Методика преподавания математики по теме "Неравенства"

Содержание линии уравнений и неравенств в школьном курсе математики. Классификация преобразований неравенств и их систем. Последовательность изучения неравенств. Методика изучения классов неравенств и их систем. Функциональные и простейшие неравенства.

Рубрика Педагогика
Вид реферат
Язык русский
Дата добавления 21.03.2016
Размер файла 281,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

СОДЕРЖАНИЕ

Введение

1. Содержание и роль линии уравнений и неравенств в современном школьном курсе математики

2. Классификация преобразований неравенств и их систем

3. Общая последовательность изучения материала линии неравенств

4. Методика изучения основных классов неравенств и их систем

5. Функциональные неравенства. Понятие равносильности неравенств

6. Простейшие неравенства. Задачи

Заключение

Список использованной литературы

ВВЕДЕНИЕ

Тема "Неравенства" занимает важное место в курсе алгебры. Она богата по содержанию, по способам и приемам решения неравенств, по возможностям ее применения при изучении ряда других тем школьного курса алгебры. Это объясняется тем, что уравнения и неравенства широко используются в различных разделах математики, в решении важных прикладных задач.

Анализ диссертационных работ, посвященных методике изучения темы "Неравенства" в основной школе, показал, что в настоящий момент имеется ряд исследований, раскрывающих ее различные аспекты. Одним из первых было диссертационное исследование К.И. Нешкова, в котором сформулированы принципы отбора содержания и выделен необходимый объем материала по теме. При этом большая роль отводилась упражнениям.

Исследования: М.В. Паюл, И.М. Степуро посвящены вопросам взаимосвязи понятий неравенства, уравнения и функции; М.П. Комова, Г.Н. Солтан - доказательствам и решению неравенств на геометрическом материале; Е.Ф. Недошивкина - внутрипредметным связям при изучении уравнений и неравенств в курсе математики 4-8-х классов; Н.Б. Мельниковой, Д.Д. Рыбдаловой - прикладным аспектам изучения неравенств в средней школе.

Итак, можно констатировать тот факт, что отдельные вопросы методики обучения понятию неравенства и решению конкретных неравенств в школьном курсе математики освещены достаточно полно.

Несмотря на значительный положительный опыт в методике преподавания темы "Неравенства", как показывает анализ результатов тестов, контрольных, выпускных, вступительных экзаменационных работ, учащиеся средней школы недостаточно полно владеют основными знаниями и умениями по решению неравенств. В качестве аргумента приведем анализ результатов участия России в международных исследованиях TIMSS (6-ое место из 36 стран участников), который показал, что наибольшую озабоченность по курсу алгебры вызывает качество знаний и умений учащихся по теме "Неравенства".

1. СОДЕРЖАНИЕ И РОЛЬ ЛИНИИ УРАВНЕНИЙ И НЕРАВЕНСТВ В СОВРЕМЕННОМ ШКОЛЬНОМ КУРСЕ МАТЕМАТИКИ

Ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики организовано в содержательно-методическую линию уравнений и неравенств. Здесь рассматриваются вопросы формирования понятий уравнения и неравенства, общих и частных методов их решения, взаимосвязи изучения уравнений и неравенств с числовой, функциональной и другими линиями школьного курса математики.

Выделенным областям возникновения и функционирования понятия уравнения в алгебре соответствуют три основных направления развертывания линии уравнений и неравенств в школьном курсе математики.

а) Прикладная направленность линии уравнений и неравенств раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.

В настоящее время ведущее положение в приложениях математики занимает математическое моделирование. Используя это понятие, можно сказать, что прикладное значение уравнений, неравенств и их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании.

б) Теоретико-математическая направленность линии уравнений и неравенств раскрывается в двух аспектах: во-первых, в изучении наиболее важных классов уравнений, неравенств и их систем и, во-вторых, в изучении обобщенных понятий и методов, относящихся к линии в целом. Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений и неравенств связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений и неравенств.

в) Для линии уравнений и неравенств характерна направленность на установление связей с остальным содержанием курса математики. Эта линия тесно связана с числовой линией. Основная идея, реализуемая в процессе установления взаимосвязи этих линий, - это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений, неравенств, систем. Например, числовые промежутки выделяются неравенствами или системами неравенств. Области иррациональных и логарифмических выражений связаны соответственно с уравнениями

(k-натуральное число, большее 1) и

Связь линии уравнений и неравенств с числовой линией двусторонняя. Приведенные примеры показывают влияние уравнений и неравенств на развертывание числовой системы. Обратное влияние проявляется в том, что каждая вновь введенная числовая область расширяет возможности составления и решения различных уравнений и неравенств.

Линия уравнений и неравенств тесно связана также и с функциональной линией. Одна из важнейших таких связей приложения методов, разрабатываемых в линии уравнений и неравенств, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т.д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений и неравенств, так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений, неравенств и их систем.

2. КЛАССИФИКАЦИЯ ПРЕОБРАЗОВАНИЙ НЕРАВЕНСТВ И ИХ СИСТЕМ

Можно выделить три типа таких преобразований:

1) Преобразование одной из частей неравенства.

2) Согласованное преобразование обеих частей неравенства.

3) Преобразование логической структуры.

Преобразования первого типа используются при необходимости упрощения выражения, входящего в запись решаемого неравенства. Преобразование одной из частей неравенства используют раньше всех других преобразований, это происходит еще в начальном курсе математики. Прочность владения навыком преобразований этого типа имеет большое значение для успешности изучения других видов преобразований, поскольку они применяются очень часто.

Преобразования второго типа состоят в согласованном изменении обеих частей неравенства в результате применения к ним арифметических действий или элементарных функций. Преобразования второго типа сравнительно многочисленны. Они составляют ядро материала, изучаемого в линии неравенств.

Приведем примеры преобразований этого типа.

1) Прибавление к обеим частям неравенства одного и того же выражения.

2а) Умножение (деление) обеих частей неравенства на выражение, принимающее только положительные значения.

2б) Умножение (деление) обеих частей неравенства на выражение, принимающее только отрицательные значения и изменение знака неравенства на противоположный.

3а) Переход от неравенства a>b к неравенству f(a) >f(b), где f-возрастающая функция, или обратный переход.

3б) Переход от неравенства а<b к неравенству f(a) <f(b), где f - убывающая функция, или обратный переход.

Среди преобразований второго типа преобразования неравенств образуют сложную в изучении, обширную систему. Этим в значительной степени объясняется то, что навыки решения неравенств формируются медленнее навыков решения уравнений и не достигают у большинства учащихся такого же уровня.

К третьему типу преобразований относятся преобразования неравенств и их систем, изменяющие логическую структуру заданий. Поясним использованный термин логическая структура". В каждом задании можно выделить элементарные предикаты - отдельные уравнения или неравенства. Под логической структурой задания мы понимаем способ связи этих элементарных предикатов посредством логических связок конъюнкция или дизъюнкции.

Изучение и использование преобразований неравенств и их систем, с одной стороны, предполагают достаточно высокую логическую культуру учащихся, а с другой стороны, в процессе изучения и применения таких преобразований имеются широкие возможности для формирования логической культуры. Большое значение имеет выяснение вопросов, относящихся к характеризации производимых преобразований: являются ли они равносильными или логическим следованием, требуется ли рассмотрение нескольких случаев, нужна ли проверка? Сложности, которые приходится здесь преодолевать, связаны с тем, что далеко не всегда возможно привести характеризацию одного и того же преобразования однозначно: в некоторых случаях оно может оказаться, например, равносильным, в других равносильность будет нарушена.

В итоге изучения материала линии уравнений и неравенств учащиеся должны не только овладеть применением алгоритмических предписаний к решению конкретных заданий, но и научиться использовать логические средства для обоснования решений в случаях, когда это необходимо.

3. ОБЩАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ ИЗУЧЕНИЯ МАТЕРИАЛА ЛИНИИ НЕРАВЕНСТВ

Необходимо учитывать два противоположных направленных процесса, сопровождающие обучение. Первый процесс - постепенное возрастание количества классов неравенств и приемов их решения, различных преобразований применяемых в решении. За счет увеличения объема материал как бы дробится, изучение его новых фрагментов затрудняется наличием уже изученных, Второй процесс установление разнообразных связей между различными классами уравнений, выявление все более общих классов, закрепление все более обобщенных типов преобразований, упрощение описания и обоснования решений.

В результате взаимодействия этих процессов изученный материал должен представляться учащимся в сравнительно компактном виде, не затрудняющем, а, наоборот, облегчающем усвоение нового. Необходимость установления такого взаимодействия обусловливает применяемые в линии уравнений и неравенств методические приемы, в частности распределение материала обучения по ступеням.

Можно выделить четыре основные ступени: независимое изучение основных типов неравенств и их систем; постепенное расширение количества изученных классов неравенств и их систем; формирование приемов решения и анализа неравенств и их систем, имеющих широкую область применимости; синтез материала линии уравнений и неравенств. Дадим характеристику этих ступеней.

Изучение основных типов неравенств и их систем.

Среди всех изучаемых в курсе математики типов неравенств и систем выделяется сравнительно ограниченное количество основных типов, к их числу можно отнести: линейные неравенства с одним неизвестным, квадратные неравенства, простейшие иррациональные и трансцендентные неравенства.

Эти классы изучаются с большой тщательностью, для них указывается и доводится до автоматизма выполнение алгоритмов решения, указывается форма, в которой должен быть записан ответ.

Введение каждого нового основного класса неравенств сопровождается введением новой области числовых выражений, входящих в стандартную форму записи ответа. Вместе с тем, когда материал усвоен, целесообразно изредка предлагать и такие задания, в которых могут возникать нестандартные для данного класса неравенств ответы.

Каждый из основных классов неравенств и их систем требует проведения исследования зависимости результата от коэффициентов, поскольку множества решений у заданий, входящих в один и тот же класс, могут существенно различаться. Для неравенств и их систем в качестве меры различия обычно берутся простейшие особенности геометрических фигур, изображающих их множества решений на координатной прямой или плоскости. Изредка требуется выяснить положительность или отрицательность корней (если неизвестное одно), принадлежность решений уравнений с двумя неизвестными одной из координатных четвертей.

Формирование общих приемов решения и исследования неравенств

В ходе изучения неравенств становится все более заметной роль общих, универсальных средств решения и исследования. Такие обобщенные средства, приемы можно разделить на три группы.

Первая группа состоит из логических методов обоснования решения. Используя эти методы (например, равносильные преобразования или логическое следование), переходят от исходных неравенств к новым. Такие переходы делаются до тех пор, пока не получаются задания, относящиеся к известным классам.

Вторая группа состоит из вычислительных приемов, посредством которых производятся упрощения одной из частей данного неравенства, проверка найденных корней при помощи подстановки вместо неизвестного, различные промежуточные подсчеты в т.д. Возможности проведения численных расчетов резко возрастают при использовании вычислительной техники.

В третью группу входят наглядно-графические приемы. Большинство этих приемов используют в качестве основы координатную прямую либо координатную плоскость.

Использование координатной прямой позволяет решать некоторые неравенства и системы неравенств с одним неизвестным, а также неравенства с модулями. Например, прием решения систем линейных неравенств с одним неизвестным состоит в том, что на координатную прямую наносятся множества решений каждого неравенства, а потом выделяется их общая часть. Решение уравнений и неравенств с модулями связывается с геометрической интерпретацией модуля разности чисел.

Использование координатной плоскости позволяет применить графические методы к решению и исследованию неравенств и их систем как с одним, так и с двумя неизвестными. Графические приемы эффективно применяются для изображения результатов исследования там, где чисто аналитическая запись громоздка. Характерным примером служит схема, на которой приведены различные случаи решения неравенства

axІ+bx+c>0,

помещенная на рис. 1. В результате определенной тренировки учащиеся привыкают пользоваться такой схемой, а затем ее мысленным образом.

Рис. 1

4. МЕТОДИКА ИЗУЧЕНИЯ ОСНОВНЫХ КЛАССОВ НЕРАВЕНСТВ И ИХ СИСТЕМ

Эти классы можно разбить на две группы. Первая группа рациональные неравенства и системы. Наиболее важными классами соответствующие классы неравенств. Вторая группа - иррациональные и трансцендентные неравенства и системы. В состав этой группы входят иррациональные, показательные, логарифмические и тригонометрические неравенства.

Первая группа получает достаточное развертывание, вплоть до формирования прочных навыков решения, уже в курсе алгебры неполной средней школы. Вторая же группа в этом курсе только начинает изучаться, причем рассматриваются далеко не все классы, а окончательное изучение происходит в курсе алгебры и начал анализа. При изучении второй группы приходится опираться на общие понятия и методы, относящиеся к линии неравенств. Указанное различие, однако, не является единственным, которое противопоставляет эти две группы. Более существенным является учет особенностей, связанных с развертыванием материала каждой из этих групп. По сравнению с первой группой неравенства, входящие в состав второй, в процессе их изучения обнаруживают значительно более сложные связи с другими линиями курса математики - числовой, функциональной, тождественных преобразований и др.

Последовательность изучения различных классов неравенств и систем различна в разных учебниках. Однако количество возможных вариантов для последовательности их введения не слишком велико - классы находятся в определенной логической зависимости друг от друга, которая предписывает порядок их появления в курсе.

Наличие такого разнообразия подходов затрудняет методическое описание, поскольку принятие того или иного пути требует различных приемов изучения материала.

Отметим ряд особенностей в изучении неравенств:

1) Как правило, навыки решения неравенств, за исключением квадратных, формируются на более низком уровне, чем уравнений соответствующих классов. Эта особенность имеет объективную природу: теория неравенств сложнее теории уравнений. Отмеченное обстоятельство отчасти смягчается другими особенностями изучения неравенств, поэтому в целом можно считать, что содержательная сторона неравенств, возможности их приложений от этого не страдают.

2) Большинство приемов решения неравенств состоит в переходе от данного неравенства a>b к уравнению а=b и последующем переходе от найденных корней уравнения к множеству решений исходного неравенства. Пожалуй, такого перехода не производится лишь при рассмотрении линейных неравенств, где в нем нет необходимости из-за простоты процесса решения таких неравенств. Эту особенность необходимо постоянно подчеркивать, с тем? чтобы переход к уравнениям и обратный переход превратились в основной метод решения неравенств; в старших классах он формализуется в виде "метода интервалов".

3) В изучении неравенств большую роль играют наглядно-графические средства.

Указанные особенности могут быть использованы для обоснования расположения материала, относящегося к неравенствам, количества заданий, необходимых для усвоения программного минимума.

Приведем примеры. Первая особенность может быть истолкована так: при выполнении одного и того же числа упражнений техника решения неравенств какого-либо класcа будет ниже, чем уравнений соответствующего класса; следовательно, если имеется необходимость формирования прочных навыков решения неравенств, то для этого требуется большее число заданий. Вторая особенность объясняет то, что темы, относящиеся к неравенствам, расположены после тем, относящихся к соответствующим классам уравнений. В соответствии с третьей особенностью изучение неравенств зависит от качества изучения функциональной линии школьного курса (построение графиков и графическое исследование функций).

Перечисленные особенности показывают, что изучение предшествующего материала сильно влияет на изучение неравенств. Поэтому роль этапа синтеза в изучении неравенств особенно возрастает.

Проиллюстрируем указанные особенности на материале квадратных неравенств. Изучение этого раздела курса следует за изучением квадратного уравнения и квадратного трехчлена. К моменту его изучения учащиеся умеют строить графики квадратичной функции, причем на них отмечаются нули функции, если они существуют. Поэтому переход к рассмотрению квадратных неравенств можно осуществить как переход от неравенства

курс неравенство функциональный простейший

ахІ+bх+с>0

к построению и изучению графика функции

у=ахІ+bх+с.

Поскольку возможны различные случаи расположения графика относительно оси абсцисс, лучше начать с рассмотрения конкретного задания, для которого соответствующий квадратный трехчлен имеет различные корни. На этом примере устанавливается соответствие между двумя задачами: "Решить неравенство ахІ+bх+с>0"; "Найти значения аргумента, для которых значения функции у=ахІ+bх+с положительны". Посредством этой связи производится переход к построению графика функции. Нули этой функции разбивают ось абсцисс на три промежутка, в каждом из которых она сохраняет знак, поэтому ответ считывается прямо с чертежа. Другие случаи решения квадратных неравенств (у квадратного трехчлена ахІ+bх+с не больше одного корня) требуют дополнительного рассмотрения, но опираются на то же соответствие.

В процессе дальнейшего изучения устанавливается, что нет нужды в точно вычерченном графике квадратного трехчлена, достаточно наметить только положение корней, если они есть, и учесть на эскизе нужные особенности графика (направление ветвей параболы).

В школьном курсе математики ограничиваются изучением только неравенств основных классов; задания, которые требуют сведения к основным классам, встречаются сравнительно редко. Например, не изучаются биквадратные неравенства.

Из числа типов заданий, в которых проявляется прикладная роль неравенств в курсе алгебры, отметим нахождение области определения функции и исследование корней уравнений в зависимости от параметров.

Иррациональные и трансцендентные неравенства

Определения различных классов иррациональных и трансцендентных неравенств, которые приводятся в школьных учебниках, обычно имеют вид: "Неравенство называется иррациональным (показательным в т.д.), если оно содержит неизвестное под знаком корня (в показателе степени и т.д.)". Несмотря на формальную расплывчатость, определения такого типа достаточны для того, чтобы указать некоторую область, уравнения или неравенства из которой решаются способами, изучаемыми при прохождении соответствующей темы. В каждом из таких классов можно указать подклассы простейших уравнений или неравенств, к которым и сводится решение более сложных заданий.

Каждый простейший класс тесно связан с классом соответствующих функций; по существу, формулы решений и исследование простейших неравенств здесь опираются на свойства функций. В начале изучения каждого простейшего класса учащимся приходится преодолевать трудности, связанные с освоением специфической символики, в частности узнавать новые формы записи чисел и числовых областей, в которых должен быть получен ответ к заданию. При решении заданий часто используются наряду с известными специфические для соответствующего класса функций тождества. Значительно чаще, чем в предшествующей части курса, в решении неравенств используются неравносильные преобразования, широко используются подстановки. Поэтому весь этот материал требует достаточной логической грамотности учащихся.

Специфика трансцендентных неравенств. При рассмотрении различных классов трансцендентных неравенств необходимо уделять достаточное внимание формированию навыка применения тождеств для преобразования данных неравенств. Особенно ярко это проявляется в тригонометрии, поэтому при изучении тригонометрических неравенств большое значение приобретают задания и системы вопросов, связанные с распознаванием применимости того или иного тождества, возможности приведения уравнения или неравенства к определенному виду.

Здесь значительные трудности связаны с тем, что некоторые тождества, используемые в преобразованиях, приводят к изменению области определения. К числу таких тождеств относятся, например, такие:

Использование этих тождеств слева направо может привести к потере корней, а справа налево - к появлению посторонних корней. Рассмотрим примеры.

Здесь учет ограничений при использовании тождества для логарифма произведения выполнен при втором переходе, в результате чего неравенство преобразовалось в систему неравенств, из которых два последних позволяют сохранить исходную область определения неизменной.

В результате выполнения аналогичных заданий можно сделать вывод: если приходится пользоваться преобразованиями, расширяющими область определения, то для сохранения равносильности необходимо дополнительно ввести ограничения, сохраняющие исходную область определения неизменной.

5. ФУНКЦИОНАЛЬНЫЕ НЕРАВЕНСТВА. ПОНЯТИЕ РАВНОСИЛЬНОСТИ НЕРАВЕНСТВ

Рассмотрим две функции и, определенные на некотором множестве Х. Часто бывает необходимо узнать, при каких значениях значения первой функции меньше соответствующих значений второй. Другими словами, требуется найти все значения переменной, при которых верны числовые неравенства Такого типа задачи принято называть задачами на решение неравенств.

Таким образом, решить неравенство

- это значит найти все значения x, при подстановке которых в неравенство получается верное числовое неравенство. Каждое такое значение x называется решением неравенства. Совокупность всех решений называется множеством решений. Решить неравенство - значит найти его множество решений. Неравенство называют строгим, неравенство - нестрогим.

При решении неравенств, так же как и при доказательстве неравенств, фундаментальное значение имеет понятие равносильности неравенств.

Два неравенства

(x)<(x)

И

<(x)

Называют равносильными на множестве М, если каждое решение первого неравенства, принадлежащее множеству М, является решением второго неравенства и, наоборот, каждое решение второго неравенства, принадлежащее множеству М, является решением первого неравенства.

Равносильными на множестве М считают также неравенства, которые на этом множестве не имеют ни одного решения.

В некоторых случаях удается, последовательно преобразуя данное неравенсво, свести его к более простому неравенству, равносильному исходному. При установлении равносильности неравенств чаще всего используются следующие утверждения.

Неравенства

Равносильны на любом числовом множестве.

Если f (x) и g (x) на множестве М принимают только положительные значения, то неравенства

Равносильны на М.

Если функция f (x), g (x), z (x) определены на множестве М, то неравенства

Равносильны на множестве М.

Отсюда следует равносильности неравенств

т. е. правило переноса слагаемых из одной части неравенства в другую.

4. Если функция определены на множестве М и z (x)>0 на этом множестве, то неравенства

равносильны на М.

Если функция f (x) и g (x) определены на множестве М и принимают только положительные значения, то неравенства

равносильны на М.

Справедливость этих утверждений легко следует из соответствующих свойств числовых неравенств. Аналогичные утверждения верны и для нестрогих неравенств.

Заметим, что для доказательства неравносильности двух неравенств на некотором множестве достаточно указать один элемент этого множества, являющийся решением одного неравенства, но не удовлетворяющий другому неравенству.

ПРИМЕР 1. Равносильны ли на множестве всех положительных чисел следующие неравенства:

а) и 1

б) + и

в)x+1 и

а) Неравенства равносильны в силу утверждения 4 для нестрогих неравенств:

б) равносильность неравенств следует из утверждения 3:

f(x)=x^3 ,g(x)=x^2, z(x)=vx

в) неравенства равносильны, согласно утверждению 5:

,

ПРИМЕР 2. Равносильны ли неравенства из примера 1 на множестве всех действительных чисел?

а) неравенства неравносильны, так как х=0 удовлетворяет первому неравенству и не удовлетворяет второму.

б) неравенства неравносильны, так как х=-1 удовлетворяет только второму неравенству.

в) неравенства неравносильны, так как х=-1 входит в множество решений второго неравенства, но не принадлежит множеству решений второго.

ПРИМЕР 3. Равносильны ли на множестве всех действительных чисел неравенства

Если

x^2+x-2?0,

то решений нет ни у первого неравенства, ни у второго. Если

x^3+x-2>0,

то и

,

и согласно утверждению 5 неравенства равносильны. Следовательно, данные неравенства равносильны на всем множестве действительных чисел.

6. ПРОСТЕЙШИЕ НЕРАВЕНСТВА. ЗАДАЧИ

Доказать неравенство

Имеем

==+,

так как сумма взаимно обратных неравных положительных величин всегда больше двух.

Доказать, что если

,

то имеет место неравенство

+

Имеем очевидное неравенство

.

Поскольку

,

то, поделив обе части этого неравенства на , получим

,

Или

+.

Равенство достигается лишь при

Доказать неравенство

Доказываемое неравенство верно, если верно

,

Или

,

что верно. Знак равенства имеет место только при

Доказать, что при имеет место неравенство

Первое решение. Если , то имеем верное неравенство: 1>0. Доказываемое неравенство перепишем в виде

(1)

Если

,

то поделив обе части неравенства (1) на , получим

(2)

Трехчлен

положителен, так как его корни мнимые и коэффициент при положителен, а

.

Следовательно, неравенство (2) верное, а потому верно и доказываемое неравенство.

Второе решение. Если

,

то имеем

,

что очевидно. Если же

,

То

Доказать, что при нелюбом неотрицательном имеет место неравенство

Первое решение. Если

,

то имеем верное неравенство:

.

Если

,

то для удобства перепишем доказываемое неравенство в виде

(1)

Поскольку

,

то поделив обе части (1) на получим неравенство

(2)

Так как

,

то левая часть есть сумма положительных чисел, из которых одно не меньше 2. Таким образом, мы доказывали, что утверждение задачи верно как при , так и при .

Второе решение. Если

,

то имеем

.

Если же

,

То

+1

ЗАКЛЮЧЕНИЕ

Неравенство числовое - высказывание вида а < b или а > b, где < - отношение строгого порядка, а отношение ? - отношение нестрогого порядка на некотором множестве чисел.

Неравенство с переменной - высказывательная форма вида А? В, где А или В - высказывательная форма.

Множество значений переменной х (или нескольких переменных), при которых высказывательная форма А < В или А ? В истинна, называется множеством истинности этой формы или решением неравенства с переменной.

Иногда неравенство с переменной определяют менее формально, но более, может быть, доступно: два выражения, соединенные знаком неравенства ( - знаки неравенства).

Неравенство, содержащее знак > или <, называют строгим; содержащее знак ? или ?, называют нестрогим. Отношения "меньше" и "больше" для чисел а и b взаимосвязаны: если а>b, то b<а; если а<b, то b>а.

К обеим частям истинного (верного) числового неравенства можно прибавлять одно и то же число, в результате получим истинное неравенство. Умножая обе части истинного числового неравенства а<b на положительное число с, получим истинное неравенство ас<bс; если умножить на одно и то же отрицательное число с и изменить знак неравенства на противоположный, то получится истинное неравенство ас>bс.

Содержание линии неравенств развертывается на протяжении всего школьного курса математики. Учитывая важность и обширность материала этой линии, еще раз отметим целесообразность на заключительных этапах обучения предлагать достаточно разнообразные и сложные задания, рассчитанные на активизацию наиболее существенных компонентов этой линии, основных понятий и основных приемов решения, исследования и обоснования заданий.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Методика преподавания математики в средней школе: Общая методика: Уч. пос. для студ. пед. инст-в по спец.2104 "Математика" и 2105 "Физика"/ А. Блох, Е.С. Канин и др. Сост.Е.С. Черкасов, А.А. Столяр. - М.: Просвещение, 1985. -336 с.

2. Методика преподавания математики в средней школе: Частная методика: Уч. пос. для студ. пед. инст-в по физ-мат. спец-м/ А. Блох, В.А. Гусев, Г.В. Дорофеев и др. Сост. В.И. Мишин. - М.: Просвещение, 1987. -416 с.: ил.

3. Методика преподавания математики в средней школе. /В.А. Ованесян и др. - М: Просвещение, 1980. - 368 с.

4. Олехник С.Н., Потапов М.К., Пасиченко П.И. Нестандартные методы решения уравнений и неравенств. - М.: МГУ, 1991 г.

5. Шабунин М.И. Математика для поступающих в вузы. Неравенства и системы неравенств. М.: Аквариум, 1997 г.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.