильности логического следования заключения из его посылок.

В первом примере ошибочное заключение было связано с недостаточной точностью его словесной формулировки, во втором примере - противоречие было замаскировано другой формой символической записи второй части формулы. Ясно, что если бы противоречие было записано в виде: (х > у) и ¬(x > у), то сразу стало бы видно, что здесь перед нами противоречие, из которого, как теперь мы знаем, следует любое заключение: истинное, ложное и даже абсурдное. Нельзя, однако, считать, что противоречия раскрываются так легко. Как будет показано в гл. 6, противоречия зависят от ряда условий, выполнение которых обязательно для того, чтобы характеризовать их как противоречия, в частности чтобы высказывания, из которых одно отрицает другое, характеризовали предмет мысли в одно и то же время и в одном и том же отношении. С течением времени наши знания изменяются, и поэтому высказывания, которые характеризовали явления, также могут измениться и перестать противоречить друг другу.

Легко заметить, что все рассмотренные выше контрадикторные (противоречащие) высказывания могут быть представлены с помощью общей формулы (А ¬А), где члены конъюнкции А и ¬А являются выражениями метаязыка, т.е. языка, на котором мы говорим об объектном (предметном) языке. Метаязык служит для представления высказываний, которые выражаются с помощью переменных х1, х2, х3,…, xn. В дальнейшем формулы метаязыка будут применяться всякий раз, когда нам придется говорить о предметном языке, чтобы не загромождать изложение и не выписывать формулы этого языка.

Итак, любые сколь угодно сложные высказывания, которые могут быть представлены в форме конъюнкции утверждения и его отрицания, т.е. как А ¬А, представляют именно противоречие. Поэтому при любой комбинации входящих в них высказываний по истинностному их значению («истина» или «ложь») будут приводить к ложному заключению. Другими словами, функция-высказывание, образованное из элементарных высказываний, всегда будет иметь своим значением «ложь». Поскольку из ложного утверждения можно получить как истину, так и ложь, постольку основной закон логики - закон непротиворечия - запрещает использовать противоречивые высказывания или формулы в рассуждении. Этот запрет выражается в требовании непротиворечивости рассуждения, которую часто называют также требованием совместимости (связности) рассуждения.

Если формула (А ¬А) является всегда ложным высказыванием, то ее отрицание, выражающее требование непротиворечивости, напротив, будет всегда истинным высказыванием, общезначимой формулой, или тавтологией, как стали называть такие высказывания вслед за Л. Витгенштейном. Следует, однако, не смешивать языковые тавтологии с логическими. Если в языке тавтология означает повторение той же фразы или предложения текста, то в логике она является тождественно истинным высказыванием. Не следует также путать тождественно истинные высказывания с законом тождества, который выражается формулой А > А, хотя последняя также выражает тавтологию.

Отсюда становится ясным, что тавтологии (тождественно истинные высказывания) можно использовать для представления всех законов логики или любых общезначимых ее формул. Действительно, закон непротиворечия, запрещающий противоречия в рассуждении, можно выразить формулой ¬(A ¬A), которая представляет собой тавтологию, в чем можно убедиться, построив для нее соответствующую таблицу истинности (табл. 10). То же самое можно сказать о законе исключенного третьего - (A ¬A) (табл. 11).

Если из противоречия следует все, что угодно, т.е. «истина» или «ложь», то и тавтология следует из любого истинного или ложного высказывания. В самом деле, если в каждой строке таблицы заключение всегда будет истинным, то по правилу импликации оно может быть получено как из истинных, так и из ложных посылок. Напротив, никогда ложное следствие (противоречие) не может быть получено из истинных посылок.

Промежуточное положение между всегда истинными высказываниями (тавтологиями), с одной стороны, и всегда ложными (противоречивыми) высказываниями, с другой, занимают фактуальные утверждения. Их заключения могут быть как истинными, так и ложными, в зависимости от тех фактов, на которые опираются их посылки. В то время как истинность тавтологий или ложность противоречий может быть установлена чисто логическим анализом этих высказываний, значение истинности фактуальных высказываний требует обращения к действительным фактам. Другими словами, чтобы установить истинность или ложность фактуальных высказываний, необходимо исследовать реальные связи и отношения действительности, которые отображаются в соответствующих высказываниях, служащих посылками фактуальных заключений. На этом основании фактуальные высказывания часто называют также эмпирическими в противоположность аналитическим высказываниям логики и чистой математики. Но это противопоставление имеет относительный характер, ибо и в научных, и в повседневных рассуждениях аналитические высказывания логики применяются вместе с эмпирическими утверждениями, поскольку именно из эмпирических законов мы выводим логические заключения.


Подобные документы

  • Логика как раздел философии и наука о мышлении. Высказывание как форма мышления, понятие, структура и виды сложных высказываний. Логические значения сложных высказываний. Предложения, являющиеся сложными высказываниями, их логическая характеристика.

    контрольная работа [42,6 K], добавлен 18.02.2013

  • История возникновения первых учений о формах и способах рассуждений. Аристотель как основоположник формальной логики. Классификация форм мышления. Сущность и структура понятия. Особенности истинного и ложного высказывания, основные виды умозаключения.

    презентация [215,3 K], добавлен 24.11.2013

  • Непосредственные умозаключения из простых и сложных суждений. Простой и сложный категорический силлогизм. Несиллогистические дедуктивные опосредованные умозаключения (из суждений об отношениях). Условное и разделительное умозаключение из сложных суждений.

    реферат [191,1 K], добавлен 20.01.2015

  • Исследование внутренней структуры элементарных суждений. Логический квадрат. Непосредственные умозаключения. Категорический силлогизм. Сущности полисиллогизмов, энтимем. Характеристика логики общения и спора. Отличительные черты соритов и эпихейрем.

    реферат [118,0 K], добавлен 13.08.2010

  • Предмет логики, ее принципы, значение и виды. Модальность суждений, понятие и виды модальности. Выражение модальных характеристик суждений парными категориями. Логическая характеристика суждения. Алетическая, эпистемическая и деонтическая модальность.

    реферат [13,5 K], добавлен 08.12.2010

  • Операции логического обобщения. Примеры атрибутивных суждений, их логическая структура и изображение отношений между ними в виде кругов Эйлера. Неправильные категорические силлогизмы. Условно-категорические, разделительно-категорические умозаключения.

    контрольная работа [32,8 K], добавлен 05.12.2011

  • Логическая характеристика понятий. Отношения между понятиями. Состав и виды простых суждений. Определение истинности по логическому квадрату. Умозаключения из суждений с отношениями. Методы установления причинных связей; доказательство и опровержение.

    контрольная работа [134,8 K], добавлен 30.10.2015

  • Ощущение, восприятие и представление как формы чувственного познания. Особенности и законы абстрактного мышления, взаимосвязь его форм: понятия, суждения и умозаключения. Основные функции и состав языка, специфика языка логики. История логики как науки.

    контрольная работа [30,3 K], добавлен 14.05.2011

  • Логическая характеристика понятий, отношения между ними, выражение с помощью круговых схем. Распределённость терминов при переходе от одного термина к другому. Основные законы логики. Непосредственные умозаключения и дедуктивные выводы из посылок.

    контрольная работа [50,6 K], добавлен 01.07.2009

  • Типичные ситуации нарушения закона достаточного основания. Признаки нелогичности высказываний. Положительные и отрицательные понятия. Определение логических ошибок. Вид суждений (по качеству и количеству, логическому союзу, модальности), их формулы.

    контрольная работа [37,5 K], добавлен 30.01.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.